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Abstract  

The on-going drive and demand for green-energy revolution has reflected in attendant increase in the demand for strategic 

and critical metals and elements such as lithium, tantalum, cobalt, and rare earth elements. Specifically, the projected 

demands for portable electric devices, plug-in hybrid electric vehicles (PHEVs), hybrid electric vehicles (HEVs) and electric 

vehicles (EVs) have highlighted the probable increasing demand for lithium-ion batteries (LIBs). The use of lithium in the 

production of LIBs has earned it a strategic label in most technologically advanced countries. It has been demonstrated in the 

literature that lithium extraction from differing resources is based on the generic mineral processing and extractive 

metallurgical techniques and resource type. Over the years, significant number of flowsheets have been proposed through 

numerous metallurgical testing programmes, with the overall aim of extracting lithium from both primary and secondary 

resources. Process mineralogy plays a key role in defining the properties of ores, identifying key opportunities, and 

ascertaining potential challenges associated with the extraction of lithium. To this end, literature has underscored the 

importance of mineralogical tools such X-ray diffraction, Quantitative Evaluation of Minerals by Scanning Electron 

Microscopy, automated scanning electron microscopy, and electron probe microanalysis on the characterisation of ores and 

separation products, which is crucial in selecting unit operations and subsequent process optimisation campaigns. With 

Ghana and other developing countries continue to discover lithium deposits, this paper seeks to provide examples of 

processing opportunities and challenges associated with lithium recovery processes determined through process 

mineralogical studies, with the overall aim of stimulating ideas and bridging existing knowledge gap in developing countries. 

Overall, the learnings from this review could serve as a source of inspiration to explore different avenues for sustainable 

lithium recovery from ores and secondary resources. 
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1 Introduction  

Lithium is a soft, silvery-white to grey alkaline 

metal with a metallic lustre when fresh and 

tarnishes to dull silver grey and then black when in 

air. Lithium is the third element on the periodic 

table and has numerous physical and chemical 

properties. It is the lightest of the alkaline metal 

with an atomic weight of 6.939 and atomic radius 

of 1.33 Å. Its density is about half of the water 

density and can float on water even at the point of 

reaction (Christie and Brathwaite, 2008). The 

demand for lithium minerals has increased 

considerably in recent years due to the application 

of lithium compounds in lithium-ion battery 

technology, portable electronic gadgets and power 

storage systems (Feng et al., 1995; Swain, 2017; 

Tran and Luong, 2015). 

Lithium is a key component in green energy 

storage technologies and is rapidly becoming a 

metal of crucial importance to both developing and 
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developed countries (Kavanagh et al., 2018). 

Carbon-based energy system has negative impacts 

on environment, society and economy (Greim, et 

al., 2020). It is now admitted that greenhouse gases 

do not just pollute but hold important responsibility 

in global warming with terrible consequences. In 

this age of increasing population growth and 

increasing energy demand, ongoing climate change 

and fossil fuel depletion call for alternative, 

sustainable solutions that deeply depend on 

renewable energy (RE) (Griem et al., 2020). The 

recent increased demand for batteries and various 

projections showed continued increase in its 

demand to support the achievement of RE-based 

energy supply (Breyer, et al., 2018; Hummel et al., 

2017; Berger et al., 2017). 

Lithium is used primarily in batteries, glass and 

ceramics, with other uses including rocket fuel and 

lasers. Lithium finds significant importance in 

metallurgy as a flux in welding or soldering to 

primarily reduce energy costs. Specifically, it 

reduces the melt viscosity and improves flow rates 

in continuous steel casting (Martin et al., 2017). 

Lithium compounds have been extensively used in 

medicine for the treatment of bipolar disorder and 

to alleviate suicidal thoughts in patients (Oruch, 

2014). 

One of the important applications of lithium 

includes the manufacture of batteries. Lithium 

batteries have widely been used in portable 

electronic instruments and more importantly, 

lithium-ion batteries (LIBs) are used to power the 

next generation of electric vehicles (EVs) with the 

aim to be environmentally friendly (Dunn et al., 

2011). LIB production is the largest consumer of 

lithium resources today. Lithium batteries are 

classified as primary and secondary batteries. 

Primary lithium batteries contain a solid lithium 

metal with compounds like manganese dioxide and 

sulphur dioxide as the cathode and are not 

rechargeable (Lisbona and Snee, 2011; Talens 

Peiró et al., 2013) 

It is worth noting that the global lithium battery 

market is projected to grow substantially in coming 

years, from US $ 41.1 billion in 2021 to about US 

$116 billion by 2030 (Research and Markets, 

2021). The electric vehicle market will propel the 

growth of the lithium market as the number of 

hybrid and electric vehicles powered by 

rechargeable lithium batteries picks up (Jetin, 2020; 

Yu, 2021). It has been forecasted that the top 

producers of lithium battery cells based on 

production capacity will be CATL, LG Chem, and 

Tesla. It is expected that Germany, China, Japan, 

and France will be leading electric vehicle 

producing countries (Frieske et al., 2013). 

2 Lithium Mineral Resources  

2.1 Global Distribution of Resources 

Typically, lithium occurs only in compounds as a 

result of its high reactivity. Figure 1 shows the 

distribution of lithium reserves worldwide in 2021, 

by country. The data presented by U.S. Geological 

U.S.G.S. (2022) indicate that Chile has the largest 

global lithium reserves by significant margin 

accounting for about 41% of the global lithium 

reserve, followed by Australia, with about 25%.  

 

Fig. 1 Distribution of lithium reserves worldwide in 

2021, by country. 

2.2 Global Lithium Production  

Fig. 2 shows lithium mine production from 2010 to 

2021. The data suggests significant increase in 

lithium production from 28,100 metric tons in 2010 

to 100,000 metric tons in 2021 (Garside, 2022). 

The increase in lithium production may be 

attributed to the increased battery demand for 

electric vehicles. It is projected that global lithium 

demand will increase to about 2 million metric tons 

by 2030 (Garside, 2022). In terms of production, 
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Australia was reported as the highest, producing 

just a little over 50% of the global lithium products 

in 2021, with Chile being the second largest 

producer (Fig. 3).  
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Fig. 2 Lithium mine production worldwide from 

2010 to 2021 adapted from Garside (2022). 

 

Fig. 3 Distribution of lithium production worldwide 

in 2021, by country. 

2.3 Lithium Industry in Africa  

Zimbabwe which holds about 1% of the global 

lithium resources, holds the highest proportion of 

lithium reserves in Africa (King, 2020; U.S.G.S., 

2022). According to King (2020), Zimbabwe holds 

28% of the active lithium projects in Africa. Fig 4 

shows the distribution of lithium projects in Africa. 

In 2020, 18 operational mines spread across the 

continent, and were concentrated in only 8 

countries, including Zimbabwe, Democratic 

Republic of Congo (DRC), Mali, Namibia, Ghana, 

Tanzania, Madagascar, and Mozambique (King, 

2020). The reader is referred to King (2020) and 

Goodenough et al. (2021), where details of the 

lithium mining projects have been provided.  

 

Fig.4 Distribution of Lithium Projects in Africa 

adapted from King (2020). 

2.4 Lithium Industry in Ghana 

Ghana has been tagged as a potential major lithium 

production hub in Africa and is set to become the 

first West African lithium producer. In 2021, it was 

reported in the mainstream media that, Iron Ridge 

Resources (Australia) entered into a conditional 

binding agreement with Piedmont Lithium to fund 

and expedite the Ewoyaa Lithium Project to full 

scale production. The Ewoyaa Lithium Project is 

estimated to contain 14.5 Mt Li2O at a grade of 

1.31% in the inferred and indicated category, 

including 4.5 Mt at 1.39% Li2O in the indicated 

category (IronRidge Resources, 2021). The project 

is highly probable for tin, tantalum, niobium, 

caesium and gold, which occur as accessory 

minerals  (Goodenough et al., 2021; King, 2020; 

Resources, 2021). The project, once in operation is 

expected to benefit from proximity to infrastructure 

(including highway, power infrastructure, and a 

harbor, located in Takoradi). Specifically, 

spodumene concentrate from the project will be 

transported by road to Takoradi Port for export 

(Goodenough et al., 2021). 
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2.5 Lithium Mineralization  

Naturally, lithium does not occur in elemental form 

due to its reactivity. Lithium resources are mainly 

grouped into three categories, including brine (> 

60% reserve), pegmatites (23-30% reserve) and 

sediment-hosted deposits (< 3% reserve) 

(Dessemond et al., 2019). There are about 145 

known lithium-bearing minerals, however, not all 

these minerals can be grouped as economically 

viable minerals (Karrech et al., 2020). The lithium 

pegmatite ores contain lithium minerals such as 

spodumene, petalite, lepidolite and amblygonite. 

There are other lithium minerals such as 

zinnwaldite, triphylite and eucryptite and jadarite 

(Tadesse et al., 2019). Lithium does accumulate to 

economic levels in some specific clays such as 

hectorite (Kavanagh et al., 2018; Tabelin et al., 

2021). 

Spodumene is of primary economic importance as 

it is the most abundant lithium-bearing mineral. It 

is a stable aluminum silicate (LiAlSi2O6) lithium 

mineral and has a theoretical lithium content of 

3.73% (Dessemond et al., 2019; Meshram et al., 

2014; Salakjani et al., 2021).  It is currently being 

explored and processed at an industrial scale due to 

its high Li content and the occurrence of extensive 

deposits and commercially feasible to process 

(Garrett, 2004). Table 1 is a summary of selected 

major lithium-bearing minerals and their respective 

theoretical lithium content as reported in the 

literature.  

Table 1. Selected major lithium-bearing minerals 

(Dessemond et al., 2019). 

Mineral Formula Li content (%) 

Spodumene LiAlSi2O6 3.73 

Petalite LiAlSi4O10 2.27 

Eucryptite LiAlSiO4 5.51 

Bikitaite LiAlSi2O6.H2O 3.40 

Lepidolite KLiAlSi3O10(OH,F)2 3.84 

Zinnwaldite KLiFeAl2Si3O10(F,OH)2 1.59 

Amblygonite (Li,Na)AlPO4(OH,F) 4.73 

Lithiophylite LiMnPO4 4.43 

Jadarite LiNaAlSiB2O7(OH) 2.85 

Zabuyelite Li2CO3 18.79 

 

3 Characterization Tools   

In the assessment of resources for metallurgical 

beneficiation and subsequent extraction processes, 

the chemical and mineralogical compositions ought 

to be ascertained. This plays a crucial role in 

selecting various units of operations and 

understanding the response/behaviour of the 

material during processing and beneficiation. 

Typically, the chemical composition of the material 

could be determined using Inductively Coupled 

Plasma Spectroscopy (ICP) (Ammann, 2007; 

Ghosh et al., 2013), Ion Selective Electrodes 

(Arnold and Meyerhoff, 1984; Dimeski et al., 

2010; Freiser, 2012), and X-ray fluorescence 

(XRF) (Bertin, 2012; Murphy et al., 2013; 

Rousseau, 1984). On the other hand, X-ray 

diffraction (XRD) (Bunaciu et al., 2015; Chauhan 

and Chauhan, 2014; Epp, 2016; Khan et al., 2020) 

and Quantitative Evaluation of Minerals by 

Scanning Electron Microscopy (QEMSCAN) 

(Grammatikopoulos et al., 2021; Simandl et al., 

2017; Wilde et al., 2021) have been instrumental in 

determining the detailed mineralogical composition 

of different materials including liberation and 

association relationships between minerals.  

4 Lithium Beneficiation  

4.1 Dense Media Separation 

Dense media separation (DMS) or heavy media 

separation is a preconcentration technique usually 

employed for coarse gangue rejection prior to 

grinding, but can also be used to produce lithium 

concentrates from high grade ores (Tadesse et al., 

2019). This method utilizes the differences in 

specific gravity between the mineral of interest and 

the gangue minerals. DMS is commonly used in the 

separation of lithium minerals from the major 

gangue silicates based on its relatively high specific 

gravity between 3.1–3.2 (Oliazadeh et al., 2018). It 

is worth noting that lithium mineral such as 

spodumene is slightly heavier as compared to 

silicate gangue minerals present in the hard rocks 

including pegmatites-quartz (2.65), feldspars (2.6), 

and micas (2.8–3.0) (Gibson et al., 2021; Oliazadeh 

et al., 2018; Tadesse et al., 2019). Lithium minerals 

concentration by DMS is typically conducted on 

−9.5 mm +850 µm ore fraction since DMS is most 

effective at relatively coarse size fraction (Marion 

et al., 2017; Oliazadeh et al., 2018).  
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4.2 Magnetic separation 

Magnetic separation utilizes the differences in the 

magnetic susceptibility behaviour of the mineral of 

interest relative to the gangue mineral(s) when 

exposed to an applied magnetic field. This 

separation process typically employed to remove 

iron bearing gangue minerals in association with 

the lithium values (Tadesse et al., 2019). Typically, 

zinnwaldite has a very high magnetic susceptibility 

due to its high iron content, which makes it 

amenable to magnetic beneficiation. For example, 

in Czech Republic, zinnwaldite is separated from 

tin-tungsten mining tailings (Botula et al., 2013).  

Elsewhere, magnetic separation has been used to 

clean zinnwaldite flotation concentrate (Siame and 

Pascoe, 2011). 

4.3 Froth Flotation 

Froth flotation exploits the differences in the 

hydrophobicity of mineral particles to separate 

them. It is the most widely used method for the 

beneficiation of lithium bearing minerals (Tadesse 

et al., 2019; Tian et al., 2018). The efficiency of 

flotation recovery of lithium minerals can be 

affected by the surface chemistry of minerals, 

collector type and concentration used, pulp pH, 

pretreatment methods, and the presence of slimes. 

However, this method produces “richer” lithium 

concentrate as compared with other 

preconcentration methods (Tadesse et al., 2019). 

Typically, anionic collectors including oleic acid, 

sodium oleate, sulphonated and phosphorated fatty 

acids are important surfactants in the flotation of 

lithium minerals (Tadesse et al., 2019). 

4.4 Hydrometallurgical Processes 

Lithium preconcentrates are subjected to different 

extraction processes using direct leaching methods. 

For example, hydrochloric acid (HCl) has been 

proposed to leach zinnwaldite and β-spodumene 

(Martin et al., 2017). Margarido et al. (2014) 

suggested that higher reagent concentrations are 

necessary to achieve better recoveries using HCl, 

which renders the process prohibitively expensive 

in terms of energy and chemical costs. Elsewhere, 

lepidolite concentrate has also been leached 

directly with sulphuric acid (H2SO4) at a 

temperature of 138oC for 10 h (Liu et al., 2019). 

Hydrofluoric acid was effective in producing 90% 

lithium recovery at 75oC (Rosales et al., 2014).   

5 Lithium Extraction  

5.1 Conventional ore 

Spodumene is the most abundant lithium mineral 

that has been commercially mined and processed to 

produce lithium compounds around the world 

among the lithium-bearing ore. Spodumene 

accounts for approximately 90% of global lithium 

carbonate equivalent production (Dessemond et al., 

2019; Tran and Luong, 2015). 

Spodumene processing starts in a similar approach 

to many minerals; the ore is crushed and upgraded 

by physical separation methods such as dense 

media separation (DMS), ore sorting, magnetic 

separation, and flotation. These are employed to 

rejects associated gangue minerals such as feldspar, 

micas, and quartz before further extraction 

processes (Sousa et al., 2019; Tadesse et al., 2019; 

Tran and Luong, 2015; Xu et al., 2016). 

Subsequently, spodumene in the α-phase is difficult 

to treat hence has to be transform to β-spodumene 

by roasting at about 1040oC to 1100oC to enhance 

leaching under moderate chemical extraction 

conditions (Dessemond et al., 2020; Tran and 

Luong, 2015). The β-spodumene concentrate 

(calcined) is further roasted with acidic, alkaline or 

chlorinated chemicals (Meshram et al., 2014). 

In the acid process, the β-spodumene is ground and 

mix with concentrated sulfuric acid (H2SO4) and 

roasted at a temperature of 250°C. This process 

produces an insoluble ore residue and soluble 

lithium sulfate Li2SO4 (Meshram et al., 2014). On 

the other hand, the β-spodumene concentrate is 

ground and calcined with limestone or soda ash at 

825-1050oC to convert lithium silicates into a 

soluble form (Meshram et al., 2014). The soluble 

lithium is then water leached and then reacted with 

carbon dioxide to convert lithium to aqueous 

lithium bicarbonate. Pregnant leach solution is 

obtained and then subjected to evaporation at 

around 90oC to crystallize the lithium as Li2CO3 if 

soda ash is used for neutralization or as lithium 

hydroxide monohydrate if limestone is used for 

neutralization (Meshram et al., 2014). 

Chlorination roasting of spodumene takes place at 

temperatures above 1000°C in the presence of 

chlorine gas (Barbosa et al., 2014; Yan et al., 

2012). This process produced a soluble lithium 

chloride (LiCl) which can be water leached and 
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subjected to evaporation or other purification 

processes. Roasting β-spodumene with Cl2 gas at 

1100°C for 2.5 h could results in almost complete 

extraction of lithium as LiCl2 (Barbosa et al., 

2014).  

 

Fig. 5 Typical flowsheet for processing lithium ore 

(Swain, 2017). 

5.2 Recycled Batteries 

Spent lithium‐ion batteries (LIBs) contain a 

cathode, an anode, and an organic electrolyte which 

consist of dissociated salts such as LiPF6 and a 

separator. The cathode of LIB is usually aluminum 

foil coated with materials such as oxide formed by 

a lithium metal oxide that can produce higher 

potentials such as lithium cobalt oxide (LiCoO2). 

On the other hand, the anode is a copper foil coated 

with graphitic carbon, which can hold Li in its 

layers. Prior to processing of spent LIBs, they must 

be discharged by contacting it with salt solutions 

such as NaCl to prevent short circuiting and self-

ignition that will cause explosion (Wang et al., 

2018; Winter and Brodd, 2004).  

Traditionally, hydrometallurgical and 

pyrometallurgical processes have been employed in 

the extraction of lithium from LIBs. This may be 

preceded by comminution processes to produce 

material of suitable size fraction followed by 

physical preconcentration methods to reject 

significant amount of gangue materials (Meshram 

et al., 2014). In the leaching process, organic and 

inorganic acids and alkaline solutions are employed 

in the presence of H2O2 to recover lithium and 

cobalt. Subsequently, solvent extraction or selective 

precipitation processes are carried out to separate 

and recover both metals (Shuva and Kurny, 2013). 

Recently, biological treatments have been 

employed to recover lithium and other metals from 

spent LIBs (Purnomo et al., 2018). Fig. 6 shows 

different processes employed in recycling LIBs.   

 

Fig. 6 Classification of processes for recycling 

LIBs (Swain, 2017). 

6 Conclusions  

The global distribution and production of lithium have 

been reviewed. Specifically, the distribution of lithium 

resources in Africa have been identified with majority of 

the projects located in Zimbabwe. Ghana is well-placed 

to become the first West African lithium-producing 

country.  

Spodumene is the most abundant lithium-bearing mineral 

and has been commercially processed to produce lithium 

compounds. In lithium beneficiation, upstream methods 

including DMS, magnetic separation, and flotation are 

important to pre-concentrate lithium from deleterious 

gangue minerals, prior to hydrometallurgical and 

pyrometallurgical processes. The choice of the given 

preconcentration method depends on chemical and 

mineralogical composition of the ore. To this effect, 

characterization tools including Inductively Coupled 

Plasma Spectroscopy (ICP), Ion Selective Electrodes, X-

ray fluorescence (XRF) are employed to identify the 

chemical composition of the ore. The data from these 

tools are instrumental in determining the mineralogical 

composition of the ore via X-ray diffraction (XRD) and 

Quantitative Evaluation of Minerals by Scanning 

Electron Microscopy (QEMSCAN) analyses.  
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