Hypersonic Materials and Structures

SAMPE Baltimore, MD May 18-21, 2015

David E. Glass, Ph.D. NASA Langley Research Center, Hampton, VA

Introduction

- Vehicle components
- Technical challenges
- Concluding remarks

Rockets vs. Airbreathers

Rockets

Don't like the atmosphere

- Accelerate only
- Get out quick
- Tend toward vertical launch
- Low ISP
- Drag
 - High drag not a problem on ascent, desirable on descent for deceleration
 - Blunt leading edges

Weight critical

- Mass fraction ~ 10% of GTOW
- Requirement to be weight sensitive
- Engine in back
 - Weight drives components to be clustered near engine
 - Tail heavy
 - Hard to get forward c_q
 - Highly compressive loaded structure

Airbreathers

Like the atmosphere

- Accelerate and cruise in atmosphere
- Tend toward horizontal launch
- High ISP

Drag

- Optimize for low drag
- Thin, slender body, low thickness/chord

Volume critical

- Mass fraction ~ 30% of GTOW
- Requirement to be volume sensitive, volume drives drag

Engine in mid-body

- Stability easier
- Easier to control c_g

Structural Differences Between Rockets and Airbreathers

Tanks

• Cylindrical, since vehicle is weight sensitive and volume insensitive

TPS

- Driven by descent
- Low heat load due to short ascent

Leading edges

- Blunt, due to desire for descent drag
- Highheat flux

Structure

- Lightly loaded wings
- Propulsion and airframe not highly integrated

Tanks

• Conformal, since vehicle is drag, and thus volume, critical

TPS

- Driven by ascent
- High heat load due to long ascent time

Leading edges

- Sharp, due to low drag, low thickness/chord
- Severe heat flux

Structure

- Highly loaded wings (some air breathers)
- Hot wings and control surfaces due to thin cross sections and high heat flux/load
- Propulsion and airframe highly integrated

Drag is the big driver for hypersonics

Flight Vehicle Thermal Management

History Shows That New Material Systems Help Enable the Vehicle

CMC's are the material system that will provide the required strength at elevated temperature.

CMC Hot Structure Weight Savings

- Space Shuttle Orbiter Body Flap (AIAA-1983-913)
 - Baseline 1460 lb, insulated cold structure
 - ACC body flap 1207 lb (253 lb, 17% weight savings)

• HSR (NASA High Speed Research program) SiC/SiC Combustor Liner

- Projected 30% weight savings
- Reduced NOx and CO emissions due to higher temp

• X-38 C/SiC Hot Structures

- Bearings 50% lighter weight than traditional bearings
- Body flap 50% less than insulated cold structure (5.25 ft x 4.6 ft, 150 lb)
- Rudder (different design temperature)
 - PM-1000 with Ti inner structure and insulation: 133 lb with growth factor of ~ 5%
 - CMC: 97 lb with higher growth factor (27% weight savings)

Aircraft brakes

- 500-1000 lbs per plane weight savings
- Actively cooled CMC combustor (French study, AIAA-2011-2208)
 - 30% weight savings over metallic

Rule of thumb, ~ 25% weight savings with CMCs

Key Point – Drag Reduction

- Reentry vehicles (most of our prior experience), want drag to reduce velocity as they reenter.
- Cruise vehicles must minimize drag as they cruise through the atmosphere.
 - Surface and cross-section
- Hot structure is the preferred approach (rather than TPS over cold structure)
 - Large, smooth, hot airframe has not been addressed

A Few General Thoughts

Weight is always critical

♦ High risk ≠ high payoff

• Might be, but not an automatic

Requirements have a significant impact on TRL

- Number of cycles
- Mechanical loads
- Pressure (oxidation)
- Heat flux
- Etc.

TRL = f(requirements) Can't change requirements and expect to keep TRL the same

Thinking of how much it will cost to develop a technology is often a better gage of how far away we are than asking how long it will take

Leading Edges

State of the art

- Space shuttle orbiter RCC
- Hyper-X coated C/C
- HTV-2 oxidizing C/C

Requirement

- Multi-use
- Light weight
- Durable
- Sharp

Technical challenges

- Manufacturing
- Life
- Thermal stress
- High heat flux / temperature
- Environmental durability

Space shuttle orbiter leading edge

Typical Ascent Leading-Edge Heat Flux for SSTO

In comparison, Shuttle Orbiter leading edge ~ 80 W/cm², CEV heatshield ~ 800 W/cm²

Leading-Edge Heating

Chordwise position, in.

Sharp leading edges produce intense, localized heating.

Active Oxidation of Si-Based Materials

2400

2200

2000

1800

1600

1400

1200

1000 800 600

Transition from passive to active oxidation function of

- Temperature
- Oxygen partial pressure
- Plasma speed
- Degree of dissociation
- Destroys protection of Si containing system
 - C/SiC
 - SiC/SiC
 - Coated C/C
 - UHTC
 - ... etc.

Arc-jet test of MT Aerospace C/SiC in the German PWK2 facility

Heat-Pipe-Cooled Leading Edges

Heat pipe results in an isothermal leading edge.

- Mo-Re embedded in C/C
- Li working fluid
- D-shaped heat pipes

Control Surfaces

State of the art

- Space shuttle orbiter (insulated)
- X-38 (CMC hot structure)
- HTV-2 C/C
- NASA X-37 evaluated C/C and C/SiC

Requirement

- High strength at elevated temperature
- Light weight

Technical challenges

- Volume constrained
- Manufacturing
- Recession / stressed oxidation
- Thermal stress
- High heat flux / temperature
- High heat load
- Heat conduction into vehicle / insulation

Types of Control Surfaces

Insulated

- Suitable for very large structures
- Minimal thermal expansion issues
- Heavy
- Little thermal margin
- Thick cross section

Hybrid

- Affordable manufacturing for large structures
- May not require TPS on upper surface
- Thermal growth mismatch between metal/PMC and CMC
- Weight increase 30-40% over all CMC

Hot Structure

- Lowest weight and thin cross section
- Minimal thermal expansion mismatch problems
- Thermal margin
- High manufacturing/tooling costs for box structure
- Challenging for very large structures

X-38 Hot Structures

- Chin panel provided by MT Aerospace
- Nose assembly has undergone full qualification (qual units)
 - Vibration
 - Thermal (radiant)
 - Mechanical

- C/SiC body flaps
 - Provided by MT Aerospace
 - Qualified for flight

X-38 hot rudder

- Fabricated and tested a PM-1000 rudder to 2192°F (1200°C) in 1 yr
- Requirements changed
- Qualified Ti/ceramic tile rudder (1 yr)
- Planned Ti/CMC rudder for crew return vehicle (CRV)

MT Aerospace Integrated Fabrication Approach

Advantages

- Fewer joints
- Better mechanical performance

Disadvantages

- Complex tooling and associated fabrication expense
- Risk of damage during fabrication

Fabrication

- 2-D prepreg of carbon fabric
- Cured and pyrolyzed
- Further densified with CVI SiC
- No fasteners (less mass)

MT Aerospace Pre-X body flap

Acreage TPS / Hot Structure Aeroshell

X-51

• State of the art

- Ceramic tiles and blankets
- Ablators
- Oxidizing C/C hot structure

Requirement

- Durable
- Thin cross section
- Smooth OML
- Insulate interior (keep the heat out)

Technical challenges

- Manufacturing
- Durability
- High temperatures
- Large heat load due to extended duration flight
- High temperature insulation
- Combined loads

HTV-2

Hot Structure Versus TPS Over Cold Structure

Trade studies required on how to best meet requirements and optimize performance – need to keep trade space wide open

Windward CMC Standoff (Shingle) TPS (Snecma, IXV)

Easily replaced

Curved C/SiC panel (IXV side panel)

Internal Insulation

- Light-weight
- Flexible
- Non load-bearing
- Non-oxidizing
- Reflective foils or no foils
- High volumetric heat capacity
- Low effective thermal conductivity
- Capable of long duration flight at elevated temperatures

Propulsion Structures

• State of the art

- Passive heat sink
- Actively cooled superalloy

Requirement

- Light weight
- High heat flux/temperature
- Reduced fuel

Technical challenges

- Hermetically sealed CMC with no tubes
- Manifold

MBDA (France)

- Fuel cooled CMC combustor
- No metallic tubes

NASA & AF (Teledyne Scientific)

- Last funding several years ago
- No tubes

NASA (HyperTherm)

• SiC/SiC with refractory metal tubes

Passive CMC Combustor Material Evaluation

Design and Manufacturing

A state-of-the-art material is not the same thing as a state-of-the-art structure

Big difference!

Design for manufacturing

- Involve manufacturers in the process
- Don't "throw it over the wall"

Properties in a complex structure are often different than material test coupons

Attachments and joints

- Different material systems
 - Severe thermal gradients in multiple directions
- Mechanical loads
- Metrology often "required" for accurate fabrication and assembly
 - Optical / laser devices
 - Accuracy to < 0.001 in., f(size)
- TRL = f(requirements / loads)
 - Can't change the requirements / loads and keep the TRL
- Affordable, robust, & simple

Testing

- How do we qualify the vehicle for flight?
- We are unable to test many components in relevant, combined loads, environments (even small scale)
 - Thermal, mechanical, plasma, shear, oxygen partial pressure, vibration and acoustic, etc.
 - Apply appropriate boundary conditions over entire structure
 - Thermal gradients (spatial and temporal) from boundary layer transition
- Thermally generated stress ≠ mechanically generated stress
- Extensive testing is required
 - Performance testing and benchmarking for analyses
- Building block approach

Material / coupon test

Component test

Test as much as you can, and still include adequate margins for uncertainties

Thermal-Structural Analysis

Adequate material properties

- f(T), f(processing), etc.
- Adequate quantities (shape of curve and statistics)
- Capture non-linear behavior

Boundary conditions

- Thermal, mechanical
- Boundary layer transition

Mesh convergence

- Local / global models
 - Apply global loads to local models
- Mechanical / thermal stresses
- Factors of Safety (FOS)
- Failure modes
 - Biaxial stress interaction
 - Thermal ≠ mechanical failure

Thermal Stress

- Generated by restrained thermal growth
 - Temperature gradients and / or different materials (CTE)
- Very different from mechanical stresses
 - Driven by thermal gradients, not just high temperatures
 - Thicker structure can make it worse
 - Structurally connected, dissimilar materials, also drive thermal stress
- Complicated by different materials, 3-D thermal gradients, moving hot spots, asymmetric heating, etc.

SR-71 grows ~ 3 in. during flight

Thermal stress failure due to differential thermal expansion at uniform temperature

Thermal stress must be understood and accurately tested and modeled

- Reduction of weight and drag are key for all hypersonic vehicles
- A state-of-the-art material is not the same thing as a stateof-the-art structure
- TRL = f(requirements / loads)
 - Can't change the requirements / loads and keep the TRL
- Long duration flight results in high integrated heat loads that impact design
- Hot structure should be traded versus insulated (TPS) cold structure
 - Open up the trade space
- Thermal stress must be understood and accurately tested and modeled