### Is Lithium Ion Battery Technology Right For You?

What has changed in 2021?



Presented By: Marlene McCartha, AC & DC Power Technologies



### Battery Technology-

### Applications

### Applications Considered Today: WHY?

**Applications prevalent in new construction for:** 

- Data Centers,
- Manufacturing Operations,
- Institutional Buildings,
- Process Control,
- Transit Systems

We will <u>**not**</u> consider consumer electronics (cell phones, hand tools, cameras, computers) or motive applications (forklifts, electric vehicles, etc.) for this presentation.



### Applications

### Applications Considered Today: WHY?

**Applications prevalent in new construction for:** 

What these applications have in common:

- 1. They all use primarily taper current charging systems,
- 2. They are all emergency standby applications,
- 3. They all are primarily float charging applications,
- 4. These systems are rarely cycled to a significant depth of discharge (with the exception of PV systems).

NMC LFP LTO NCA

We will <u>**not**</u> consider consumer electronics (cell phones, hand tools, cameras, computers) or motive applications (forklifts, electric vehicles, etc.) for this presentation.



### Battery Failures

| Modes of<br>Failure      | Lead Acid                         | Nickel<br>Cadmium                   | Lithium                                                                                         |
|--------------------------|-----------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------|
| Natural Aging            | Open Circuit<br>(Sudden<br>Death) | Gradual<br>reduction of<br>capacity | Gradual reduction<br>of capacity<br>(SEI interface growth<br>Lithium Plating,<br>Intercalation) |
| Premature<br>Failure     | Typically Open<br>Circuit         | Gradual loss of capacity            | Loss of communication                                                                           |
| Manufacturing<br>Defects | Rare                              | Rare                                | Rare                                                                                            |



| Aging Mechanisms:               | Resulting Symptom                                                                                                                                                                                                    |                    |                                                     |                                |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------|--------------------------------|--|
| Intercalation<br>(Natural)      | <ul> <li>Parasitic chemical reactions that prevent the lithium<br/>ions from populating the interstices of the active<br/>materials. Conductivity of the battery is gradually<br/>reduced as this occurs.</li> </ul> |                    |                                                     |                                |  |
| Repetitive Cycling<br>(Natural) | • Ve                                                                                                                                                                                                                 | Capacity ratio (%) | gra<br>20<br>100<br>1<br>80<br>60<br>40<br>20<br>20 | adual decline of BOL capacity. |  |

Cyclo number

End of Life

| Premature Aging<br>Mechanisms:                     | <b>Resulting Symptom</b>                                                                                                                                                                                  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal Overheating                               | <ul><li>Removal of the cell from the string.</li><li>Venting of the cell</li></ul>                                                                                                                        |
| <b>Cell Imbalance</b><br>(Overcharge/overdischarge | <ul> <li>Imbalance of cell voltage levels can cause the<br/>cells to age at different rates and affect the<br/>internal cell temperature. Improper sizing can<br/>also cause similar symptoms.</li> </ul> |
| Lithium Plating                                    | <ul> <li>Results from too deep of a discharge with too fast<br/>of a recharge repetitively,</li> <li>When charged at too low of a temperature.</li> </ul>                                                 |
| Dendrite/Lithium Deposition                        | <ul> <li>Internal short circuit of a cell</li> </ul>                                                                                                                                                      |
| Active Material Instability                        | <ul> <li>Overtemperature resulting in disconnection</li> </ul>                                                                                                                                            |



### Limitations

### **Special Considerations:**

- Humidity (Operational and Storage)
- Storage Limitations
- Code Enforced Allowable Quantities
- Clearance for Fire Code Requirement
- Shipping
- Proprietary Software for BMS
- Cost
- Best value for short duration discharges



### Watt-Hours (Wh) vs. Ampere-Hour (Ah)



End of Discharge Voltage

# Typical lead acid battery discharge data is based on "Ampere-Hours".



### Lead Acid Battery Technology- Performance Rating

### Ampere-Hour (Ah)



Historically, stationary lead acid or nickel cadmium battery "nameplate" capacity has been characterized by capacity. Units of measure are in "ampere-hours".

*Formula:* Discharge Time (H) x Discharge Current (A) = Capacity (Ampere-Hour)

Example:

10 (Hour) x 23 (amps) = 230 Ah



### Lead Acid Battery Technology- Performance Rating

#### Useable energy vs. rate of discharge



### Performance

### Watt-Hours (Wh) vs. Ampere-Hour (Ah)



#### Watt: One Joule/second



### Lithium ION Battery Technology- Performance

### Watt-Hours (Wh)

Lithium ion manufacturers use "Watt-Hours" (WH) to characterize battery capacity in order to highlight energy density. We consider:





#### IFC 2018 chapter 1206.2 and NFPA-1 chapter 52 MAXIMUM ALLOWABLE QUANTITIES (MAQ)

| BATTERY TECHNOLOGY    | Maximum<br>Allowable Quantity | Group H<br>Occupancy |
|-----------------------|-------------------------------|----------------------|
| Lead Acid (All Types) | Unlimited                     | N/A                  |
| Nickel Cadmium        | Unlimited                     | N/A                  |
| Lithium, (All Types)  | 600 kWh                       | Group H-2            |
| Sodium, (All Types)   | 600 kWh                       | Group H-2            |
| Flow Batteries        | 600 kWh                       | Group H-2            |
| Other Batteries       | 200 kWh                       | Group H-2 *          |

Exceeding these levels means the facility has to be reclassified as a "**High Hazard Occupancy**".

**International Fire Code (IFC)-** developed and updated by review of proposed changes submitted by code enforcement officials, industry representatives, design professionals and other interested parties.

| BATTERY TECHNOLOGY   | Maximum<br>Allowable Quantity | Group H Occupancy |
|----------------------|-------------------------------|-------------------|
| Lithium, (All Types) | 600 kWh                       | Group H-2         |

**Example:** 750 KVA/750 KW UPS for 15 minutes (no aging factor, no design margin, no temperature derating applied).



ARCHITECTURAL CONSIDERATIONS AND FIRE PROTECTIVE MEASURES OF GROUP H-2 OCCUPANCY AND FOR MAQ MUST BE CONSIDERED. The AHJ can determine the requirement to be Group H-2 if the battery represents a significant fire hazard or thermal

#### IFC 2021 chapter 12 and NFPA-1 chapter 52 MAXIMUM ALLOWABLE QUANTITIES (MAQ) FOR A SINGLE STRING/ARRAY

| BATTERY TECHNOLOGY    | Maximum String<br>Allowable Quantity |
|-----------------------|--------------------------------------|
| Lead Acid (All Types) | 70 KWh                               |
| Nickel Cadmium        | 70 KWh                               |
| Lithium, (All Types)  | 20 KWh                               |
| Sodium, (All Types)   | 20 KWh                               |
| Flow Batteries        | 20 KWh                               |
| Other Batteries       | 10 KWh                               |

Exceeding these levels means the facility has to be reclassified as a "High Hazard Occupancy".

**International Fire Code (IFC)-** developed and updated by review of proposed changes submitted by code enforcement officials, industry representatives, design professionals and other interested parties.

## So.....What has changed?

**1206.2.8.3 Stationary battery arrays.** Storage batteries, prepackaged stationary storage battery systems and pre-engineered stationary storage battery systems shall be segregated into stationary battery arrays not exceeding 50 kWh (180 megajoules) each. Each stationary battery array shall be spaced not less than 3 feet (914 mm) from other stationary battery arrays and from walls in the storage room or area. The storage arrangements shall comply with Chapter 10.

#### Exceptions:

- 1. Lead acid and nickel cadmium storage battery arrays.
- 2. Listed pre-engineered stationary storage battery systems and prepackaged stationary storage battery systems shall not exceed 250 kWh (900 megajoules) each where approved by the *fire code official*.
- 3. The *fire code official* is authorized to approve listed, pre-engineered and prepackaged battery arrays with larger capacities or smaller battery array spacing if large-scale fire and fault condition testing conducted or witnessed and reported by an approved testing laboratory is provided showing that a fire involving one array will not propagate to an adjacent array, and be contained within the room for a duration equal to the fire-resistance rating of the room separation specified in Table 509 of the International Building Code.



## So.....What has changed?

**UL 9540A** (TESTING METHOD For EVALUATING THERMAL RUNAWAY FIRE PROPOGATION IN BATTERY ENERGY STORAGE SYSTEMS)

- Heat Release Rate
- Gas Generation Composition
- Explosions/Flying Debris
- Target Unit & Wall Surface Temps
- Target Unit & Wall Surface Heat Flux



# Note: This is NOT a standard but is currently referenced in NFPA 855.



### Where is the battery to be installed?



### Performance

### **Performance Topics:**

- Capacity- Watt-Hours (Wh) vs. Ampere-Hour (Ah)
- High Energy Density
- Fast Recharge
- Flat Discharge Curve
- Predicted Float Life Curve (Shelf Life)
- Cycle Life Vs. Float Life
- Temperature Tolerance
- Reliability
- Safety







**Energy Density** 

### Performance

### **PREVALENT LION Chemistries:**

| Station Battery<br>Technology                                   | Chemistry                                                             | *            |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|--------------|
| <b>LTO</b> Lithium Titanate Oxide                               | Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> / 6LiCoO <sub>2</sub> | Séa<br>Farma |
| <b>LFP</b> Lithium Iron Phospate (LFP/LiFePO4)                  | LiFePO4 / LiC <sub>5</sub>                                            |              |
| <b>SLFP</b> Super Lithium Iron<br>Phosphate (LFP / LiFePO4 +NCA | <b>LiFePO4 +</b><br>LiNiCoAlO2 / <b>LiC<sub>5</sub></b>               |              |
| <b>NCA</b> Lithium Nickel Cobalt<br>Aluminum Oxide              | LiNiCoAlO2 (9% Co)                                                    |              |
| <b>NMC</b> Lithium Nickel<br>Manganese Cobalt Oxide             | LiNiMnCoO2                                                            |              |



### LITHIUM ION BATTERY –

### SPIDER GRAPH



Source for Figure 1 is Battcon paper by Jim McDowell. Fig 1 Fig. 2 and Fig 3 Reference: Battery University Website

### LITHIUM ION BATTERY –

### SPIDER GRAPH



Reference: Battery University Website

### LITHIUM ION BATTERY –

### SPIDER GRAPH



**IEEE WG\_1679-1)** that is in the process of defining the criteria to be used for the comparison, selection and analysis of the electrical and safety performance criteria.

### Lithium Ion Battery-

| Station Battery<br>Technology                                      | Chemistry                                                             | Electrode<br>Construction |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|
| <b>LTO</b> Lithium Titanate<br>Oxide                               | Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> / 6LiCoO <sub>2</sub> | Prismatic                 |
| <b>LFP</b> Lithium Iron<br>Phospate<br>(LFP/LiFePO4)               | LiFePO4 / LiC <sub>5</sub>                                            | Cylindrical Jelly-roll    |
| <b>SLFP</b> Super Lithium Iron<br>Phosphate (LFP / LiFePO4<br>+NCA | <b>LiFePO4 +</b><br>LiNiCoAlO2 / <b>LiC</b> <sub>5</sub>              | Cylindrical Jelly-roll    |
| <b>NCA</b> Lithium Nickel<br>Cobalt Aluminum Oxide                 | LiNiCoAlO2 (9% Co)                                                    | Cylindrical Jelly-roll    |
| <b>NMC</b> Lithium Nickel<br>Manganese Cobalt<br>Oxide             | LiNiMnCoO2                                                            | Cylindrical Jelly-roll    |

Does cell construction matter for the end-user?

### Lithium Ion Battery-

#### Performance Comparison

| Electrode<br>(Product No.)                                                                    | Potential<br>vs.<br>Li/Li <sup>+</sup><br>(V) <sup>A</sup> | Specific<br>Capacity,<br>(mAh/g) | Advantages                                                                                       | Disadvantages                                                                                    |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Positive<br>Electrodes                                                                        |                                                            |                                  |                                                                                                  |                                                                                                  |
| LiCoO <sub>2</sub> ( <b>442704</b> )                                                          | 3.9                                                        | 140                              | Performance                                                                                      | Cost and resource limitations of<br>Co, low capacity                                             |
| LiNi <sub>0.8</sub> Co <sub>0.15</sub> Al <sub>0.05</sub> O <sub>2</sub><br>( <b>760994</b> ) | 3.8                                                        | 180–<br>200                      | High capacity and voltage,<br>excellent rate performance                                         | Safety, cost and resource<br>limitations of Ni and Co                                            |
| LiNi <sub>1/3</sub> Mn <sub>1/3</sub> Co <sub>1/3</sub> O <sub>2</sub><br>( <b>761001</b> )   | 3.8                                                        | 160–<br>170                      | High voltage, moderate safety                                                                    | Cost and resource limitations of<br>Ni and Co                                                    |
| LiMn <sub>2</sub> O <sub>4</sub> variants<br>( <b>725129</b> )                                | 4.1                                                        | 100–<br>120                      | Low cost and abundance of Mn,<br>high voltage,<br>moderate safety, excellent rate<br>performance | Limited cycle life, low capacity                                                                 |
| LiFePO <sub>4</sub> ( <b>759546</b> )                                                         | 3.45                                                       | 170                              | Excellent safety, cycling, and rate<br>capability, low cost and<br>abundance of Fe, low toxicity | Low voltage and capacity<br>(substituted variants), low energy<br>density                        |
| Negative<br>Electrodes                                                                        |                                                            |                                  |                                                                                                  |                                                                                                  |
| Graphite (698830)                                                                             | 0.1                                                        | 372                              | Long cycle life, abundant                                                                        | Relatively low energy density;<br>inefficiencies due to Solid<br>Electrolyte Interface formation |
| Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> ( <b>765155</b> )                             | 1.5                                                        | 175                              | "Zero strain" material, good<br>cycling and efficiencies                                         | High voltage, low capacity (low<br>energy density)                                               |
| A. Average                                                                                    |                                                            |                                  |                                                                                                  |                                                                                                  |

Does technology really matter for stationary battery performance?





Does technology really matter for stationary battery performance?

### GENERATION PLANT Load Profile-

240 VDC



| Raw Material      | Price per Pound<br>(US\$) |  |
|-------------------|---------------------------|--|
| Titanate Oxide    | \$25.70                   |  |
| Cobalt Oxide      | \$14.52                   |  |
| Lithium Carbonate | \$7.36                    |  |
| Nickel            | \$5.60                    |  |
| Lead (New)        | \$0.92                    |  |
| Lead (Scrap)      | \$0.75                    |  |
|                   | = transparency            |  |

| 50KWB GENERATION PLANT<br>UPS APPLICATION |           |                              |               |  |  |  |
|-------------------------------------------|-----------|------------------------------|---------------|--|--|--|
| Battery Type                              | Cost      | Battery Type                 | Cost          |  |  |  |
| Flooded Pb<br>Calcium Faure'              | \$165,600 | VR Pb antimony<br>Gel Faure' | \$384,200     |  |  |  |
| Flooded Pb antimony<br>Faure'             | \$162,680 | Flooded VR Nicad             | \$212,689     |  |  |  |
| Flooded Plante'                           | \$179,500 | Flooded Nicad                | \$205,564     |  |  |  |
| Flooded Pb Selenium                       | \$135,360 | Pocket plate                 |               |  |  |  |
| Flooded lead antimony tubular             | \$160,720 | Flooded NicadPBE             | \$256,556     |  |  |  |
| VRLA calcium                              | \$184,024 | Flooded Nicad Fiber          | \$233,073     |  |  |  |
| Lithium LFP                               | \$288,000 | Amps <sub>Trip</sub>         | Trip          |  |  |  |
| Lithium Titanate                          | \$252,000 | Motor Loads                  | Spring Charge |  |  |  |
|                                           |           | 0 Continuous                 | 8 hrs         |  |  |  |

### SUBSTATION Switchgear Load Profile-



**120 VDC** 

Common worst case scenario is for all breakers to trip simultaneously at the beginning of the outage, and then to trip again at the end.



### Substation Example-

### 120VDC

| Battery Type                  | Cost                                          | Battery Type                                 | Cost                                                                                                           |  |
|-------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Flooded Pb<br>Calcium Faure'  | \$7,844                                       | VR Pb antimony<br>Gel Faure'                 | \$6,070                                                                                                        |  |
| Flooded Pb antimony<br>Faure' | \$7,643                                       | Flooded VR<br>Nicad                          | \$12,595                                                                                                       |  |
| Flooded Plante'               | \$18,842                                      | Flooded Nicad                                | \$5,812                                                                                                        |  |
| Flooded Pb Selenium           | \$6,700                                       | r ooker plate                                |                                                                                                                |  |
| Flooded lead antimony tubular | \$7,800                                       | Flooded Nicad<br>PBE                         | \$7,985                                                                                                        |  |
| VRLA Calcium 10- Yr           | \$2,784                                       | Flooded Nicad<br>Fiber                       | \$6,378                                                                                                        |  |
| Lithium Titanate              | \$14,000                                      |                                              |                                                                                                                |  |
| SLFP                          | \$12,224                                      | (Amps) Load PROFILE                          |                                                                                                                |  |
|                               |                                               | о тіме — — — — — — — — — — — — — — — — — — — | 8 Hr                                                                                                           |  |
|                               | CALLS AND |                                              | a satura a satura da |  |

### DATA CENTER UPS Load Profile-



### Lithium Ion Battery-

| UPS APPLICATION<br>480VDC <b>15</b> Minute Battery @ 750KWB |                 |                  |                |               |                            |                                                                        |           |  |
|-------------------------------------------------------------|-----------------|------------------|----------------|---------------|----------------------------|------------------------------------------------------------------------|-----------|--|
| Technology                                                  | # of<br>Strings | # of<br>Cabinets | Length<br>(In) | Width<br>(In) | Height<br>(In)             | Total Weight<br>(lbs)                                                  | Cost      |  |
| Flooded NICAD                                               | 1               | 2+2T<br>Racks    | 1490           | 25            | 76                         | 46,800                                                                 | \$390,000 |  |
| VLA Calcium                                                 | 1               | 3T Racks         | 510            | 35            | 78                         | 59,916                                                                 | \$225,000 |  |
| VLA Selenium                                                | 1               | 2+2T<br>Racks    | 570            | 32            | 82                         | 70,640                                                                 | \$258,000 |  |
| VRLA (10-Yr)                                                | 6               | 6 cab            | 240            | 29.5          | 78.7                       | 29,266                                                                 | \$98,266  |  |
| Lithium NMC                                                 | 20              | 20 cab           | 446            | 27.2          | 92.1                       | 28,020                                                                 | \$205,000 |  |
| Lithium LFP                                                 | 12              | 12 cab           | 288            | 20.5          | 84                         | 10,440                                                                 | \$214,800 |  |
|                                                             |                 |                  |                |               | (KW)<br>Ja<br>Mod<br>750 - | LOAD PROFILE<br>(KW)<br>Continuous static discharge<br>profile for UPS |           |  |
|                                                             |                 |                  |                |               | 0                          |                                                                        | 15 Min    |  |

| UPS APPLICATION<br>480VDC 5 Minute Battery @ 750KWB |          |              |                |               |                                                                                 |                          |           |
|-----------------------------------------------------|----------|--------------|----------------|---------------|---------------------------------------------------------------------------------|--------------------------|-----------|
| Technology                                          | # of Str | # of<br>Cab  | Length<br>(In) | Width<br>(In) | Height<br>(In)                                                                  | Total<br>Weight<br>(Ibs) | Cost      |
| Flooded NICAD                                       | 1        | 2+2<br>Racks | 1490           | 25.0          | 76.0                                                                            | 46,800                   | \$241,000 |
| VLA Calcium                                         | 1        | 3T Racks     | 816            | 32            | 78                                                                              | 42,528                   | \$153,360 |
| VLA Selenium                                        | 1        | 2+2<br>Racks | 570            | 32            | 78                                                                              | 45,360                   | \$178,320 |
| VRLA (10-Yr)                                        | 4        | 4 cab        | 194            | 33.6          | 78.7                                                                            | 28,720                   | \$66,250  |
| Lithium LTO                                         | 16       | 8 cab        | 273            | 34.1          | 80.7                                                                            | 15,360                   | \$311,900 |
| Lithium LFP                                         | 6        | 6 cab        | 144            | 20.5          | 84.0                                                                            | 5,220                    | \$107,400 |
|                                                     |          |              |                |               | LOAD PROFILE<br>(KW)<br>Continuous static discharge<br>profile for UPS<br>750 - |                          |           |
|                                                     |          |              |                |               | 0                                                                               |                          | 5 Min     |

### Lithium Ion Battery-

| UPS APPLICATION<br>480VDC 30 Minute Battery @ 450 KWB |          |                          |                |               |                |                          |             |  |
|-------------------------------------------------------|----------|--------------------------|----------------|---------------|----------------|--------------------------|-------------|--|
| Technology                                            | # of Str | # of<br>Cab              | Length<br>(In) | Width<br>(ln) | Height<br>(In) | Total<br>Weight<br>(Ibs) | Cost        |  |
| VLA Selenium<br>(Flooded)                             | 1        | 4 ea 2-<br>Tier<br>Racks | 996            | 35            | 84             | 67,440                   | \$221,040   |  |
| VRLA (10-Yr)                                          | 4        | 4 cab                    | 194            | 33.6          | 78.7           | 28,720                   | \$142,140   |  |
| Lithium LTO                                           | 24       | 24 cab                   | 818.4          | 34.1          | 80.7           | 47,820                   | \$1,169,280 |  |
| Lithium LFP<br>(UL 9540A approved)                    | 16       | 16 cab                   | 384            | 20.5          | 84.0           | 6,368                    | \$267,017   |  |
| Lithium LFP<br>(Non- UL 9540A<br>approved)            | 12       | 12 cab                   | 288            | 20.5          | 84.0           | 4,776                    | \$236,945   |  |




#### 480V 450kWB 30-Min UPS



#### 480V 450kWB 30-Min UPS



#### **Electrode Configuration**



#### **Cylindrical Cell**



Benefits: Fig 4

- Good heat dissipation
- Best for high temperature mgmt
- Flexible form factor
- Lower cost

Does cell construction matter for the end-user?

Cell

#### **Electrode Configuration**

#### **Prismatic Cell**

Aluminium foil

Anode mass Copper foil

Module

Cathode mass

Patented ceramic separator

#### **Benefits**:

- Good heat dissipation
- Flexible form factor
- Super-fast charging
- Less SEI Interface growth with low temp charging
- Less Lithium plating during cycling



#### Does cell construction matter for the end-user?

#### Performance Comparison



Does technology really matter for stationary battery performance?

#### FLASHPOINTS FOR VARIOUS LITHIUM ION ELECTROLYTES

 Table 1.
 Measured flash points, auto-ignition temperatures, and heats of combustion of some typical lithium-ion cell organic electrolyte components

| Electrolyte<br>Component           | CAS<br>Registry<br>Number | Molecular<br>Formula                          | Melting<br>Point <sup>25</sup> | Boiling<br>Point <sup>25</sup> | Vapor<br>pressure<br>(torr) <sup>26</sup> | Flash<br>Point <sup>26</sup> | Auto-Ignition<br>Temperature <sup>26</sup> | Heat of<br>Combustion <sup>27</sup> |
|------------------------------------|---------------------------|-----------------------------------------------|--------------------------------|--------------------------------|-------------------------------------------|------------------------------|--------------------------------------------|-------------------------------------|
| Propylene<br>Carbonate<br>(PC)     | 108-32-7                  | $C_4H_6O_3$                                   | -49°C<br>-56°F                 | 242°C<br>468°F                 | 0.13 at 20°                               | 135°C<br>275°F               | 455°C<br>851°F                             | -20.1 kJ/ml<br>-4.8 kcal/ml         |
| Ethylene<br>Carbonate<br>(EC)      | 96-49-1                   | $C_3H_4O_3$                                   | 36°C<br>98°F                   | 248°C<br>478°F                 | 0.02 at 36°C                              | 293°F                        | 465°C<br>869°F                             | -17.2 kJ/ml<br>-4.1 kcal/ml         |
| Di-Methyl<br>Carbonate<br>(DMC)    | 616-38-6                  | $C_3H_6O_3$                                   | 2°C<br>36°F                    | 91°C<br>195°F                  | 18 at 21°C                                | 18°C<br>64°F                 | 458°C<br>856°F                             | -15.9 kJ/ml<br>-3.8 kcal/ml         |
| Diethyl<br>Carbonate<br>(DEC)      | 105-58-8                  | C <sub>5</sub> H <sub>10</sub> O <sub>3</sub> | -43°C<br>45°F                  | 126°C<br>259°F                 | 10 at 24°C                                | 25°C<br>77°F                 | 445°C<br>833°F                             | -20.9 kJ/ml<br>-5.0 kcal/ml         |
| Ethyl methyl<br>carbonate<br>(EMC) | 623-53-0                  | $C_4H_8O_3$                                   | -14°C<br>6.8°F                 | 107°C<br>225°F                 | 27 at 25°C                                | 25°C<br>77°F                 | 440°C<br>824°F                             | None<br>available                   |



## BATTERY –

Output

# Cycle Life



# WHEN DOES CYCLE LIFE REALLY MATTER?



## Cycle Life Comparison

| Stationary Battery Type:                              | Operating<br>Voltage (per<br>cell) | Specific<br>Energy<br>(Wh/Kg) | Operating Temperature                                                                                  | Cycle Life<br>(to80% DOD) |
|-------------------------------------------------------|------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|
| Nickel Cadmium Pocket Plate                           | 1.2                                | 40                            | -40C to 50C (-40°F to 122°F                                                                            | >1500                     |
| Nickel Cadmium PBE                                    | 1.2                                | 60                            | -20C to 50C(-4ºF to 122ºF)                                                                             | >2000                     |
| VR Lead Acid (Pure lead grid)                         | 2.0                                | 30-50                         | -40C to 50C(-40ºF to 122ºF)                                                                            | >500                      |
| VR Lead Acid (Ca)                                     | 2.0                                | 30-50                         | 30C to 50C* (-22 <sup>0</sup> F to 122 <sup>0</sup> F)                                                 | >300                      |
| Flooded Lead Acid (Ca)                                | 2.0                                | 30-50                         | 0C to 49C (32°F to 120°F)                                                                              | <100                      |
| Flooded Lead Selenium                                 | 2.0                                | 33 - 42                       | -20C to 55C(-4 <sup>0</sup> F to 131 <sup>0</sup> F)                                                   | 800 - 1000                |
| LTIO (NMC cathode, LiTO anode)                        | 2.3                                | 60 - 110                      | OC to 40C (32 <sup>0</sup> F to 104 <sup>0</sup> F)<br>(average over 24hr period 41-95 <sup>0</sup> F) | >10000                    |
| Super Lithium Iron Phosphate<br>(SLFP / LiFePO4 +NCA) | 3.7                                | 90-120                        | -40C to 50C (-40°F to 122°F)                                                                           | 7000                      |
| Lithium Iron Phoshpate<br>(LFP/LiFePO4)               | 3.2                                | 90 - 110                      | -20C to 60C (-4ºF to 122ºF)                                                                            | >2000                     |
| Lithium Nickel Cobalt AI (NCA)                        | 3.6                                | 2.1 kWhr                      | -40C to 75C (-40°F to 167°F)                                                                           | 4300                      |

We took the same chart from the previous slide, but reproduced it based on the stationary power applications. Again, the source used were averages from OEM manuals.

• VRLA Batteries must not be charged above 90 deg F, or below 32 deg F.

Cycle Life- Nickel Cadmium Pocket Plate





#### The effects of Depth of Discharge on the cycle life of a battery





## LITHIUM ION BATTERY –



Lithium Technology offers superior cycle life .

## **Cycle Life**

## SODIUM ION BATTERY –

## Cycle Life



#### BATTERY TRAINING-

#### Best Practice Standards

| Sizing<br>Guidelines                                                            | Lead Acid                              | Nickel<br>Cadmium                     | Lithium Ion                                 |
|---------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------------|
| IEEE Sizing<br>(Standby, station power,<br>and UPS)                             | IEEE 485                               | IEEE 1115                             | None Available                              |
| NFPA Sizing<br>(Engine Starting<br>Emergency Gensets<br>Centrifugal Fire Pumps) | NFPA99<br>NFPA110<br>NFPA20            | NFPA99<br>NFPA110<br>NFPA20           | NFPA99<br>NFPA110<br>NFPA20                 |
| Maintenance & Test<br>Guidelines                                                | IEEE 450 (flooded)<br>IEEE 1188 (VRLA) | IEEE 1106                             | IEEE 2030.2.1<br>(NERC PRC-005-2)<br>(BESS) |
| Fire Protection                                                                 | NFPA 52.3.2.7-8<br>NFPA 850 Chapter 4  | NFPA 52.3.2.7-8<br>NFPA 850 Chapter 4 | NFPA 52.3.2.7-8<br>NFPA 850 Chapter 4       |



#### BATTERY TRAINING-

| Design<br>Guidelines | BATTERY                                 | CHARGER                                 | INVERTER                                    |
|----------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|
| Station Power        | NFPA1 Chapter 52<br>IFC 608<br>IEEE 450 | IFC 1206.2.10.4<br>UL 1564<br>NEMA PE 5 | IFC 1206.2.10.5<br>UL 1741                  |
| UPS                  | NFPA 1 Chapter 52                       | NEMA PE 5                               | UL 1778<br>AS 562040.1.1                    |
| BESS                 | NFPA 855<br>UL 1774 (Repurpose)         | IEEE 1106                               | IEEE 2030.2.1<br>(NERC PRC-005-2)<br>(BESS) |



#### NFPA 1 Chapter 12

## FIRE SUPPRESSION FOR LITHIUM BATTERY SYSTEMS

| Suppression:  | <ul> <li>Fire suppression system can consist of neutral gas<br/>extinguishers (for example Argonite, Nitrogen, Novec 1230,<br/>etc.,) or water sprinklers.</li> <li>2015 editions did not explicitly require suppression</li> <li>2018 required for all battery spaced w/ exceptions for<br/>telecommunication installations</li> </ul>                                                         |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gas Detection | <ul> <li>Alarming for 25% of the lower flammability level of gas, as well as 50% of the IDLH (immediately dangerous to life or health) for toxic or highly toxic gases.</li> <li>Must have visible and audible alarms in the battery room</li> <li>Approved transmission to specific location</li> <li>De-energizing of the battery rectified</li> <li>Activation of the ventilation</li> </ul> |



#### **Operating Temperatures** Comparison

| Stationary Battery Type:                            | Operating<br>Voltage<br>(per cell) | Specific<br>Energy<br>(Wh/Kg) | Operating Temperature                                           | Cycle Life<br>(to80% DOD) |
|-----------------------------------------------------|------------------------------------|-------------------------------|-----------------------------------------------------------------|---------------------------|
| Nickel Cadmium Pocket Plate                         | 1.2                                | 40                            | -40C to 50C (-40°F to 122°F)                                    | >1500                     |
| Nickel Cadmium PBE                                  | 1.2                                | 60                            | -20C to 50C (-4°F to 122°F)                                     | >2000                     |
| VR Lead Acid (Pure lead grid)                       | 2.0                                | 30-50                         | -40C to 50C (-40°F to 122°F)                                    | >500                      |
| VR Lead Acid (Ca)                                   | 2.0                                | 30-50                         | 30C to 50C <sup>*</sup> (-22 <sup>0</sup> F to $122^{0}$ F)     | >300                      |
| Flooded Lead Acid (Ca)                              | 2.0                                | 30-50                         | 0C to 49C (32°F to 120°F)                                       | <100                      |
| Flooded Lead Selenium                               | 2.0                                | 33 - 42                       | -20C to 55C (-4°F to 131°F)                                     | 800 - 1000                |
| LTO (NMC cathode, LiTO anode)                       | 2.3                                | 60 - 110                      | OC to 40C (32°F to 104°F)<br>(average over 24hr period 41-95°F) | >10000                    |
| SLFP+NCA                                            | 3.7                                | 90-120                        | -40C to 50C (-40°F to 122°F)                                    | 7000                      |
| LFP Lithium Iron Phoshpate (LiFePO4)                | 3.2                                | 90 - 110                      | -20C to 60C (-4°F to 122°F)                                     | >2000                     |
| NCA (Lithium Nickel Cobalt Al Oxide)<br>(LiNiCoAlO2 | 3.6                                | 200-260                       | -40C to 75C (-40°F to 167°F)                                    | 4300                      |

We took the same chart from the previous slide, but reproduced it based on the stationary power applications. Again, the source used were averages from OEM manuals.

VRLA Batteries must not be charged above 90 deg F. or below 32 deg F.

#### Specific Energy Comparison

| Stationary Battery Type:                             | Operating<br>Voltage<br>(per cell) | Specific<br>Energy<br>(Wh/Kg) | Operating Temperature                                                                                  | Cycle Life<br>(to80% DOD) |
|------------------------------------------------------|------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|
| Nickel Cadmium Pocket Plate                          | 1.2                                | 40                            | -40C to 50C (-40°F to 122°F)                                                                           | >1500                     |
| Nickel Cadmium PBE                                   | 1.2                                | 60                            | -20C to 50C (-4°F to 122°F)                                                                            | >2000                     |
| VR Lead Acid (Pure lead grid)                        | 2.0                                | 30-50                         | -40C to 50C (-40°F to 122°F)                                                                           | >500                      |
| VR Lead Acid (Ca)                                    | 2.0                                | 30-50                         | 30C to 50C* (-22°F to 122°F)                                                                           | >300                      |
| Flooded Lead Acid (Ca)                               | 2.0                                | 30-50                         | 0C to 49C (32°F to 120°F)                                                                              | <100                      |
| Flooded Lead Selenium                                | 2.0                                | 33 - 42                       | -20C to 55C (-4°F to 131°F)                                                                            | 800 - 1000                |
| LTIO (NMC cathode, LiTO anode)                       | 2.3                                | 60 - 110                      | 0C to 40C (32 <sup>o</sup> F to 104 <sup>o</sup> F)<br>(average over 24hr period 41-95 <sup>o</sup> F) | >10000                    |
| Super Lithium Iron Phosphate (LFP /<br>LiFePO4 +NCA) | 3.7                                | 90-120                        | -40C to 50C (-40°F to 122°F)                                                                           | 7000                      |
| LFP Lithium Iron Phospate<br>(LFP/LiFePO4)           | 3.2                                | 90 - 110                      | -20C to 60C (-4 <sup>0</sup> F to 122 <sup>0</sup> F)                                                  | >2000                     |
| Lithium Nickel Cobalt Al<br>(LiNiCoAlO2/NCA)         | 3.6                                | 200-260                       | -40C to 75C (-40°F to 167°F)                                                                           | 4300                      |
| We took the same chart from the previou              | s slide, but re                    | epioduced it base             | d on the stationary power appl                                                                         | ications.                 |

Again, the source used were averages from OEM manuals

### Storage Comparison

|            | <b>Stationary Battery</b><br>Type:                | Self<br>Discharge<br>Rate | Shelf Life | Storage Temperature                                             |
|------------|---------------------------------------------------|---------------------------|------------|-----------------------------------------------------------------|
|            | Nickel Cadmium Pocket Plate                       | 1.2                       | 5 Years    | -40C to 50C (-40°F to 122°F)                                    |
|            | Nickel Cadmium PBE                                | 1.2                       | 2 Years    | -20C to 50C (-4°F to 122°F)                                     |
|            | VR Lead Acid (Pure lead)                          | 2.0                       | 2 Years    | -40C to 50C (-40°F to 122°F)                                    |
|            | VR Lead Acid (Ca)*                                | 2.0                       | 6-Mo*      | 30C to 50C* (-22°F to 122°F)                                    |
|            | Flooded Lead Acid (Ca)                            | 2.0                       | 1 Year     | 0C to 49C (32°F to 120°F)                                       |
|            | Flooded Lead Selenium                             | 2.0                       | 1 Year     | -20C to 55C (-4°F to 131°F)                                     |
|            | LTIO (NMC cathode, LiTO anode)                    | 2.3                       | 15 Year    | 0C to 40C (32°F to 104°F)<br>(average over 24hr period 41-95°F) |
|            | LFP+NCA                                           | 3.7                       | 12-15      | -40C to 50C (-40°F to 122°F)                                    |
|            | Lithium Iron Phoshpate<br>(LFP/LiFePO4)           | 3.2                       | N/A        | -20C to 60C (-4°F to 122°F)                                     |
| $\bigcirc$ | Lithium Nickel Cobalt Al(NCA)<br>(LiNiCoAlO2/NCA) | 3.4                       | 10 -20     | -40C to 75C (-40°F to 167°F)                                    |

Maintenance

### Maintenance Requirements: IEEE 2030.2.1 (BESS)

- Vacuum/ Clean cells/cabinet
- Check/Adjust torque
- Download data from BMS
- Thermal scan connections and cells
- Flash calibration/firmware if required



Must meet UL 1642.5 for technician replaceable modules.





#### LITHIUM BATTERY TRAINING-

**Best Practice Standards** 

| 2021 IFC<br>CHAPTER | SUBJECT (CHANGES)                                          |  |  |  |
|---------------------|------------------------------------------------------------|--|--|--|
| 7                   | Fire and smoke protection features                         |  |  |  |
| 8                   | Interior finish, decoration materials and furnishings      |  |  |  |
| 9                   | Fire protective and life safety systems                    |  |  |  |
| 10                  | Means of egress                                            |  |  |  |
| 12                  | Energy Systems (1206.2 Stationary Storage Battery Systems) |  |  |  |
| 33                  | Fire safety during construction and demolition             |  |  |  |
|                     |                                                            |  |  |  |

### BATTERY ROOM DESIGN-

### **IEEE and NFPA Guidelines**

| Battery Room Considerations:                      | Lithium Ion             |
|---------------------------------------------------|-------------------------|
| Charger/s *                                       | Single only             |
| Spill containment                                 | N/A                     |
| Spill Neutralization (5.0-7.0 PH)                 | N/A                     |
| PPE                                               | Yes (Electrical)        |
| Eyewash station (15 min flush Minimum)            | N/A                     |
| Gas Detection & Alarm                             | YES                     |
| Ventilation                                       | N/A                     |
| Safety Signage                                    | Yes                     |
| Battery Disconnect                                | Yes                     |
| Battery cabling                                   | Special                 |
| Access/Egress                                     | Yes/ Location Dependent |
| Fire Suppression * 2018 NFPA 52.3.2.7-8           | Yes                     |
| Fire Protective Clearances * 2018 NFPA 52.3.2.7-8 |                         |











Spill Response



#### BATTERY TECHNOLOGY –

#### **CODES AND REGULATIONS**

-

| IFC 608.1<br>(prior 2018)        | Flooded Lead<br>Acid               | Flooded Nickel<br>Cadmium             | Valve<br>Regulated<br>Lead Acid                   | Lithium Ion         | Lithium<br>Metal Cells |
|----------------------------------|------------------------------------|---------------------------------------|---------------------------------------------------|---------------------|------------------------|
| Safety caps                      | Venting Caps<br>(608.2.1)          | Venting Caps<br>(608.2.1)             | Self sealing<br>flame arresting<br>caps (608.2.2) | N/A                 | N/A                    |
| Thermal<br>Runaway<br>Management | N/R                                | N/R                                   | Required<br>(608.3)                               | N/R                 | Required<br>(608.3)    |
| Spill Control                    | Required (608.5)                   | Required (608.5)                      | N/R                                               | N/R                 | N/R                    |
| Neutralization                   | Required (608.5.1)                 | Required<br>(608.5.1)                 | Required (608.5.2)                                | N/R                 | N/R                    |
| Ventilation                      | Required (608.6.1<br>and 6.08.6.2) | Required<br>(608.6.1 and<br>6.08.6.2) | Required<br>(608.6.1 and<br>6.08.6.2)             | N/R                 | N/R                    |
| Signage                          | Required (608.7)                   | Required (608.7)                      | Required<br>(608.7)                               | Required<br>(608.7) | Required<br>(608.7)    |
| Seismic<br>Protection            | Required<br>(608.8)                | Required (608.8)                      | Required<br>(608.8)                               | Required<br>(608.8) | Required<br>(608.8)    |
| Smoke<br>Detection               | Required<br>(608.9)                | Required (608.9)                      | Required (608.9)                                  | Required<br>(608.9) | Required<br>(608.9)    |

### BATTERY TECHNOLOGY -

#### **Lithium Battery Room Requirements**

#### ADDITIONAL RESTRICTIONS FOR LION BATTERIES)

- 1. Must have means of disconnect from charging source on overtemp.
- 2. Must be installed below 75 feet from ground level.
- 3. Must be installed higher than 30 feet below ground. 506.4 and 506.5
- 4. High Hazard Classification required for exceeding MAQ.

- Separation of 36" between arrays of batteries and/or other equipment that is not 1-hour fire rated. Array for battery is defined by NFPA855 as 20kWhrs of battery for lithium ion technologies.
- 6. Additional permitting requirements for operation as well as location within the interior of a building. Section 506.4, 506.5, 508.2.3, 508.3.2, 508.4.2

### BATTERY TECHNOLOGY –

#### **Lithium Battery Room Requirements**

#### NMC Lithium Fires are well publicized on the internet:





Disconnection from power source is **not** enough to stop thermal runaway.

## How Safe are these LION systems:

- Each <u>cell</u> is monitored for: Voltage, Temperature, Current.
- Each <u>string</u> is monitored for: Reverse Polarity Protection, Impedance, Voltage, Temperature, Current.



Safety

Hardened electronics/PLC

Controls provide additional safety.

Monitoring

makes the

difference.

- Thermal Runaway Control (55°C alarm/ 65°C disconnect)
- <u>Cell</u> Balancing
- CANBUS for Local and Remote Communication
- Each <u>cell</u> and string has the ability to be removed from the DC bus without impacting operation of the others (cell-level disconnecting means)

### LITHIUM ION -

### **BATTERY CABINETS**



### **Cabinetized Systems:**

|             | <ul> <li>Typically 90" (2286 mm) Height</li> </ul>                                                                                                                                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <ul> <li>Multi-string cabinet (offers redundancy)</li> <li>Single String cabinet (no redundancy)</li> <li>Disconnect per string</li> <li>Disconnect per cabinet</li> <li>Seismic rated per IFC 1206.2.4</li> </ul>    |
| Cabinetry   | <ul> <li>Components:</li> <li>Battery monitoring/alarm notification system</li> <li>Battery management system</li> <li>System communication module</li> <li>Battery modules</li> <li>Battery DC disconnect</li> </ul> |
|             | <ul> <li>NEMA1 (IP20), NEMA3R (IP54) or Higher</li> </ul>                                                                                                                                                             |
|             | <ul> <li>Hardened electronics</li> </ul>                                                                                                                                                                              |
| Electronics | <ul> <li>Redundant monitoring (Not typical. Most manufacturers operate without the communications interface.)</li> </ul>                                                                                              |

| Predominant Safety<br>Concerns:                           | Remedy within the system:                                                                                                           |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Over-temperature</li> </ul>                      | <ul> <li>Cell, module, and string level protection</li> </ul>                                                                       |
| <ul> <li>Over-Voltage</li> </ul>                          | <ul> <li>String level DC Disconnect, but still able to charge</li> </ul>                                                            |
| <ul> <li>Over-Discharge</li> </ul>                        | <ul> <li>Module level disconnect from load at 2.5 vpc, but<br/>continues to charge</li> </ul>                                       |
| <ul> <li>Thermal Runaway</li> </ul>                       | <ul> <li>Alarm at 55<sup>o</sup> C, Charge termination at 70<sup>o</sup>C</li> </ul>                                                |
| <ul> <li>Moisture Intrusion</li> </ul>                    | <ul> <li>Humidity and moisture control</li> </ul>                                                                                   |
| <ul> <li>Cell Rupture (physical)</li> </ul>               | <ul> <li>Containment within the module</li> </ul>                                                                                   |
| <ul> <li>Fire Propagation /<br/>Containment</li> </ul>    | <ul> <li>Fire Suppression. Notification, clearances, testing per<br/>UL9540A and UL9540, Noncombustible Cabinets IFC 608</li> </ul> |
| <ul> <li>Communication Failure</li> </ul>                 | <ul> <li>Redundant real time communication modules, if N+1</li> </ul>                                                               |
| <ul> <li>Remote Comm Failure</li> </ul>                   | <ul> <li>Does not affect the module and inter-string<br/>communications.</li> </ul>                                                 |
| <ul> <li>Battery Management<br/>System Failure</li> </ul> | <ul> <li>Autonomy, optional redundancy in BMS</li> </ul>                                                                            |
| Charge Control Failure                                    | <ul> <li>Disconnection at the string level, module level and system level</li> </ul>                                                |

#### **BMS** SAFETY

| CERTIFICATION                                                 | Description                                                                                                                       |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| UL 9540; Article 706 of<br>NFPA 70, <mark>(Also 9540A)</mark> | * Environmental Tests, Electrical Tests, Mechanical Tests,<br>and 9540A for test methods for Thermal Runaway Fire<br>Propagation. |
| UL 1973                                                       | Materials, Enclosures, Safety Analysis, Safety Controls,<br>Bonding, Insulation, Spacings, GroundingFire Test                     |
| IEC 61508                                                     | Functional safety of electrical/electronic / Programmable electronic safety-related systems                                       |
| IEC 62040-1                                                   | Uninterruptible Power Systems (UPS) Safety Requirements                                                                           |
| IEC 62040-2                                                   | Uninterruptible Power Systems (UPS) Electromagnetic<br>Compatibility Requirements                                                 |
| IEC 62040-3                                                   | Uninterruptible Power Systems (UPS) Environmental<br>Aspects                                                                      |
| IEEE P2686                                                    | Recommended Practice for Battery Management Systems in<br>Energy Storage Applications                                             |
| FCC 47 CFR Part 15<br>Subpart B Class A                       | FCC EMC Conformity (Unintentional Radiators)                                                                                      |
| FM DS 5-33                                                    | Recommendations for construction, location, fire protection, electrical system protection and design of LIB ESS                   |

### Cabinetized Systems

### How Safe are these LION systems:

Each **<u>cell</u>** has the ability to be removed from the DC bus without impacting operation of the others (cell-level disconnecting means)

Enables cell

"balancing".

Cell level safety testing to UL1642, 1973, 9540

#### Each **cell** is <u>protected</u> from:

- Overcurrent
- Over-voltage
- Over-temperature
- Each **cell** is <u>monitored</u> for:
- Impedance,
- Voltage,

Cabinetry

**Electronics** 

- Temperature,
- Current.
- Each <u>module</u> has overcurrent protection and microprocessor controlled monitoring UL 1973
- Noncombustible cabinet/ enclosure IFC 608.4.2
- NEMA3R (IP54) or Higher
- Hardened electronics for control, supervisory and monitoring UL 1998 and IEC 61000-6-2
  - Redundant supervisory monitoring + dry contacts



**Contained in Equipment** 

#### **Shipping Requirements:** Each cell / module must ship in its own carton (Shipped loose for field installation) **Replacement Cells are carrier specific for shipping and** handling UN classification (spent) ship as Class 9 **Requires 3-6 months for air cargo approval CDL** Hazmat licensed driver required for transport Certified to UN/DOT 38.3 Lithium Metal Packing per 49 CFR 173.185: **Lithium Ion Battery** Battery (P.I. 965) UN 3480 **Stand Alone** (P.I. 968) UN 3090 Class 9 group 2 Packed w/ Eqt but not installed (P.I. 966) UN 3481 (P.I. 969) UN 3091 in equipment

(P.I. 967) UN 3481

Shipping

(P.I. 970) UN 3091

**CHEMISTRY:** 

### (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>

2-Part Reaction:

 $LiFePO_4 \longleftarrow FePO_4 \leftarrow {}_{\mathsf{Electrolyte}} \rightarrow Li + e \text{-} + C \longleftarrow LiC_5$ 

Cathode (+ electrode) Aluminum Current Collector

 $\xrightarrow{}$  Left to right is Charging.  $\leftarrow$  Right to Left is Discharging.

```
Anode (- electrode)
Copper Current Collector
```

Ethylene Carbonate (EC) /Dimethylcarbonate (DMC)

Larger *voltage per cell* means fewer cells required for the same output power.

**CELL VOLTAGE:** 

<mark>3.4</mark> VDC per cell ←

CHEMISTRY:

### (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>

2-Part Reaction:



CHEMISTRY:

### (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>

2-Part Reaction:



### **CHEMISTRY: (LITHIUM IRON PHOSPATE)** LiFePO<sub>4</sub>





#### **CHEMISTRY:** (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>



The capacity per kilogram is nearly 3.5 times that of lead acid high rate batteries.
## Chemistry

### **CHEMISTRY:** (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>





CHEMISTRY: (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>



#### Overcharge tolerance is better on LiFePO4 than with LTO/LiCoO2



## Chemistry

### **CHEMISTRY:** (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>



Charging Voltage per cell is different than the lead acid batteries as you can see from the chart. The charging voltage of most chargers and UPS modules is adjustable. Care must be taken to ensure that the charging voltage of the equipment is taken into consideration for battery sizing purposes. Chemistry

### **CHEMISTRY:** (LITHIUM IRON PHOSPATE) LiFePO<sub>4</sub>



The profile above shows that at about 90% state of charge, the batteries will have some differences in the time at which they reach the 100% state of charge.

## Chemistry- LTO

### **CHEMISTRY:** (LITHIUM TITANATE OXIDE ANODE) Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>

## **Chemical Formula:**

 $Li_{4}Ti_{5}O_{12} + 6LiCoO_{2} \leftarrow \rightarrow Li_{7}Ti_{5}O_{12} + 6Li_{0.5}CoO_{2}$ 

(Anode) (Cathode) *Aluminum Current Collector*  (Anode)

(Cathode) Copper Current Collector

## Cell Potential:

### 2.1 VDC per cell

(patented)

Li = Lithium Co = Cobalt Ti = Titanium O = Oxygen  $\rightarrow$  Left to right is **Charging.**  $\leftarrow$  Right to Left is **Discharging.** 

## Chemistry-



## BENEFITS:

### **Excellent benefits over single strings of VLA or NICAD**

- Excellent repetitive Cycling
- Excellent high & low temperature operation
- Rapid Recharge capability
- Built-in Charging Regulation
- Very compact and light weight for short duration discharges
- Very predictable and stable life and cycle life
- 12-15 year "Maintenance Free" operation
- Built-in Thermal Runaway Control
- Cell and string level Battery Monitoring (standard)
- Superior Shelf Life

### SUMMARY

## BEST APPLICATIONS:

Single String VLA or NICAD Replacement

**Engine Generator Start** 

Switchgear/Process Control

Wind Turbine Energy Storage

Photovoltaic System Energy Storage

<5 Minute UPS Applications

**Flicker and Voltage Control Applications** 



### LITHIUM ION BATTERY TRAINING-

### LARGE BESS



#### **Controller Functions:**

- Charge/discharge, Balancing control
- SOC Target Control
- Active/ Reactive Power Controls
- Protection and Abnormality Detection
- DC Contactor Control
- Cell Balancing Control

#### **Container Components:**

- Integrated HVAC system / liquid cooling system
- Standard outdoor-rated container
- Modifiable racks based on capacity requirements
- Built-in fire alarm/suppression system

PER NFPA 850 4.4.3.2: If 100' from buildings, lot lines, public ways, storage, then remote installations can omit water supply and fire suppression if AHJ agrees.



#### LARGE POWER (BESS) Super cycling and fast recharge Ideal: No Building Code Compliance Excellent repetitive cycling PV Excellent high temperature operation Wind **Excellent low temperature operation** Regen Very compact and light weight Standby Very predictable and stable life and cycle life 12-15 year maintenance free operation Transfer Battery & cell monitoring is standard



## LARGE POWER

### UTILITY GRID INTETERCONNECTION REQUIRES COMPLIANCE:

# UL 9540

### **Utility Grid Interaction**

 UL 1741 including its Supplement SA or

The Standard for General Use Power Supplies, C22.2 No. 107.1, including:

- IEEE 1547, 1547.1, 1547A, 1547.1A
- NERC PRC-024-1 as applicable



## SUMMARY

## LIMITATIONS:

- FM, NFPA and IEEE practices are lagging for Station Power.
- Charging Compatibility must be approved and/or certified by the manufacturer.
- External System DC breaker may be required for systems of 3+ cabinets for EPO capability with UPS.



- Manufacturers want compatibility for replacements.
- Maximum allowable quantities affects Occupancy Classifications.
- 36" Clearance requirement all around.
- Fire Suppression reqs keep changing.
- **Transport** must be by certified DOT driver.
- Sizing programs are not available to the public.
- Higher purchase price.



SUMMARY

- LIMITATIONS: Continued
  - Electronics required for battery management and monitoring are not as hardened for temperature extremes as the battery modules.
  - System capacity and physical size is restricted by the NFPA 850
  - Many manufacturers ship the batteries loose which means certified installation team has to be dispatched.

## Battery Recharge Curve



## Classical Thermal Runaway



## FLOW BATTERY –

## LARGE POWER

#### REDOX FLOW BATTERIES

