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Abstract: Lithium-ion capacitors (LICs) have gained significant attention in recent years for their 
increased energy density without altering their power density. LICs achieve higher capacitance than 
traditional supercapacitors due to their hybrid battery electrode and subsequent higher voltage. 
This is due to the asymmetric action of LICs, which serves as an enhancer of traditional supercapac-
itors. This culminates in the potential for pollution-free, long-lasting, and efficient energy-storing 
that is required to realise a renewable energy future. This review article offers an analysis of recent 
progress in the production of LIC electrode active materials, requirements and performance. In-situ 
hybridisation and ex-situ recombination of composite materials comprising a wide variety of active 
constituents is also addressed. The possible challenges and opportunities for future research based 
on LICs in energy applications are also discussed. 
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1. Introduction
Due to the rapid growth of renewable energy production recently [1], there is a sig-

nificant requirement for electrical energy storage technologies. Energy storage offers the 
ability to moderate the variability of electrical energy [2]. This represents a rapidly emerg-
ing market for energy storage that is currently underutilised. The characteristics of the 
energy storage needs, in general, are electro-compatibility and will relate more specifi-
cally to cheap and highly efficient storage solutions for stationary purposes, and energy 
and power intensity for the transport and transmission sector (to which lithium-based 
batteries are the answer). In addition, there is a need for shifting the current battery pro-
duction from fossil-based energy to renewables to reduce the embedded emissions of en-
ergy storage systems. Moreover, the materials required in the production of energy stor-
age system should ideally originate from areas free of geopolitical conflicts, child labour, 
corruption and environment unfriendly excavation and extraction methods [3]. In this 
light, lithium-ion batteries (LIBs) utilising ethically mined materials and energy produced 
by renewables have huge international market advantages when considering environ-
mental, social and corporate governance (ESG) aspects.  

Lithium-ion capacitors (LICs) were first produced in 2001 by Amatucci et al. [4]. LICs 
are considered one of the most effective devices for storing energy and are often seen as 
an offspring from LIBs for several reasons. In addition, Sodium-ion and Potassium-ion 
capacitors (SIC and KIC, respectively), have also become of commercial interest as they 
similarly are a hybrid device combining an ion battery with a traditional capacitor. This 
review will focus on the LIC developments as the main example of a hybrid capacitor, but 
it must be noted that there are many similarities between LICs, NICs and KICs. LIBs nor-
mally have high energy density (>150 W h kg−1) and have no memory impact as in con-
ventional Ni-Cd/Ni-MH batteries [5,6]. Despite this, their low power density (< 1 kW kg−1), 
and lower cycle life and capacity loss [7] hinders their utilisation in some applications. By 
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comparison, LICs can provide high power density (>10 kW kg−1) and long cycle life (usu-
ally > 5000 cycles); however, their comparatively low energy density (5–10 W h kg−1) re-
stricts their applications in certain fields (LIC applications have been thoroughly dis-
cussed in [8–10]). To close the performance gap between LIBs and traditional capacitors, 
LICs have been developed to incorporate the strengths of both LIBs and traditional capac-
itors [6,11–14]. 

By practice, LIBs consist of a metal oxide cathode, separator, electrolyte, and a Lith-
ium-based anode. In contrast, non-aqueous liquid electrolyte LICs with high power den-
sities (>10 kW kg−1) and long-term cyclic durability (10,000–100,000 cycles), are ideal for 
large-scale energy storage [5,15]. Typical LIC designs use a high-capacity battery-type 
electrode and a high-rate capacitor-type electrode [5,16]. During the charge-discharge cy-
cle, charges are deposited concurrently and asymmetrically in the LIC by surface ion ad-
sorption/desorption on the capacitor-type electrode and Li+ intercalation/de-intercalation 
on the battery-type electrode, respectively [17,18]. It is worth noting that the battery- and 
capacitor-type electrodes of the LIC system work in various potential windows, which 
may expand the range of operating voltage of LICs and contribute to high energy density.  

Supercapacitors can be classified into asymmetric supercapacitors, pseudo-capaci-
tors (PCs) and electric double-layer capacitors (EDLCs) depending on the charging stor-
age mechanisms [19]. PCs store energy using the fast redox reaction on the surface of the 
electrode components, such as metal oxides, metal sulphides and polymer conductors. 
Whereas energy storage on the surface of the porous carbon with a large specific surface 
area (SSA) is accomplished through strong ion absorption and desorption for EDLCs. 

LIBs operate through Li+ that travels back and forth between the electrodes followed 
by the electrode materials’ bulk redox reaction. The combination of the positive EDLC 
electrode and the negative LIB electrode forms a LIC, reducing the deficiencies in both 
LICs and LIBs. LICs may typically be categorised as dual-carbon, non-carbon, and mixed 
forms, distinguished by whether or not the electrodes contain carbon materials. The den-
sities of energy and power of LICs depend primarily on the configuration of electrode 
materials in the devices [17,20]. The most promising industrial prospects are for dual-car-
bon LICs (DC-LICs), in which both electrodes are composed of carbon materials. Owing 
to the surplus and low carbon levels, the average expense of DC-LICs may be effectively 
popular. 

Until now, owing to their strong gravimetric functional potential and excellent elec-
trochemical operation, a number of components, such as metal compounds, polyanions 
and metalloid/metal compounds, have been produced in LICs for battery-type electrodes 
[21]. However, their further production in LICs is constrained by the poor conductivity, 
wide volume variability and strong polarisation of these active materials [5]. Carbona-
ceous materials have been extensively researched and used in energy storage fields like 
LICs [22–25], benefiting from low expense, sufficient supplies, plenty of allotropes and 
transformations as well as superior physical/chemical stability. Because of their large spe-
cific surface region, strong conductivity and excellent usability to electrolytes, carbon ma-
terials were also inserted into the electrodes to solve such issues [26,27]. Furthermore, car-
bon compounds may also specifically function as the active compounds of battery-type 
electrodes in LICs, since they have active Li+ intercalation / de-intercalation sites [28,29].  

Unlike battery-type electrodes, LICs counter-electrodes are capacitor-type. Conse-
quently, numerous porous carbon materials with a wide specific surface region, such as 
activated carbon (AC) and graphene are potential candidates for LICs capacitor-type elec-
trodes [30,31]. Their capacitances rely primarily on the surface of carbon-based electrodes 
[32] for the adsorption/desorption of ions. Therefore, porous structures with sufficient dis-
tribution of pore size play an important role in the electrochemical production of carbon 
materials in LICs [33,34]. Specific materials are typically inserted into the carbonaceous 
materials to have pseudo-capacity to further improve the capacitance of the capacitor-
type electrode.  
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In this review, we will identify the fundamental active materials used for LICs and 
analyse electrode/capacitor-type carbon-based battery-based electrode materials over 
many decades. By concentrating on the most common cases with industrial potential, we 
demonstrate the main components of LICs. The knowledge gaps and future trends asso-
ciated with LICs are also addressed, which provides a detailed insight into the potential 
areas of further research of LIC active materials.  

2. Lithium-Ion Capacitor Fundamentals 
Throughout the consumer electronics, automobile, aerospace and stationary indus-

tries, electrical energy-storage devices play a key function. There are several types of re-
versible electrochemical energy storage systems in the format of accumulators, flow cell 
systems, secondary batteries (rechargeable) and primary batteries (single-use). In terms of 
secondary and primary batteries, the former has a lower energy intensity while the latter 
offers better power; however, the cyclable nature of secondary batteries makes them ideal 
for use as an energy storage solution. The current prevailing technology is LIBs. Large 
LIBs have a gravimetric energy upwards of 200 Wh kg−1, and with an overall effective 
power density of up to 350 W kg−1. In comparison, most industrial electrochemical capac-
itors have average power density as high as 10 kW kg−1, and with gravimetric energy of 
up to 7 Wh kg−1 [2]. Figure 1 gives an overview of the power and energy densities of ul-
tracapacitors and LIBs compared to other energy storage technologies. A common target 
for advanced electrical energy storage systems is to provide high energy as well as high 
power in a single system [35–38]. A LIC is a comparatively modern system, intermediate 
in energy between batteries and supercapacitors, though giving supercapacitor-like 
power and cyclability properties. 

 
Figure 1. Ragone plot of current LIB, hydrogen, gasoline, ammonia and jet fuel—energy storage solutions in comparison 
to traditional industrial ultracapacitors. 

It is important to define the components of LICs before recognising the basic energy 
storage function of the LICs. As a kind of asymmetric supercapacitor, LICs usually consist 
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of a battery-type electrode with the insertion/extraction of lithium ions and a pseudo-ca-
pacitance or ion adsorption/desorption capacitor-type electrode [39,40]. As the battery-
type electrode does not only serve as an anode but also as a cathode, LICs have been pre-
viously separated into two types [41]:  

1. The battery-like electrode acts as the anode, and the capacitor-like electrode acts as 
the cathode. Anions are usually absorbed on the porous surface or defects that may be 
apparent on the cathode during the charge cycle, whereas Li+ ions are intercalated (as Li) 
in the active anode.  
2. The capacitor-type electrode functions as the anode and the battery-type electrode 
functions as the cathode. Li+ de-intercalates from the cathode during the charging phase. 
Li+ immediately migrates in the electrolyte and adsorbs on the anode. This requires some 
redox reaction at the cathode (e.g., cathode oxidation: LiCoO2  Li+ + e− + Li−-CoO2; and, 
anode reduction: Li++C6-graphite + e− LiC6-graphite).  

Regenerative braking and grid stabilisers are significant possible end-uses of the 
LICs. Regenerative braking energy recovery from cars, heavy-duty engines, and increas-
ingly light-duty vehicles represents a major potential opportunity that is not completely 
explored due to the shortcomings of current secondary battery and supercapacitor tech-
nologies (electrochemical capacitor and ultracapacitor). On-board regenerative braking is 
a possible mechanism to restore a significant fraction of the energy [42]. LICs do not have 
the inherent density of energy-storage needed for economic and spatially effective imple-
mentation. In comparison, LIBs do not have enough capacity, which needs a charge rate 
of up to 200 C (1 C is 1 h charge, 200 C is 18 s charge), or around 100 times larger size than 
what is required for just breaking adsorption. 

LICs form a new class of devices capable of bridging the output of commercial EDLC 
supercapacitors and traditional LIBs [5,15,20]. As previously discussed, LICs are capable 
of producing 4 to 5 times higher energy values than EDLC ultracapacitors. This superior 
capacity is obtained by depending on a carbonate-based battery electrolyte that generates 
a higher voltage of the unit than acetonitrile (4.2 V vs. 2.7 V). Although 5000 cycles is a 
substantial lifetime for a LIB, they cannot be implemented in place of an ultracapacitor. 
This is because ultracapacitors run continuously up to thousands of charges per day in 
some cases. Therefore, LICs appear ideal to replace ultracapacitor electrochemical tech-
nologies. 

Typically, while the battery-type electrode acts as an anode (case 1 above), it needs 
to be pre-lithiated during production before being implemented in a LICs, which may 
bring the anode’s capacity closer to that of Li [43,44]. Pre-lithiation is a method used for 
LIBs and LICs to compensate for the potential loss of active lithium so higher reversible 
potentials and higher gravimetric energies are obtained. It is achieved by storage of a cer-
tain amount of active lithium in the anode prior to the cells first charge/discharge cycle. 
There are many methods available for pre-lithiation and can be performed to the active 
material or the electrode as a whole [45]. As a consequence, a LICs working voltage can 
raise and even exceed 4.5 V. The energy density is compared by their capacitance and the 
operating voltage [39,46], as typically chosen comparable specific energy units are V, 
kJ/mol and kWh/kg. The energy efficiency of LICs can be significantly enhanced due to 
the large working voltage of the battery-type electrodes. That is, with constant operating 
currents and resistances (rj-loss), this efficiency reduction becomes relatively less signifi-
cant by increasing the open-circuit voltage (efficiency = (Eocp-rj)/Eocp). Nevertheless, a phase 
transition frequently follows the faradaic reaction of the battery-type electrode, which re-
sults in a weak rate efficiency, lower cycle life and slow dynamics [46–49]. To overcome 
these issues, the incorporation of highly conductive carbonaceous additives such as gra-
phene, carbon nanotubes (CNTs) and AC are important in addition to the production of 
nanoscale-structured electrodes to obtain improved electronic conductivity [50–52].  
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Unlike the pure battery-type electrode, reversible ion adsorption or rapid redox re-
actions occurs on the capacitor-type electrode sheet, which provides the possibility that 
LICs have comparable power density to that of ultracapacitors by integrating an effective 
battery-type electrode with strong kinetics [53]. Also essential to their functional imple-
mentation is the cycling efficiency of LICs. Besides the inherent behaviour of the electrode 
of the battery type and the electrode of the capacitor-type, the mass ratio between the 
electrode of the battery type and the electrode of the capacitor-type often plays a crucial 
role in the cycle life of the LIC. 

The charges for an asymmetric cell should be distributed at both electrodes (i.e., Qanode 
= Qcath). The charges deposited are aligned with the electrode's basic potential (C) and mass 
(m) (Q ∝ C × ∆𝐸 × m) [54,55]. The optimal mass ratio between the battery-type electrode 
and the capacitor-type electrode can therefore be determined by the following equation 
[56]: 𝑚௧𝑚ௗ = 𝐶ௗ × ∆𝐸ௗ𝐶௧ × ∆𝐸௧  (1) 

Where the electrode mass, the basic capacitance and the voltage range in the load/dis-
charge phase for the anode and the cathode are 𝑚, 𝐶 and ∆𝐸, respectively. Nonetheless, 
the capacitance of the capacitor-type electrode is significantly smaller compared to that of 
the battery-type electrode [23,31]. Therefore, the manufacturing of high-density carbon 
products (e.g., micro- and macro-carbon composites), is the primary aim in the production 
of advanced LICs.  

Two techniques are typically used to improve the natural capacitance of capacitor-
type electrodes: construction of capacitor-type electrodes with broad natural surface area 
and incorporation of pseudocapacitive or heteroatom doping materials [57,58]. As de-
scribed above, carbon products, either as active products or as conductive additives, per-
form irreplaceable roles in the applications of LICs due to the excellent intra- or inter-
particle conductivity and the outstanding electrolyte accessibility [59–62].  

3. Electrode Materials 
Nanostructured carbons are significant LIC materials used either independently or 

in conjunction with a second active step of Li such as TiO2. Yao et al [59] published a 
review of the carbons used in LICs (Table 1). The carbons are often rich in heteroatoms 
(especially oxygen) and contain varying degrees of graphene ordering. For carbon allo-
tropes, extremely deficient or heteroatomic carbons do not fall into the classic taxonomy, 
but instead reflect the similarity of structure and chemistry between pure graphite/gra-
phene and completely amorphous activated carbon. Lithium deposition is typically 
poorly known in nongraphic carbons, except at fairly high concentrations typical of a bat-
tery. The charge levels expected by hybrid devices are far less known and require further 
research. 

3.1. Anodes  
3.1.1. Carbon Materials 

Graphite, with a hexagonal mesh structure made from carbon atoms, has been used 
in consumer LIBs goods as a negative electrode material since 1991 [63]. Graphite will 
provide a large plateau power around 300 mAh g−1 below 0.2 V and will guarantee a se-
cure charge-discharge plateau. Alternatively, graphite suffers from a low rate capability 
induced by the strong crystallinity and anisotropy that further limits the power density 
[6]. To increase the capacity of graphite, ball milling, extremely conductive carbon surface 
grinding, graphisation degree regulation, and the application of defects and additives are 
all used [64–66].  

Graphitised carbon, for which the space and microstructures of the interlayer can be 
conveniently modified, has the most interesting perspectives for use in anodes of LICs. 
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The coexistence of graphical structures and amorphous structures allows graphised car-
bon to successfully combine a high plateau potential and superior rate efficiency. Catalytic 
graphisation with the aid of a metal-ions is an important process for preparing graphised 
carbon under fairly mild conditions (<1200 °C) [67]. The degree of graphitisation can be 
regulated by adjusting the temperature, precursor and catalyst structures.  

Table 1. Carbonaceous material-based lithium-ion capacitor (LIC) summary. 

Configuration (Anode//Cathode) Voltag
e 

Max Energy 
(Wh/kg) at Power 

(W/kg) 

Energy (Wh/kg) at 
Max Power (W/kg) Cyclability 

N-doped carbon nanopipes//reduced 
graphene oxides [68] 

0–4 V 262 at 450 78 at 9000 
91% over 

4000 cycles 

graphene//armored graphene [69] 0–4.3 V 160 at 900 59 at 19,000 
89% over 

1000 cycles 
microcrystalline 

graphite//mesoporous carbon 
nanospheres/graphene [70]  

2.2–4.2 
V 

80 at 152 32 at 11,600 
93% over 

4000 cycles 

reduced GO//resin-derived carbon 
combined with GO [71]  

0–4 V 148.3 at 150 45 at 6500 
79% over 

3000 cycles 
B&N-doped carbon nanofiber//B&N-

doped carbon nanofiber [32] 
0–4.5 V 220 at 225 104 at 22,500 

81% over 
5000 cycles 

graphite//activated graphene [72]  2–4 V 147.8 Not reported Not reported 
graphite//functionalised graphene 

[73] 
2–4 V 106 at 84 85 at 4200 

100% over 
1000 cycles 

hard carbon//activated carbon [74] 
1.4–4.3 

V 
80 at 150 65 at 2350 

82% over 
10,000 cycles 

hard carbon//bioderived 
mesoporous carbon [75,76] 

1.7–4.2 
V 

121 at 300 50 at 9000 
81% over 

8000 cycles 

graphite//activated carbon [72] 1.5–5 V 145.8 at 65 18 at 18,000 
65% over 

10,000 cycles 

hard carbon//activated carbon [77] 2–4 V 82 at 100 14 at 20,000 
97% over 600 

cycles 

graphite//graphene [78] 2–4 V 135 at 50 105 at 1500 
97% over 

3500 cycles 
N-doped hard carbon// activated 

carbon [79] 
2–4 V 28.5 at 348 13.1 at 6940 

97% over 
5000 cycles 

soft carbon//activated carbon [76] 0–4.4 V 115 at 25 16 at 15,000 
63% over 

15,000 cycles 

graphene//activated carbon [80] 2–4 V 95 at 27 61.7 at 222.2 
74% over 300 

cycles 

graphite//activated carbon [81] 2–4 V 103 Not reported 
77% over 100 

cycles 

Hard carbon is a suitable choice for high power LICs [64,77,82], with better kinetics 
and a greater space distance between the carbon layers than graphite. Zhang et al. [83] 
contrasted the impact of LIC output on two specific hard carbon materials (spherical and 
irregular hard carbon) with an AC cathode, observing that the irregular hard carbon ex-
hibited optimum electrochemical efficiency with a high energy density of up to 85.7 W h 
kg−1 and a power density of up to 7.6 kW kg−1 centred on the active material mass of two 
electrodes in the voltage range of 2–4 V. Furthermore, preparation of a hard carbon anode 
extracted from a carbonaceous source, such as a nitrogen-doped carbonised polyimide 
microsphere (CPIMS) [79], can also be a feasible solution. Despite this, the voltage hyste-
resis and sloping characteristics during hard carbon charging/discharge are unfavourable 
to the cycling stability of LICs. Sun et al. [84] extensively examined the electrochemical 
efficiency and power fading behaviours of hard carbon LICs and noticed that power 
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fading of LICs during cycling was induced by a rise in internal resistance and a depletion 
of lithium deposited on the anode. 

Benefiting from the superior mobility of electron carriers and strong lithium-ion 
transport kinetics, graphene is also a promising candidate as an anode material, rather 
than being used exclusively as a cathode material [15]. Ren et al. [80] fabricated pre-lithi-
ated graphene nanosheets in LICs as an anode, providing a cumulative power density of 
220 W kg−1 at an energy density of 62 W h kg−1 with a capacity retention of 74 % at 400 mA 
g−1 after 300 cycles. 

Ahn et al. [85] provided a highly oriented graphene sponge (HOG) with an ultra-
high energy density as an anode. The AC/HOG LICs demonstrated 3.6 times greater dif-
fusivity of the lithium-ion than the AC/graphitized carbon LICs. As a result, they obtained 
large energy densities of 232 at 57 W kg−1 and 131.9 W h kg−1 at 2.8 kW kg−1. In a DC-LICs 
device with AC as the cathode, Phattharasupakun et al. [86] documented a nitrogen-
doped reduced graphene oxide (N-rGO) aerogel anode. They exhibited a maximum spe-
cific energy of 170.28 W h kg−1 in the voltage range of 2.0–4.0 V, and the average power 
density exceeded 25.75 kW kg−1 after 2000 cycles with almost no decay in efficiency. 

Composites processing is an efficient way to combine multiple forms of carbon ma-
terials (e.g., graphite, hard carbon and graphene.) as an active substrate for producing 
high-performance LIC materials. Lim et al. [66] recorded high energy intensity and high 
power intensity DC-LICs, using natural graphite-coated hard carbon as anode materials. 
The DC-LIC achieved improved densities in energy and strength, as well as enhanced 
cycling efficiency.  

3.1.2. Transition Metal Materials 
Standard transition metal oxides, including Li4Ti5O12, TiO2, Nb2O5, Fe2O3 and SnO2, 

have been extensively studied as anodes of LICs due to their large abundance and strong 
basic gravimetric potential [87–91]. Despite this, most transition metal oxides typically 
experience a phase change during the charge/discharge cycle, which is seen by the plat-
eaus in the galvanostatic charge–discharge curves and strong peaks in the CV profiles. 
These phase transitions can result in broad volume growth, resulting in a negative impact 
on the integrity of electrodes, resulting in low cycling efficiency. Nevertheless, the com-
position of TiO2 and Li4Ti5O12 during reversible lithium intercalation/extraction is more 
robust. The integration of such transition metal oxides into porous carbon materials would 
solve or mitigate the above issues to achieve hybrid architectures. A recent review by Liu 
et al. [92] gives a comprehensive overview of transition metal LICs. Table 2 gives an over-
view of transition metals used in LIC electrode design. 

Table 2. Transition metal-based LIC summary. 

Configuration 
(Anode//Cathode) 

Voltag
e 

Max Energy (Wh/kg) 
at Power (W/kg) 

Energy (Wh/kg) at 
Max power (W/kg) 

Cyclability 

TiO2 hollow spheres at 
graphene//graphene [93]  

0–3 V 72 at 303 10 at 2000 
65% over 1000 

cycles 
TiO2 at mesoporous 

carbon//AC [94]  
0–3 V 67.4 at 75 27.5 at 5000 

80.5% over 
10,000 cycles 

TiO2 nanobelt 
arrays//graphene hydrogels 

[95] 
0–3.8 V 82 at 570 21 at 19,000 

73% over 600 
cycles 

TiO2 at rGO//AC [87]  1–3 V 42 at 800 8.9 at 8000 Not reported 
TiO2–CNT//active carbon [96] 1–3 V 59.6 at 120 31.2 at 13,900 Not reported 

Li4Ti5O12–CNT//graphene 
foam [97]  

1–3.6 V 101.8 at 436.1 12.7 at 12,300 
84.8% over 
5000 cycles 

Li4Ti5O12//reduced graphene 
oxide [98] 

1–3 V 45 at 400 30 at 3300 
100% over 5000 

cycles 
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nanocrystalline 
Li4Ti5O12//active carbon [99] 

1.5–3 V 55 at 64.6 28.8 at 10,300 Not reported 

TiO2-coated Li4Ti5O12//active 
carbon [100]  

0.5–2.5 
V 

74.85 at 300 36 at 7500 
83.3% over 
5000 cycles 

Li4Ti5O12//N-doped porous 
carbon [101]  

1–3 V 63 at 200 16 at 5000 Not reported 

graphene-
Li4Ti5O12//graphene-sucrose 

[102] 
0–3 V 95 at 45 32 at 3000 

94% over 500 
cycles 

spheres Li4Ti5O12//active 
carbon [103]  

1–3.5 V 74.3 at 156.26 41.7 at 468.7 
93% over 500 

cycles 
graphene-wrapped 

Li4Ti5O12//active carbon [104] 
1–2.5 V 50 at 16 15 at 2500 

75% over 1000 
cycles 

3.1.3. Polyanion and Carbon Composites 
Typically, the Li3V2(PO4)3, developed with VO6 octahedra and PO4 tetrahedra corner-

sharing, crystallises in a monoclinical configuration. The comparatively broad gap space 
of these crystals allows for the quick diffusion and reaction kinetics of different lithium 
sites. Because Li3V2(PO4)3 content is an amphoteric powder that can be either decreased 
by lithium injection or oxidised by lithium elimination, the electrochemical efficiency of 
both low (1.0–3.0 V) and high (3.0–4.3 V) voltage applications for Li3V2(PO4)3 has been 
studied [105]. These were observed to provide maximum energy densities between 27 and 
25 W h kg−1, respectively. Unlike Li3V2(PO4)3, LiTi2(PO4)3 has a NASICON-type frame 
structure, which consists of PO4 tetrahedra bound by octahedral unit corners of TiO6. Each 
of the PO4 tetrahedrons are connected to four octahedral TiO6 units, and in effect a TiO6 
unit is connected to six PO4 tetrahedrons, allowing for multiple ionic replacements at var-
ious lattices [41]. Cyclic voltammetry calculation was observed with a two-phase reaction 
process at 2.38 V during Li-insertion and an extraction at 2.60 V. As a result, the LICs 
based on LiTi2(PO4)3 carbon-coated anodes display ultra-high energy and power densities 
of 14 W h kg−1 and 180 W kg−1, respectively [106].  

For LIC anodes, TiNb2O7 will serve as an alternate nominee for Li4Ti5O12. TiNb2O7's 
monoclinical crystal structure comprises of disordered Nb and Ti atoms, which may have 
two-dimensional interstitial spaces for rapid Li-ion injection and show an energy density 
of 110.4 W h kg−1 at 99.58 W kg−1 [107]. Importantly, the TiNb2O7 on C electrode's Li injec-
tion activity was analysed in detail and the pseudo-capacitive reaction mechanism for in-
tercalation was achieved [41]. 

3.1.4. Metalloid/carbon and metal materials 
The production and materials used for sustainable LICs manufacturing is becoming 

increasingly important. The use of silicon within carbon electrodes provide a promising 
route for sustainable LIC production in the future. Silicon is particularly of interest due to 
it being the second most abundant element in the Earth’s crust. Due to its low lithiation 
ability (<0.5 V) and strong real theoretical efficiency (4200 mAh g−1), Si is a promising 
material for high-performance LIC anodes [108,109]. Despite its excellent load-discharge 
platforms and extremely high specific capacity, its cycling and rate performance may be 
poor due to its severe volume expansion and low electronic and ionic conductivity [110]. 
Furthermore, due to its inherent semi-conductive design, the low conductivity may also 
restrict its performance in charge/discharge at high current density [111–113].  

Composite processing is an efficient way to combine multiple forms of active mate-
rials as an active substrate for producing high-performance LIC materials. Soft carbon is 
a frequently used commercial anode material with high conductivity, fast lithium-ion 
transport and long cycling performance, but its specific capacity and operating platform 
still require improvement. Therefore, using a small amount of silicon-carbon composite 
in a soft carbon anode could ameliorate the anode's charge/discharge kinetics and also 
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provide surplus lithium to slow the rate of active lithium consumption in long-term cy-
cling after anode pre-lithiation. Using this approach, it has been observed that such a LIC 
has over 95% capacitance retention after 10,000 cycles at 20 °C [110]. 

Based on 3-electrode hybrid configuration [77], other types of lithium, such as lithium 
silicide, can be used for the anodes [114]. Pre-lithiation has traditionally been done on the 
anode; however, pre-lithiation on the cathode has been observed, which in turn is contra-
dictory to how LIBs are produced [115]. That would be potentially better because the sys-
tem is instead constructed in a thermodynamically stable manner (which may not be the 
case with a symmetric unit, e.g., a carbon–carbon LIC).  

Sn has a greater electrical conductivity relative to Si, which will contribute to Sn an-
odes showing a higher rate capacity. Nevertheless, during the charge/discharge phase, Sn 
also suffers from a significant volume shift which can result in extreme polarisation of the 
electrode material [116–118]. The construction of tiny Sn nanoparticles with a binding car-
bon substratum is currently a successful method for overcoming these problems. 

3.2. Cathodes 
In the early research into LICs, activated carbon was dominantly used as the cathode 

material with a focus on the energy-storage process of surface adsorption. This was be-
cause it shows a large surface area (33,000 m2 g−1), excellent conductivity (almost 60 S m−1) 
and strong chemical stability [41]. An AC cathode's energy storage capability also pro-
vides a power of approximately 50 mAh g−1 [41]. Compared with anode electrode perfor-
mance, it is comparatively smaller. For load-balance, the cathode's mass load is typically 
two to four times that of the anode, depending on the cathode and anode's different ca-
pacitances [41]. Amatucci et al. [4] produced a LIC system using AC as the cathode, and 
nanostructured Li4Ti5O12 (LTO) as the anode, the first use of AC in LICs. The voltage win-
dow of LICs in an organic electrolyte dependent on AC cathodes has since been designed 
in the range of 1.5–4.5 V to ensure high energy density and preserve the long cycle stability 
of LICs [72]. 

Additionally, carbon derived from metal-organic frameworks (MOF) with various 
architectures has also been widely researched in LICs. For example, large surface area 
(2714 m2 g−1) carbon cuboids were synthesised by pyrolysing the zinc-based MOF-5, which 
exhibits a peculiar crumpled-sheet porous morphology assembled with the required mi-
cro and mesoporosity values [119]. The MOF-dependent LIC provides a maximum effec-
tive energy density of 65 W h kg−1 with excellent power capacity, dependent on the ad-
vanced structure. Likewise, polyhedral hollow carbon derived from MOF was also pro-
duced and used in LICs [120]. It is worth noting that the removal of metal ions during the 
preparation of MOF-derived carbon is a required step due to the presence of metal ions 
in the MOF precursor. 

Graphene's unique 2D structure and physical properties and its derivatives make 
them distinctive building blocks for producing various porous 3D architectures. Thanks 
to the combination of porous structures and the excellent intrinsic properties of graphene 
and its derivatives, these 3D architectures exhibit excellent chemical stability and strong 
specific surface area as well as fast electron transport kinetics. Therefore, these high-per-
formance 3D architectures are strong candidates for use as the cathodes of LICs. Various 
techniques for constructing graphene-based architectures for LICs have been comprehen-
sively documented in recent years [13,41,63,98]. Importantly, integrating microporous car-
bon with surface connectivity into graphene structures is an important technique for fur-
ther increasing the LIC's strength and energy densities.  

4. Design of Lithium-Ion Capacitors 
In terms of LIC design, the process of pre-lithiation, the working voltage and the 

mass ratio of the cathode to the anode allow a difference in energy capacity, power effi-
ciency and cyclic stability. An ideal working capacity can usually be accomplished by in-
tercalating Li+ into the interlayer of graphite. In this way, it is possible to achieve reduced 
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electrode resistance, increased energy density and stable cycling efficiency [63]. A very 
critical element in maintaining power equilibrium is the mass ratio of the cathode to the 
anode (m+/m−). Taking into account the aforementioned criteria, finding a compromise 
between the correct degree of pre-lithiation, an effective functioning voltage window and 
the optimum m+/m− is of considerable importance. Although some researchers perform 
pre-lithiation on one or both of the electrodes, others depend entirely on Li in the electro-
lyte (e.g., from LiPF6), resulting in reduced performance due to the loss of active Li 
[59,121,122]. The need for a solid electrolyte interface (SEI), its creation, continuous 
growth and cracking is a major problem correlated with the usage of carbon anodes. Dur-
ing cycling, one will need to hold the SEI steady and prevent Li plating that involves care-
ful regulation of the negative electrode voltage, temperature and effective current density. 
Therefore, a carbon–carbon design requires an asymmetric mass loading with the weight 
of the lower-capacity adsorption carbon cathode being up to 5 times higher than that for 
the lithium-containing anode. 

4.1. Pre-Lithiation Strategy 
During the production of LICs, a pre-lithiation cycle is performed to the active mate-

rial or whole electrode of the anode guarantee that it operates at fairly low potential and 
to supply lithium ions for the anode-side insertion/extraction reaction. In turn, the added 
lithium through pre-lithiation reduces the electrode resistance and accounts for the per-
manent active lithium loss during cycles induced by the creation of solid electrolyte inter-
face films (SEI) on the anode. The following can be performed using distinctive pre-lithi-
ation approaches [13,30,45,63]: the electrochemical process (ECP); the short-circuit pre-
lithiation through external short-circuit (ESC) and internal short-circuit (ISC) methods; the 
introduction of permanent lithium transition metal oxides (LTMOs) on the cathode side; 
and, the application of sacrificial lithium chloride to the electrolyte. Pre-lithiation methods 
can also be adapted between different capacitor chemistries (e.g., LIC, NIC and KIC) [123]. 
Jin et al. (2020) give a thorough review of pre-lithiation technologies in LICs, outlining the 
current progress and perspectives [124]. 

An important step in creating high-performance LIC systems is the pre-lithiation of 
the electrodes. According to the restricted solubility of salts such as LiPF6 or NaClO4 in 
carbonate solvents, permanent ion loss results in ionic conductivity degradation [63]. Dur-
ing prolonged cycling, devices focused on non-lithiated electrodes have been shown to 
have decreased lithium ion content in the electrolyte, significantly deteriorating the over-
all LIC potential [81,121]. Besides SEI, Li can be trapped in the majority of electrode mate-
rials (e.g., hard carbons) [125]. Pre-charging at least one electrode is a key element in eval-
uating a hybrid device's output in terms of initial energy, power conservation and cycling 
conservation [63]. A study of Ragone properties typically shows that, in addition to the 
electrolyte [80,81,126,127], systems at the peak of the energy–power range are those that 
utilise a secondary supply of ions.  

This training compensates for the depletion of the Li ion induced by initial SEI form-
ing and permanent bulk trapping. As long as there is no substantial increase in SEI and 
bulk trapping during cycling, the concentration of electrolytes stays relatively constant. 
Pre-lithiation has also been successfully used to expand the voltage window and extend 
LIC device cyclability by regulating the anode’s voltage oscillation, thereby reducing the 
load depth and related SEI production, volumetric expansion and ion trapping [72,81,121].  

The most prevalent pre-lithiation procedure is electrochemical deposition. A closed 
electrical circuit develops bonding between the anode and the lithium metal [128]. This 
uses an electrically insulating and ionically conducting separator, similar to what is found 
in LIBs. Depending on the pre-doping process controllability [72,128–130], the external 
circuit can contain an electrical capacitor or resistor, or even a short circuit. The charging 
cycle can be operated with a programmable system added to the terminals [74,131]. The 
main drawback to this approach is extra cell assembly/disassembly procedures, where the 
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unit ends up being assembled twice. While scientifically useful and to some extent con-
venient, it is not obvious how the industry can make such an approach cost-effective. 

A theoretically more efficient solution could be based on chemical doping in the pres-
ence of an electrolyte [132–134]. This would occur through the direct reaction between the 
electrode substrate and lithium. The main advantage of this approach is its sleek simplic-
ity and scale-up potential for industries; however, lithiation is in effect unobservable, 
meaning the state of charge (i.e., lithium content in the electrode), cannot be controlled or 
monitored until after the doping is complete. Despite this, research has been performed 
to alleviate this by constructing LICs with multielectrode structures to escape cell-reas-
sembly and track the electrical signals during doping [74,135,136].  

Cao and Zheng [77] demonstrated a three-electrode hybrid configuration that used 
stable lithium energy. Based on this theory, other types of lithium, such as lithium silicide, 
lithium-rich transition metal oxides, were used for different anodes (e.g., steel, silicone, 
etc.) [114,127,132,137]. Pre-lithiation has traditionally been done on the anode, which in 
turn is contradictory to how LIBs are produced; however, pre-lithiation on the cathode 
has been observed [115]. That would be potentially better because the system is instead 
constructed in a thermodynamically stable manner (which may not be the case with a 
symmetric unit, e.g., carbon–carbon).  

During LIB production, lithium-rich ion-donating materials show a strong hysteresis 
during charging and discharge. This in turn causes a cycle of permanent de-lithiation dur-
ing the LIBs first charge. The ions are then inserted between the main storage processes in 
the electrolyte and transfer back and forth during subsequent cycling. In this way materi-
als such as Li3N [129,138] and Li6CoO4 [128,139] were able to be used as cathode additives 
to minimise failure. It may be possible to directly transfer this method to LICs, for exam-
ple, Lukatskaya et al. [56] reported an example of the concept of a chemical additive ion 
source that could advance LIC technology due to its efficacy and scalability [56]. 

In a LIC, the activated carbon can contain sacrificial synthetic lithium salt (3,4-dihy-
droxybenzonitrile dilithium) [13]. This compound is irreversibly decomposed after the 
first cycle, with the residues dissolving in the electrolyte. It acts as a lithium-ion source 
inside the graphite anode without adversely impacting the electrochemical output of the 
LIC. Due to the ease of converting this principle into industrial production of various LIC 
electrodes, the sacrificial additive method seems to have the greatest potential for practical 
implementations among all pre-charging approaches. In addition, the recent development 
of a cascade-based methodology for pre-lithiation may lead to advances in the stability of 
pre-lithiation of anodes. 

4.1.1. Electrochemical Pre-Lithiation 
Lithium metal is used as the counter-electrode for the EC method, with graphite be-

ing used as a functional electrode. Lithium ions migrate from the metal to the graphite by 
cycling at a fairly small current, during which the lithium electrode and graphite electrode 
become physically separated. Lee et al. [73] obtained pre-lithiated graphite by cycling 
graphite half-cells 2 times at 0.1 °C followed by a discharge of the LIC to 0.05 V during the 
third cycle. Similarly, by combining a mesocarbon microbead working electrode with a 
lithium reference electrode, Zhang et al. [140] formed pre-lithiated mesocarbon mi-
crobeads. The merit of this method is that, by setting the cut-off capacity and producing a 
stable SEI layer, the lithiated content can be precisely controlled. Nevertheless, the reas-
sembly phase of the pre-lithiated anode is a time-consuming procedure unfeasible cur-
rently for use in industrial production. 

4.1.2. Short-Circuit Pre-Lithiation 
Often pre-lithiation of short circuits may be split into ESC (external short-circuit) and 

ISC (internal short-circuit) techniques. For the ESC process, a sacrificial lithium metal elec-
trode and a targeting electrode (e.g., graphite) are separated using a porous polymer sep-
arator in a non-aqueous electrolyte and are connected to wire to naturally facilitate the 
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penetration of lithium ions into the electrode [81,141]. Kim et al. [142] compared the dif-
ferent pre-lithiation approaches and showed that the ISC method was straight-forward 
and effective for obtaining high energy intensity DC-LICs. In the presence of an electrolyte 
media, the ISC technique is performed by solid metallic lithium (e.g., Li metal or Li pow-
der) touching a carbon anode directly. Cao and Zheng [77] described a network of hard 
carbon/activated carbon DC-LICs by utilising a mixture of stable lithium metal powder 
(SLMP). Once the hard carbon—SLMP mass ratio reached between 5:1–8:1, a healthy life 
cycle was obtained. The extra Li powder-covered hydrogen fluoride (HF) against etching 
of the SEI layers. The biggest benefit of short circuit pre-lithiation is its straight-forward 
usability and scale-up. Despite this, the key disadvantage is that lithium utilisation cannot 
be precisely regulated [132].  

4.1.3. Irreversible Transition Metal Oxides at the Cathode 
Compared to the usage of metallic lithium, the use of permanent electrochemical lith-

ium-transition metal oxides as a pre-lithiation agent will significantly enhance the health 
of LICs [63]. Usually, the chosen lithium transition metal oxides only operate on the first 
charge cycle to facilitate the incorporation of lithium cations into the graphite anode. 
Li6CoO4, Li5FeO4, Li2CuO2, Li5ReO6 and Li2RuO3 have been developed to be used as pre-
lithiation agents [115,143–146]. Through this method, the degree of pre-lithiation can be 
managed by regulating the volume of lithium metal oxides in the cathode. 

4.1.4. Adding Sacrificial Organic Lithium Salt 
Jeżowski et al. [56] published a pre-lithiation process for sacrificial organic lithium 

salt, using 3,4-dihydroxybenzonitrile dilithium salt (Li2DHBN) as a sacrificial salt in 1 M 
LiPF6/EC – DMC. The insoluble Li2DHBN was combined with activated carbon and re-
leased during the first charge cycle to form the soluble 3,4-dioxobenzonitrile (DOBN). The 
Lithium ions intercalated into the graphite to achieve pre-lithiation. Of such approaches, 
stable metallic lithium powder and the inclusion of permanent lithium transition metal 
oxides could have the most promising prospects for industrial production; however, mon-
itoring the lithiation degree and health issues are still relevant factors. Recently, Li3N was 
employed as a sacrificial lithium compound for metal-free pre-lithiation by adding it to 
the electrode mixture during active material synthesis. Using this additive, stable cycla-
bility of 91% after 10,000 cycles was observed [147].  

4.2. Electrolytes 
The electrolyte often serves as an integral part of the pairing LIC electrodes, greatly 

influencing the energy capacity, power efficiency, and cycling stability. To obtain suffi-
cient energy and power efficiency, multiple electrolyte specifications should be met [6]: 
outstanding ionic conductivity; strong electrical insulation; large voltage operating win-
dow; exceptional stability; and, ideally low toxicity. Electrolytes can be classified into 4 
types: aqueous electrolyte; organic electrolyte; ionic liquid electrolyte; and inorganic 
solid-state electrolyte. Aqueous electrolytes have high ionic conductivity and low re-
sistance, favourable for ion transfer; however, the working voltage range is generally less 
than 1.2 V and is constrained by water decomposition [148]. Due to their marginal insta-
bility, good thermal, chemical and electrochemical resilience, low flammability and supe-
rior conductivity, ionic liquid-based electrolytes have been examined [149,150]; however, 
their use is not ideal industrially due to their high economic costs. A solid-state polymer 
may be an acceptable alternative electrolyte because the ionic conducting medium has 
electronic separators that preserve the LICs health through high cycle numbers. While in 
recent years solid-state polymer electrolytes have flourished and considerable improve-
ment has been made, their ionic conductivity needs to be significantly enhanced for room 
temperature use.  
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Organic electrolytes may have the best prospects for commercially available LICs. 
They have a larger voltage window than aqueous electrolytes, and their operating condi-
tion is milder than that of solid-state polymer electrolytes and ionic liquid electrolytes. 
Organic electrolytes are commonly used in LIBs and LICs; however, their high economic 
cost, low potential power, low conductivity and health concerns linked to flammability, 
variability and toxicity are problematic [149,150]. Despite this, a modern polyethylene gly-
col-functionalised polysilsesquioxane has been developed for the manufacture of hybrid 
ionogel electrolytes for LICs [151]. This gave the electrolyte excellent thermal stability and 
superior ionic conductivity.  

The most significant or distinct required components in electrolytes are lithium salts, 
solvents and additives. Solvents such as polycarbonates, ethers, ethylene carbonates, di-
ethyl carbonates, dimethyl carbonates, propylmethyl carbonates and ethyl methyl car-
bonates can dissolve lithium salts and transport lithium ions [72,81,152,153]; however, the 
SEI shape and structure can be highly affected by the use of solvents. Additives are con-
nected to other compounds that are applied to the electrolyte and can effectively boost 
efficiency. According to the different effects of the additives, they can be classified as im-
proving ion conductivity; improving device properties (e.g., the SEI); improving low-tem-
perature efficiency and thermal stability; preventing overloading; and, reducing electro-
lyte acid and water content [6,154,155].  

4.3. Modelling and Simulation of LICs 
LICs have a clear advantage in offering high power and energy density within a sin-

gle energy storage system while maintaining a longer cycle life. Although there has been 
substantial research into materials and chemistries for the production of LICs, there is a 
requirement for research on the effect of electrode balancing and pre-lithiation on the LICs 
usable energy. Computational approaches have been able to provide aid in determining 
these effects using physics-based models based on experimental data.  

When designing an LIC, many factors need to be taken into account to ensure accu-
rate hybridisation of the LIB components with the traditional capacitor components. Us-
ing theoretical and experimental data, computational modelling has been able to be used 
to assist this process. Moreover, such modelling has allowed theoretical guidelines to aid 
the design of LICs to obtain optimal operation. Choi and Park (2014) developed a thor-
ough theoretical analysis that aids the design of high-performance LICs, and also devel-
oped guidelines to improve the development phase of new LICs [156]. In summary, these 
guidelines state that: 
• battery and capacitor components must be homogeneously hybridised to operate as 

a single electrode (see [157] for in-depth hybridisation approaches and principles); 
• the capacitor component must be highly electronically-conductive and able to store 

electrochemical energy in the organic electrolyte by electrostatic force, and, 
• electrode material must have a high surface area to achieve high energy density and 

an open porous structure to achieve optimal ionic conduction. 
Ghossein et al. (2018) noted that there were limitations in using LIB and supercapac-

itor models based on electrochemical impedance spectroscopy for LICs [158]. They stated 
that these models were not suitable for accurately describing the impedance of LICs at 
low frequencies. They concluded that this was due to the size of the pores in the cathode 
being identical to the anode in the LIC and supercapacitor models. Therefore, they intro-
duced a new model that was specific to LICs and includes accurate pore sizes and distri-
butions of the cathode. This allowed accurate modelling of impedance values at all fre-
quencies when compared to experimental data. Madabattula el al. (2019) developed a 
model to study the relationship between usable energy at a variety of effective C rates and 
mass ratios of the electrodes in a LIC [159]. By extending the model to analyse the pre-
lithiation requirement, they were able to determine the limits of pre-lithiation in Lithium 
Titanium oxide anodes, and how negative polarisation of the activated carbon in the 
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cathode can improve cell capacity. In addition, in a LIC cell with a higher mass ratio, the 
authors were able to relate the effects of electrolyte depletion with poor power perfor-
mance.  

5. Knowledge and Research Gaps 
Low Coulombic-related decreases in available charge in batteries are usually corre-

lated with the irreversible and continuous creation of an SEI and certain cathode electro-
lyte interlay (CEI) [160,161]. This can also be the case with LICs. LICs usually have a 
smaller Lithium pool than traditional LIBs, have more strict criteria for reducing internal 
resistance losses attributable to high voltage and undergo more cycling. All three of these 
aspects render SEI forming a substantial challenge for LICs, and due to the wide voltage 
window, CEI formation can result in plugging of surface pores and, therefore, a loss of 
active surface area [13].  

SEI products are expected to be similar to what is observed with other types of car-
bons used in LIBs, due to carbonate electrolyte reduction in LICs [162,163]. The electrolyte 
solutions solvents and salts are both thermodynamically unstable and undergo reduction 
on the anode during charging (when the anode is temporarily a cathode), which may op-
erate at a potential near (or below) that of metallic lithium [164,165]. Therefore, a substance 
with a wide surface-to-volume ratio can induce higher irreversible losses in terms of per-
formance [166,167]. Such reduction films may make the anode surface unreactive, protect-
ing the electrolyte solution from further decomposition; however, any volumetric changes 
experienced during electrochemical cycling may weaken and fracture the SEI layer, with 
each cycle exposing fresh material to the electrolyte [109,168–170], creating a new layer of 
the SEI.  

The SEI comprises primarily of electrolyte reducing materials. The instability of the 
SEI will inevitably trigger the LIC unit to lose overall power and fail [168,171–173]. Apart 
from solvent-reduction products such as Li2CO3 and alkyl carbonates, the SEI anode also 
partially consists of LiF, which is a decomposition product of the LiPF6 salt but can also 
be produced by reaction with trace amounts of water to HF and eventually LiF [174,175]. 
Research on this points to radial compositional and structural gradients inside the SEI 
sheet, as well as complex growth-shrinking characteristics with cycling [176–179].  

For a variety of carbon-supported nanomaterials (e.g., oxides and sulphides), an ad-
ditional aspect relating to SEI formation in hybrid ion capacitor anode materials is linked 
to the cycling-induced capability gain sometimes mentioned in the literature [13]. An in-
crease in the performance induced by cycling is not uncommon for Li-based anodes, es-
pecially for oxides [180–184]. This phenomenon has been attributed to a contribution to 
load-storage through surface adsorption as a result of the extra surface area created by 
conversion compound cycling [184,185]; however, recent discussions have suggested this 
is not the case as when a carbonate electrolyte is used, the surface area of both electrodes 
during cycling decreases considerably [13]. They further claim that the increase in power 
is due to the internally parallel nanostructured anodes rather is the cycling-induced re-
versible forming of a polymer gel on the surface of the nanostructured electrode during 
lithium charging. This Faradaic cycle can be mechanistically identical to reversible and 
high Coulombic quality redox reactions in polymer-based electrochemical capacitors 
[186–188].  

In LIC devices a parasitic oxidation substance (i.e., CEI), is most likely formed on the 
cathode. The most intuitive evidence for this oxidation layer is the commonly observed 
loss of the first-cycle capacity for carbon cathodes in carbonate electrolytes [98,189,190]. A 
secure passivation sheet could prevent any further oxidation of electrolytes on the elec-
trode surface [191–194]. The chemical structure of the passivation substrate (e.g., size or 
type) on the cathodes has been observed to differ greatly from material to material [193]. 
Surface characterisation methods (e.g., X-ray photoelectron spectroscopy and atomic force 
microscopy), have been used to study passivation layers in cathodes [193–196]; however, 
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the CEI chemistry, composition or voltage impact on its development are yet to be ana-
lysed.  

In terms of its chemistry and composition, the CEI in LICs can be somewhat different 
from that developed on the classic LIB intercalation cathodes [13]. CEI creation is cata-
lysed by a faradic mechanism. The sum of irreversible ability due to CEI should be directly 
linked to the surface area and the functionality of the surface heteroatoms, as well as the 
electrolyte carbonate types. Electrochemical impedance analysis has been used to observe 
the development and evolution of the passivation layer on a carbon cathode in an indirect 
way [77,197,198]; however, more in-depth analysis of the CEI in LIC devices is required, 
because its growth may be important to performance.  

Besides the SEI and CEI materials used in LICs, carbon-based electrodes can suffer 
from Li plating to a greater degree than as observed in LIBs. This specifically applies to 
graphite, which continues to plate Lithium at various charging rates [199–206].  

Nanostructured lithium titanate could greatly reduce the magnitude of lithium metal 
plating [121]; however, Li4Ti5O12 alone is not adequately electrically conductive to reach 
the high levels required in LICs. The ideal method to prevent metal plating is to ensure 
that the anode stays far enough from 0 V vs. Li / Li+, especially at high charging levels; 
however, this would require the quantification of a three-to-four-electrode cell (including 
reference electrodes), something that is rarely done. It should also be pointed out that the 
voltage swing of the individual electrodes can only be estimated from their mass-to-ca-
pacity ratio in a true two-electrode cell. This causes more problems in specifically regulat-
ing the composition of both the metal and SEI. 

6. Next-Generation Lithium-Ion Capacitors 
Much research in recent years has revolved around developing the electrodes used 

in LICs. As a result, many types have been observed to have varied performance in LIC 
designs. Table 3 gives an overview of the different materials researched recently. 

6.1. Pseudocapacitive Oxides 
Apart from carbons and titanium compounds, a variety of new anode materials is 

available that are either specifically designed for LICs or are added to specific systems 
that have original uses in LIBs. Those nanomaterials are primarily used for anodes, not 
for cathodes. Conversely, even the best carbon-based adsorption cathodes offer a fraction 
of the capacity of existing LIC anodes. Cathode work in the field is even more important, 
as LIB cathodes are not specifically transferable.  

Because of their fast charging and discharging kinetics, the pseudocapacitive materi-
als emerge as a significant subset of materials for LICs, together with higher gravimetric 
and volumetric efficiency relative to true EDLC electrodes [5]. Augustyn et al. [54] demon-
strated that the Li+ intercalation into the orderly channels of bulk orthorhombic T-Nb2O5 
was straight-forward, making the charging behaviour capacitor-like. These materials 
were referred to as pseudocapacitive intercalation compounds since, although the Li stor-
age mechanism was not considered EDLC, EDLC-like triangular galvanostatic curves and 
box-like CVs were shown. Despite this, these LICs produce at fairly low power a maxi-
mum of 76 Wh kg−1 rendering their total effective energy around a factor of 2 lower than 
that for carbon-based electrodes [207].  

Vanadium oxide V2O5 undergoes a bulk ion intercalation reaction during reversible 
charging, also producing a sloping profile similar to a capacitor when used as an anode. 
Bulk V2O5 can accommodate electrolyte cations (e.g., H+, Li+ and K+) in aqueous systems 
[208–210]. They also mixed elemental analysis and X-ray diffraction to analyse the charg-
ing-storage process of V2O5 in an aqueous environment. They also discovered that K+ ions 
inject gaps between the (00l) Miller index planes into the interlayer, and an average energy 
of 42 Wh kg−1 can be achieved with a loss of < 5 % over 10,000 cycles [208]. A V2O5-based 
hybrid solution can also operate in a far wider voltage window in Li+ organic systems. 
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The authors tested the same materials V2O5 on CNT in lithium structures [210]. The LIC 
cell energy value was in the region of 40 Wh kg−1, similar to aqueous electrolyte systems. 

6.2. MXenes 
MXene is a large family of metal carbides and carbonitrides in the two-dimensional 

form [211]. It has been observed that several cations (Na+, K+, Mg2+ and Al3+) can intercalate 
reversibly through the bulk of exfoliated multilayer T3C2Tx MXene in an aqueous electro-
lyte. It was also stated that Li+ ions would intercalate reversibly between layers of MXene 
in the organic electrolytes [212]. Because there is a significant intercalation reaction, the 
MXene shows pseudocapacitor CVs and galvanostatic profiles, and could therefore be 
grouped into the pseudocapacitive substance family [211–213]. In addition, the electro-
chemical analysis revealed that storage of Li was a reaction rather than a diffusion-con-
trolled Faradic cycle, similar to the other pseudocapacitive materials. 

An LIC system based on Ti2C coupled with Kuraray YP17 activated carbon has also 
been proposed [214]. Here, the Ti2C anode showed moderate working voltage with the 
LIC operating at an upper cut-off voltage of 3.5 V and delivering maximum energy of 50 
Wh kg−1. Wang et al. [214] also synthesised 3D TiC nanoparticle chains operating in a 
lower voltage (0.7 V vs. Li / Li+) area. The resulting LIC system, together with a high-
capacity, nitrogen-doped porous carbon cathode, provided 101.5 Wh kg−1 of energy and 
23.4 Wh kg−1 energy at an intense strength of 67,500 W kg−1. Additionally, Luo et al. [215] 
developed a CTAB-Sn pillared Ti3C2 MXene-based LIC system that provided energy of 
105.6 Wh kg−1. An important issue worth pursuing is the cyclability of these materials. 
Whether the existing intercalation compounds can survive such extended service and, if 
not, whether their structure and/or electrolyte chemistry can be tuned to enhance perfor-
mance is still unknown. 

6.3. Conversion Compounds 
Reversible materials dependent on reaction conversion are another type that was 

considered pseudocapacitive and has gained popularity as a substrate for the LIC elec-
trodes. A conversion electrode is defined initially in LIB literature as the crystalline or 
amorphous AxBy material, which then decomposes reversibly into one or two Lithium 
compounds after charging [216]. Some examples of the structures used for LICs are MoS2, 
NbN, VN, MnO, Fe2O3/Fe3O4, NiCo2O4 and various alloys. Although MoS2 undergoes a 
Lithium intercalation reaction down to 1.1 V, most reversible capability stems from re-
versible Mo and Li2S conversion reaction down to 0 V [217]. The reversible capability of 
MoS2 is stated to be as high as 1000 mAhg−1, which actually is higher than the theoretical 
figure. The discrepancy may be due to a capacitive contribution and a reversible SEI 
growth contribution [218]. Wang et al. [219] used MoS2-graphene composites in LICs, us-
ing sloping charge and discharge profiles, with the LIC delivering energy density as high 
as 188 Wh kg−1 at 200 W kg−1 and 45.3 Wh kg−1 at 40,000 W kg−1. MoS2's functional efficiency 
was around 600 mAh per gram and helps balance the sloping voltage plateau with fast 
energy delivery. The outstanding rate capability and the retention of cycling power pos-
sibly emerged in the anode from the engineered secondary carbon-based process.  

6.4. Battery-Related Intercalation Ceramics 
Research has been performed using ceramic LIB cathode materials coupled against 

carbon counter electrodes, developing a high-power LIB with a more sloping tension pro-
file. Aravindan et al. [220] provided an excellent description of intercalation-type materi-
als for configurations of LICs. The overwhelming majority of such architectures exhibit 
cyclability like batteries, lasting many thousands of cycles. For example, layered oxides, 
spinel oxide, olivine, NASICON and silicates are specific forms of ceramic battery cath-
odes used in LICs. Olivine LiFePO4 is a well-established LIB commercial cathode which 
has also seen applications in LIC systems. During lithium intercalation/deintercalation it 
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undergoes a two-phase reaction and shows a flat plateau at 3.4 V. Ping et al. [221] con-
structed a hybrid activated carbon + LiFePO4 composite as the cathode and mesocarbon 
microbeads as the anode. The unit was cycled between 2 and 4 V with an average energy 
density of 69 Wh kg−1 and a lifespan of 100 cycles with marginal decay. 

NASICON cathodes have also recently gained recognition for applications in hybrid 
systems. The most frequently studied NASICONs are the phases Li3V2(PO4)3 (LVP) and 
Na3V2(PO4)3 (NVP), with vanadium as the active metal transfer part. Satish et al. [105] 
incorporated an LVP-C cathode with activated carbon as an anode in a LIC device, ob-
taining 25 Wh kg−1. For an activated carbon / LVP configuration an energy density of 28 
Wh kg−1 was observed [222]; however, the energy efficiency becomes greatly increased 
(125 Wh kg−1 at 300 W kg−1) where activated carbon is used as a cathode when LVP is the 
anode.  

Table 3. Next-generation electrode materials for LICs. 

Configuration (anode//cathode) Voltag
e 

Max Energy 
(Wh/kg) at Power 

(W/kg) 

Energy (Wh/kg) at 
Max Power (W/kg) Cyclability 

T-Nb2O5-graphene//activated carbon 
[223]  

0.8–3 V 47 at 393 15 at 18,000 
93% over 2000 

cycles 
mesoporous Nb2O5–C//activated 

carbon [224]  
1–3.5 V 74 at 120 20 at 12,137 Not reported 

V2O5 on CNT//activated carbon 
[210]  

0–2.7 V 40 at 210 6.9 at 6300 
78% over 

10,000 cycles 
γ-LixV2O5-BM50//activated carbon 

[225]  
0–4.5 V 54.59 at 230 Not reported 

100% over 400 
cycles 

CTAB-Sn on Ti3C2 MXene//activated 
carbon [215]  

1–4 V 105.6 at 495 45.3 at 10,800 
70% over 4000 

cycles 
Ti2C MXene//YP17 active carbon 

[212]  
1–3.5 V 50 at 190 15 at 600 

85% over 1000 
cycles 

TiC MXene//N-doped porous 
carbon [214]  

0–4.5 V 101.5 at 450 23.4 at 67,500 
82% over 5000 

cycles 
T-Nb2O5 on C//MSP-20 activated 

carbon [226]  
1–3.5 V 63 at 70 10 at 6500 

75% over 1000 
cycles 

Nb2O5-carbide-derived carbon//YP-
50F AC [227]  

1–2.8 V 30 at 220 18 at 5000 Not reported 

Nb2O5–CNT//activated carbon [228] 0.5–3 V 33.5 at 82 4 at 4000 Not reported 
LiNbO3 on graphene aerogel//boron 

carbonitride nanotube [229]  
1–4 V 148 at 200 69.4 at 9900 

82% over 7000 
cycles 

MoS2–C-RGO//PANI-derived 
porous carbon [219]  

0–4 V 188 at 200 45.3 at 40,000 
80% over 

10,000 cycles 
NbN//activated PANI-derived 

carbon [230]  
0–4 V 149 at 200 5 at 45,000 

95% over 
15,000 cycles 

VN-rGO//activated carbon [231]  0–4 V 162 at 200 64 at 10,000 
83% over 1000 

cycles 

MnO cubes//activated carbon [232] 0–4 V 227 at 55 21 at 2952 
93% over 3000 

cycles 
3D MnO array//activated carbon 

nanosheets [233]  
1–4 V 184 at 83 83 at 18,000 

83% over 5000 
cycles 

MnO nanoparticles//activated 
carbon [234]  

0–4 V 220 at 100 35 at 2608 
95.3% over 
3600 cycles 

MnO on C//trisodium citrate-
derived carbon [235]  

0–3.9 V 235 at 120 61 at 25,000 
85.69% over 
10,000 cycles 

MnNCN//activated carbon [236]  0.1–4 V 103 at 150 22 at 4500 
100% over 
5000 cycles 
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FexO on graphene//porous graphene 
[237]  

0–3.5 V 129.6 at 19 45 at 3500 
75% over 3000 

cycles 

Fe2O3//activated carbon [238]  0–3.5 V 90 Not reported 
55% over 2500 

cycles 
Fe3O4 in graphene//3D graphene 

[239]  
1–4 V 204 at 55 85 at 2650 

70% over 1000 
cycles 

NiCo2O4//activated carbon [240]  0–4.5 V 39.4 at 120 10 at 554 
100% over 
2000 cycles 

activated 
carbon//LiMn1/3Ni1/3Fe1/3O2–PANI 

[241]  
0–3 V 49 at 900 19 at 3000 

100% over 
3000 cycles 

activated carbon//LiMn2O4 [242]  0.7–3 V 45 at 60 10 at 800 Not reported 
LiNi0.5Mn1.5O4//activated carbon 

[243]  
1.5–

3.25 V 
19 at 120 8 at 3500 

81% over 1000 
cycles 

mesocarbon microbeads//LiFePO4 
[221]  

2–4 V 69 Not reported 
100% over 100 

cycles 

Li3V2(PO4)3//activated carbon [222] 0–4 V 125 at 300 65 at 6000 
80% over 200 

cycles 

activated carbon//Li3V2(PO4)3 [222] 0–2.5 V 28 at 35 14 at 1500 
87% over 1000 

cycle 

activated carbon//Li3V2(PO4)3 [105] 
0.5–2.7 

V 
25 at 88 13 at 320 Not reported 

Li2MnSiO4//activated carbon [244]  0–3 V 54 at 150 37 at 1500 
85% over 1000 

cycles 

LiMnBO3//PANI [245]  0–3 V 42 at 1500 15 at 5350 
91% over 1000 

cycles 

CoNiP2O7//activated carbon [246]  0–4 V 116.3 at 200 66.7 at 6486.5 
86.5 over 500 

cycles 

7. Concluding Remarks 
The final power and energy of LIC systems are based primarily on design, charging-

storage structure and materials used in electrodes. Overall, designs with the smoothest 
anode and cathode voltage, and the highest overall voltage gap are ideal. Although exist-
ing LIC designs are reasonably straightforward in material terms, the associated high-rate 
charging and storage mechanisms in the electrodes (especially in the anode) remain 
poorly understood and require further research and development. Key unresolved issues 
for LICs include electrode design, energy-to-power limitations, fast charging mechanisms 
in anodes that vary from LIB activity, SEI formation, and LIC cycling (although superior 
to LIBs, not yet at traditional EDLC level). 

Because of SEI development, the risk of low-voltage metal plating and volume ex-
pansion, it would seem as though the anode is the bottle-neck for cycling life. Although a 
high-surface-area cathode may function at a voltage where a CEI is formed, the overall 
chemistry would be less harmful due to reduced volume expansion (CEI does not accu-
mulate through cycling). Despite this, the creation of the CEI for LICs is almost entirely 
unexplored. In terms of energy density, there currently does not appear to be an ideal 
cathode material that could operate at comparable capacity as the anode while maintain-
ing cycling stability. Activated carbon is stable but offers up to one-fifth of a hard carbon 
anode reversible capacity. More specifically, many features of carbon-based electrodes in 
LICs still need further investigation. One is cycling stability during high current density 
testing. As long-term cycling stability is essential for LICs, it appears important to evalu-
ate the advantages of using carbon-based electrodes in LICs. 

The developments in LICs are mainly due to the production of advanced carbon-
based electrodes. Although significant strides have been made in the manufacture of car-
bon-based electrodes, more research remains to be done. The inherent electrochemical 
performance of the electrode materials and the growth of active materials on the electrode 
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depends on the porous structure and surface properties of the materials used. Although 
many materials have been designed to either serve as the electrodes or to assist other ac-
tive materials, their microstructures are disordered and random in most situations, their 
surface properties are not well regulated and some pores of these materials are not elec-
trochemically available for the electrolyte, restricting their electrochemical efficiency. Fur-
thermore, the physical properties of some materials provide additional areas of concern 
through their deformation during charge and discharge cycles. Although ambitious, at-
tention should be given to the design of electrodes with precisely controllable microstruc-
tures.  
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