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A Quantum Fingerprinting Algorithm for Next
Generation Cellular Positioning
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Abstract—The recent release of the third generation partner-
ship project, Release 17, calls for sub-meter cellular positioning
accuracy with reduced latency in calculation. To provide such
high accuracy on a worldwide scale, leveraging the received signal
strength (RSS) for positioning promises ubiquitous availability
in the current and future equipment. RSS Fingerprint-based
techniques have shown a great potential for providing high
accuracy in both indoor and outdoor environments. However,
fingerprint-based positioning faces the challenge of providing a
fast matching algorithm that can scale worldwide.

In this paper, we propose a cosine similarity-based quantum
algorithm for enabling fingerprint-based high accuracy and
worldwide positioning that can be integrated with the next
generation of 5G and 6G networks and beyond. By entangling the
test RSS vector with the fingerprint RSS vectors, the proposed
quantum algorithm has a complexity that is exponentially better
than its classical version as well as the state-of-the-art quantum
fingerprint positioning systems, both in the storage space and the
running time.

We implement the proposed quantum algorithm and evaluate
it in a cellular testbed on a real IBM quantum machine. Results
show the exponential saving in both time and space for the
proposed quantum algorithm while keeping the same positioning
accuracy compared to the traditional classical fingerprinting
techniques and the state-of-the-art quantum algorithms.

Index Terms—Cellular positioning systems, quantum comput-
ing, quantum position determination, next generation positioning
systems, 5G and 6G positioning.

I. INTRODUCTION

NOWADAYS, location determination services are crucial
for many applications in both outdoor [1], [2] and indoor

[3]–[5] environments; such as emergency services, navigation,
location-based analytics, among many others.

Supporting various positioning methods to provide accurate
user equipment (UE)’s position has been one of the main
features of the 3rd generation partnership project (3GPP) [6].
Release-17 further provides support for improved positioning
in specific use cases such as factory automation by targeting
sub-meter accuracy. In addition, Release-17 also introduces
enhancements to latency reduction, enabling positioning in
time-critical use cases such as remote-control applications [6].

Although different signals have been introduced for posi-
tioning [7]–[9] such as round trip time, downlink and uplink

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Yousef Zook is with the Alexandria University, Egypt (e-mail: es-
yousif.mohamed14152@alexu.edu.eg).

Ahmed Shokry is with the American University in Cairo, Egypt (e-mail:
ahmed.shokry@aucegypt.edu).

Moustafa Youssef is with the American University in Cairo and the Univer-
sity of New South Wales, Australia (e-mail: moustafa-youssef@aucegypt.edu).

time difference of arrival, and angle of arrival and departure,
their current and future ubiquitous deployment in cellular
equipment is hard to be achieved. In contrast, the received
signal strength (RSS) measurements are available in all cel-
lular equipment to help in different decisions, e.g., handoff.
Therefore, RSS-based positioning techniques can provide a
basis for ubiquitous cellular positioning on a worldwide scale
for both indoor and outdoor environments.

Fingerprinting-based positioning is one of the mainstream
technologies for RSS-based positioning [10]–[17] due to its ac-
curacy that can meet the recent Release-17 requirements. The
fingerprint-based positioning technique is generally composed
of two main phases: the offline phase and the online phase. In
the offline phase, the signals received from the different base
stations (BS) are scanned at different known locations in the
environment. To construct the fingerprint, the received signal
strength values (RSS’s) are stored in a database along with
the user’s location for each RSS value. Then, in the online
phase, the online heard RSS at this time is matched with
the collected fingerprint records in the database. Finally, the
estimated location of the UE is the location in the fingerprint
database that has the highest matching score with the current
heard RSS.

The number of fingerprint records collected and the number
of base stations affect the overall positioning accuracy: the
higher the fingerprint locations and the BSs number are, the
more precise the positioning will be [16], [17]. However, the
time needed to match the heard RSS with the fingerprint data
also significantly increases with the number of fingerprint
records and BSs. Strictly speaking, the classical fingerprint-
based positioning systems (e.g. [10]–[13], [16], [17]) need
o(MN) space and their matching process runs in o(MN),
i.e. quadratic complexity, where N is the number of BSs in
the environment and M is the number of locations in the
fingerprint. This complexity hinders both the scalability and
accuracy of the current positioning systems to be deployed on
a worldwide scale.

Recently, quantum fingerprinting positioning techniques
have been proposed to overcome the classical techniques’
limitations [18]–[22]. They can achieve o(M log(N)) time
and space complexity, i,e. sub-quadratic complexity. In this
paper, we propose a cosine similarity-based quantum algo-
rithm that achieves o(log(MN)) time and space complexity,
i.e. sub-linear complexity, providing a promising technique
that can scale to the huge number of BSs and fingerprinting
locations for worldwide next generation cellular positioning.
This is exponentially better than its classical counterpart in
both the number of BSs (N ) and the size of the fingerprint
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(M ). Moreover, it is exponentially better than the current
quantum positioning algorithms in the fingerprint size (M ).

Evaluation of the proposed quantum algorithm in a real
cellular testbed using a real IBM quantum machine shows that
it can achieve the same accuracy as the classical techniques.
This comes with a better than exponential reduction in time
and space requirements, i.e. the time and space complexity for
the proposed quantum algorithm is o(log(MN)) compared to
o(MN) complexity for the classical counterpart, where M is
the number of fingerprint locations and N is the number of
BSs. Moreover, we compare the proposed algorithm with the
state-of-the-art quantum positioning algorithms [18]–[22] and
the classical techniques using a quantum machine simulator on
a larger testbed. The results show that the proposed quantum
algorithm can provide further exponential saving in the number
of fingerprint locations, M , for both time and space.

The rest of the paper is organized as follows: in Section II,
we discuss related work. Then in Section III, we give a
background on quantum computing. After that, we discuss the
proposed quantum positioning algorithm and quantum circuit
implementation in Section IV. Then, we evaluate our system
against other classical and quantum positioning systems in
Section V. Finally, we conclude our work in Section VI.

II. RELATED WORK

In this section, we discuss the different classical and quan-
tum positioning algorithms.

A. Classical Positioning Systems

Many classical algorithms have been developed for cellular-
based positioning for both indoors [3], [11]–[13] and out-
doors [2], [10], [14], [15], [23].

Generally, cellular-based positioning algorithms are based
on the Cell-ID, where the UE position is estimated using the
serving cellular base station coordinates; using time-based and
angle-based techniques, [7]–[9]; or hybrid techniques [24],
[25]. However, these methods depend on using the network
infrastructure such as the BSs’ coordinates or using external
hardware (e.g. antenna array).

On the other hand, using the received signal strength (RSS)
values does not require extra hardware and is available from
both the BS and the UE, making it more widely deployable
than other methods [10]–[15].

Compared to propagation model-based systems, the ma-
jority of RSS-based algorithms are based on fingerprint-
matching techniques to provide higher accuracy [10], [16],
[17], [23]. Those algorithms often use distance or similarity-
based measurements like Euclidean distance, and cosine sim-
ilarity [17], [26], [27]. For example, [15] provides a cellular-
based positioning algorithm where a RSS vector is collected
from different cellular towers for each location and stores
the vectors in the fingerprint database. Then the unknown
location is estimated by averaging the k-nearest fingerprint
locations based on the Euclidean distance. Other systems use
probabilistic techniques [10], [16] where they store signal
information distribution in the fingerprint during the offline
phase, and try to estimate the most probable location in the

online phase using this information. A common functionality
between these different techniques is the need for matching
the UE’s RSS measurements in the online phase with the
fingerprint data collected in the offline phase, which takes
o(MN) in both time and space.

In contrast, this paper proposes a cosine similarity finger-
printing quantum algorithm that takes o(log(MN)) time and
space.

B. Quantum Positioning Systems

Quantum algorithms have shown exponential speed gain in
different areas recently. They leverage quantum properties to
enhance the classical algorithms’ time and space. Examples in-
clude the Grover’s algorithm [28] that provides an unstructured
search technique in o(

√
n) instead of o(n) provided by the

classical version. Similarly, the well-known Shor’s algorithm
uses quantum computing to efficiently factor large numbers
in polynomial time, raising the possibility of breaking the
commonly-used RSA encryption technique [29].

Quantum algorithms for positioning have gained momentum
recently [18]–[22], [30], [31]. In [30], the author proposes a
quantum version of the classical GPS that can provide a user
with his/her coordinates. However, it leverages the quantum
entanglement for clock synchronization. In [31], the authors
discuss using quantum inertial sensors to locate the user
equipment. However, the previous quantum techniques require
special hardware and synchronization. In contrast, the authors
of [20], propose a device-independent quantum fingerprint-
matching algorithm that can work for heterogeneous standard
WiFi devices with space and running time complexity of
o(M log(N)). In [21], the authors discuss the challenges
and opportunities of using quantum computing in positioning
techniques. In [18], [19], [22], the authors propose a cosine
similarity-based quantum algorithm for a positioning system
that is exponentially faster than its classical version in the
dimension of the number of BSs in the space and time
complexity (o(M log(N))).

Unlike the previous quantum positioning algorithms, the
proposed quantum algorithm pushes the space and time com-
plexity to be better than exponentially more efficient than
the state-of-the-art quantum algorithms with a time and space
complexity of o(log(MN)).

III. QUANTUM COMPUTING BACKGROUND AND
NOTATION

In this section, we will provide a background on the
quantum computing basic concepts that will be used in our
algorithm.

Quantum computing [32] is an area of computing based on
quantum mechanics theories. It mixes three fields: mathemat-
ics, physics and computer science. The basic unit of processing
in quantum computing is the qubit. Qubits are the quantum
version of the classical bits that are used to store information.
Similar to classical registers, quantum registers are used to
hold a group of qubits. A qubit can be presented as a photon
polarization or an electron spin, which allows a qubit to be
in any state of an infinite number of states between zero and
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|0⟩ X H

{
0 with prob. 0.5
1 with prob. 0.5

Fig. 1: A quantum circuit that inverts a single qubit and puts
it into a superposition state. The X block represents the NOT
gate which inverts the qubit state (|0⟩ → |1⟩), the H block
represents the Hadamard gate which changes the qubit state
|1⟩ into an equal superposition state (|1⟩ → 1√

2
(|0⟩ − |1⟩)),

and the third block represents the measurement. Single lines
carry quantum information while double lines carry classical
information.

|ϕ⟩ |ψ⟩

|ψ⟩ |ϕ⟩

Fig. 2: The Swap gate which exchanges the states of two
qubits.

one. This phenomenon is called quantum superposition. It can
be leveraged along with other quantum properties to speed up
classical computations. Mathematically, the state of a qubit can
be represented as a vector using the Dirac Notation [33]. Ket
(|.⟩) is the Dirac’s name for a column vector, and it is used to
represent a qubit state |ϕ⟩ as vector of sums of the basis states

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
as |ϕ⟩ = γ |0⟩ + η |1⟩ =

[
γ
η

]
, where

γ and η are complex numbers representing the probability
amplitudes of measuring the qubit with value 0 and value 1
respectively [32], i.e. |γ|2 + |η|2 = 1. On the other hand, a
row vector is represented as a Bra (⟨.|), for example, if we
want to represent the transpose of ket |ϕ⟩, we can write it as
⟨ϕ| =

[
γ η

]
. The dot product of two vectors can be written

as a bra-ket in Dirac’s notation, e.g., ⟨ψ|ϕ⟩. For n qubits, we
can use the tensor product symbol (⊗). For example, we use
|0⟩⊗n to mean n qubits in the state |0⟩.

A quantum algorithm is represented as a quantum circuit,
composed of quantum gates. Quantum gates are similar to
classical gates but are applied on qubits and are represented
mathematically as unitary matrices. For example, the NOT
gate (X-gate) can be represented as a unitary matrix NOT =[
0 1
1 0

]
. Hence, for a state |ϕ⟩ = γ |0⟩ + η |1⟩, applying the

NOT operation leads to the state: NOT |ϕ⟩ = η |0⟩+γ |1⟩. An-
other example is the Hadamard gate (H-gate) which produces
an equal superposition state of |0⟩ and |1⟩ when it acts on a
single qubit in either of the basis states, i.e. it maps the basis
states |0⟩ to 1√

2
(|0⟩ + |1⟩), and |1⟩ to 1√

2
(|0⟩ − |1⟩). The H

gate can be represented as 1√
2

[
1 1
1 −1

]
. Figure 1 shows an

example of a quantum circuit with a single qubit. Similarly,
gates can also be applied to multiple qubits. For example,
the SWAP gate exchanges the quantum state of two qubits as
shown in Figure 2.

Quantum entanglement between qubits means that there is
a dependency between them. For example, if we have two

|control⟩

|target⟩

Fig. 3: An example of a controlled gate. Qubit “control”
controls the NOT operation on another qubit, “target”. The
target qubit will be negated ⇐⇒ the control is measured to
be 1.

Fig. 4: General system architecture for the fingerprint-based
positioning technique.

qubits and one qubit is measured and collapses to a specific
state, then the other one will immediately jump to a certain
state depending on the measured value of the first one. This
can be achieved, e.g., using multi-qubit gates. An example
of these gates is the Controlled NOT (CNOT) gate shown in
Figure 3, where the control qubit controls the NOT operation
on the target qubit. This entanglement phenomenon is used in
different quantum applications like quantum teleportation [34]
and superdense coding [35]. We use the quantum entanglement
phenomenon to add dependency between the collected cellular
RSS vectors at known locations (i.e. the fingerprint) and the
UE’s RSS vector at an unknown location.

Quantum interference refers to changing the probability
amplitudes of a certain qubit using quantum gates. We use this
to bias the probabilities of certain qubits to reflect the cosine
similarity between the UE’s RSS at an unknown location and
the fingerprint.

IV. THE QUANTUM POSITIONING ALGORITHM

In this section, we discuss the details of the proposed
quantum cellular positioning algorithm. The basic idea behind
the proposed algorithm is to calculate the quantum cosine
similarity between the online RSS vector at an unknown
location and each RSS vector in the cellular fingerprint. This
can be achieved by putting the fingerprint samples into a
superposition quantum state and entangling them with the
UE’s RSS vector by applying a sequence of quantum gates.

We start by discussing the quantum circuit for positioning.
Then, we explain the implementation details of the circuit.
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Ancilla

UE’s RSS

Fingerprint

Index

n

n

m

|a⟩ = |0⟩ H H P (a)

|ψ⟩ = |0⟩⊗n Oψ

|ϕ⟩ = |0⟩⊗n

Oϕ

|i⟩ = |0⟩⊗m H P (i)

Initialization Swap Test Measurement

|γ0⟩ |γ1⟩ |γ2⟩ |γ3⟩ |γ4⟩

Fig. 5: The quantum circuit to calculate the cosine similarity between UE’s RSS sample vector |ψ⟩, and all fingerprint records
in parallel |ϕ⟩. |γi⟩ represents the joint system state at different positions in the circuit.

Finally, we give a numerical example that explains the steps
of the proposed algorithm.

A. Positioning Algorithm

The proposed quantum algorithm works in two phases: the
offline quantum fingerprint building phase and the online user
tracking phase as shown in Figure 4.

In the offline phase, we collect the fingerprint RSS data at
known ground-truth (GT) locations. Each fingerprint sample
contains the RSS vector from different BSs, e.g. cellular
towers, in the environment and the location where the RSS
vector is collected. In the online phase, the user’s current
location is queried based on the signals heard by the user
equipment (UE). The UE scans the set of RSS from the
different base stations in the environment and passes it along
with the fingerprint to the quantum cosine similarity algorithm
to find the cosine similarities between the current UE’s RSS
and the collected fingerprint data at each location. Finally, the
fingerprint location with the highest similarity score is returned
as the estimated location.

Without loss of generality, assume that we have N base
stations that can be heard at M fingerprint locations. Also,
assume that the online normalized RSS vector is ψ and the
offline normalized RSS vector at location j is ϕj , where j ∈
{0, ..,M − 1}. The cosine similarity between ψ and ϕj for
each j is:

cos(ψ, ϕj) =
∣∣ ⟨ψ|ϕj⟩ ∣∣ = N−1∑

i=0

ψjϕji (1)

The quantum circuit in Figure 5 calculates the cosine
similarity between ψ and all ϕj’s in parallel. It consists of
three stages: the Initialization, Swap Test, and Measurement
stages.

1) The Initialization Stage: The input to the circuit is four
quantum registers: a single ancilla qubit, an n-qubits register
for encoding the UE’s collected RSS sample |ψ⟩, another

n-qubits register to encode the fingerprint data |ϕ⟩ at each
fingerprint location, and finally an m-qubits register to reflect
the fingerprint location index |i⟩. Initially, all registers are in
the following state,

|γ0⟩ = |0⟩ |0⟩⊗n |0⟩⊗n |0⟩⊗m (2)

Where n = log(N) and m = log(M). The first step during the
initialization is to convert the classical RSS data to quantum
data. To do this for the current UE’s RSS vector, we apply
the oracle Oψ to the n-qubits register in the zero state |0⟩⊗n,
where Oψ is a gate/circuit that converts the register to the state
|ψ⟩ as shown in Equation 3. We explain how to implement Oψ
later in this section.

Oψ |0⟩⊗n = |ψ⟩ (3)

Similarly, we encode the RSS vector at each fingerprint
location j with its index using the Hadamard gate and oracle
Oϕ. The Hadamard gate converts the index register |i⟩ to
a superposition state with equal probabilities as shown in
Equation 4.

H |0⟩⊗m =
1√
M

M−1∑
j=0

|j⟩ = |i⟩ (4)

The oracle Oϕ is another gate/circuit that converts qubits to
|ϕj⟩ entangled with the index register as

Oϕ |0⟩⊗n |i⟩ =
1√
M

M−1∑
j=0

|ϕj⟩ |j⟩ (5)

where j represents numbers from 0 to M − 1 (index of
fingerprint data at location j with size M ). We give the details
of the Oϕ oracle later in this Section.

After the initialization stage, the system becomes in the
following state,
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|γ1⟩ =
1√
M

M−1∑
j=0

|0⟩ |ψ⟩ |ϕj⟩ |j⟩ (6)

2) The Swap Test Stage: The next step is to do a swap
test [36]. The goal is to entangle the ancilla qubit, the UE’s
RSS sample register and the fingerprint register to calculate
the similarity score in parallel for all fingerprint locations. We
start by applying the Hadamard gate to the ancilla qubit, which
leads to the following state

|γ2⟩ =
1√
2M

M−1∑
j=0

(|0⟩+ |1⟩) |ψ⟩ |ϕj⟩ |j⟩ (7)

Then, the ancilla is entangled with |ψ⟩ and |ϕ⟩ registers
using a controlled swap gate which leads to the following
state,

|γ3⟩ =
1√
2M

M−1∑
j=0

(|0⟩ |ψ⟩ |ϕj⟩ |j⟩+ |1⟩ |ϕj⟩ |ψ⟩ |j⟩) (8)

The last step in the swap test is applying the Hadamard gate
again to the ancilla qubit which leads to the following final
state,

|γ4⟩ =
1

2
√
M

M−1∑
j=0

(|0⟩ [|ψ⟩ |ϕj⟩+ |ϕj⟩ |ψ⟩]

+ |1⟩ [|ψ⟩ |ϕj⟩ − |ϕj⟩ |ψ⟩]) |j⟩

(9)

3) The Measurement Stage: The final stage is the measure-
ment stage, where we measure the ancilla qubit conditioned
on the index register being in state |j⟩, i.e. p(a|i = j),
where j represents the index number in the set {0, ..,M −1}.
This probability, p(a|i = j), is a function of the required
cosine similarity between the UE’s RSS sample and fingerprint
sample j.

In particular, to find this probability p(a|i = j); we measure
the index register first (since the probability is conditioned
on the index value). This moves the state of the unmeasured
quantum system to (see Appendix A-A for details):

1

2
(|0⟩ [|ψ⟩ |ϕj⟩+ |ϕj⟩ |ψ⟩] + |1⟩ [|ψ⟩ |ϕj⟩ − |ϕj⟩ |ψ⟩]) (10)

Then, we can calculate the probability that the ancilla is
zero given that the index is j as follows (this can be obtained
by normalizing the ψ and ϕ states, see Appendix A-B for
details):

p(a = 0|i = j) =
(1
2
×
√
2 + 2

∣∣ ⟨ψ|ϕj⟩ ∣∣2)2
=

1

2
+

1

2

∣∣ ⟨ψ|ϕj⟩ ∣∣2 (11)

Hence, the cosine similarity can be obtained as:

cos(ψ, ϕj) =
∣∣ ⟨ψ|ϕj⟩ ∣∣ = √

2× p(a = 0|i = j)− 1 (12)

where p(a = 0|i = j) is the conditional probability of
measuring the ancilla qubit to be 0 conditioned on that the

index register i is equal to j, where j ∈ {0, ..,M − 1}, and
M is the size of the fingerprint.

The probability p(a = 0|i = j) can be found by running
the circuit for K times (the number of shots in the quantum
terminology) and calculating

p(a = 0|i = j) =
count(a = 0 ∩ i = j)

count(i = j)
(13)

The estimated location is the location of the finger-
print sample j with the highest cosine similarity, i.e. j =
argmaxj(cos(ψ, ϕj)). Since this cosine similarity is directly
proportional to count(a = 0 ∩ i = j) (see Appendix B for
details), then the estimated location is the location of the
fingerprint sample that has the maximum count of measuring
the ancilla qubit output as 0.

Algorithm 1 summarizes the proposed quantum positioning
algorithm.

Algorithm 1 o(logMN) Quantum Positioning

Input:
- Two n-qubits quantum registers |ϕ⟩ and |ψ⟩, where |ϕ⟩
is used to hold the fingerprint data, and |ψ⟩ is used to hold
the test sample, n = log(N), N is the number of BSs.
- An ancilla qubit, |a⟩ = |0⟩.
- A quantum register with m qubits, |i⟩, that holds the
index value. m = log(M), where M is the number of
fingerprint samples.
- Number of shots K.
- gt loc[]: the ground truth locations from the fingerprint
data.

Output: The user equipment position.

1: counts[] ← zeros(M ) ▷ Array to count |a⟩ = 0 at each
fingerprint index

2: max count ← 0
3: max index ← 0
4: for k ← 1 to K do

/* Initialization stage */
5: |ψ⟩ ← Apply Oψ(|0⟩⊗n) ▷ UE’s sample initialization
6: |i⟩ ← Apply H(|0⟩⊗m) ▷ Index initialization
7: |ϕ⟩ ← Apply Oϕ(|0⟩⊗n , |i⟩) ▷ Fingerprint initialization

/* Swap Test stage */
8: Apply H(|a⟩)
9: Apply CSWAP(|a⟩ , |ψ⟩ , |ϕ⟩)

10: Apply H(|a⟩)
/* Measurement stage */

11: j ← measure(|i⟩) ▷ j is the measured value of the index
register (|i⟩)

12: if measure(|a⟩) = 0 then
13: counts[j]← counts[j] + 1 ▷ count(a = 0 ∩ i = j)

14: if counts[j] > max count then
15: max count← counts[j]
16: max index← j

17: return gt loc[max index]
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Ancilla

UE’s RSS

Fingerprint

Index

|a⟩ = |0⟩ H H P (a)

|ψ⟩ = |0⟩ Ry(0.905)

|ϕ⟩ = |0⟩ Ry(1.638) Ry(−0.353)

|i⟩ = |0⟩ H P (i)

Initialization Swap Test Measurement

Fig. 6: Example quantum circuit for cosine similarity.

B. Quantum Circuit Implementation

The quantum circuit in Figure 5 contains two oracles. The
first oracle, Oψ , is used to initialize the qubit register with the
UE’s current RSS values as shown in Equation 3. Specifically,
given a classical RSS vector

[
α0 α1 ... αN−1

]
, the goal

of the oracle is to convert the vector
[
0 0 ... 0

]
to[

α0 α1 ... αN−1

]
, i.e., encode the classical RSS vector

into the probability amplitudes of the n-qubits register |ψ⟩.
This amplitude encoding can be done generally using quan-
tum state preparation [37], [38], where rotational gates are
applied to load the required amplitudes into the qubits. Note
that an N -dimensional classical RSS vector can be encoded
in n = log(N)-dimensional quantum register, which is an
exponential saving is space.

As a simple example, a classical 2D RSS vector
[
α
β

]
can

be encoded into a single qubit as α |0⟩ + β |1⟩. This can be
achieved by moving the state of a qubit in state |0⟩ to be
in state |ψ⟩ = α |0⟩ + β |1⟩ by rotating the qubit with angle
θ around the Y-axis, where α = cos θ2 and β = sin θ

2 . This
can be achieved using the Ry(θ) gate for rotation around the
Y-axis of the Bloch sphere [39].

In a similar manner, the oracle Oϕ is not only responsible for
initializing the fingerprint register with the fingerprint data, it
is also responsible for entangling the fingerprint data with the
index so that it becomes in state 1√

M

∑M−1
j=0 |ϕj⟩ |j⟩ as shown

in Equation 5. The goal is to enter all fingerprint locations
to the quantum circuit so that the similarity calculations can
be performed in parallel. To do this we can use quantum
state preparation [37], [38] to prepare the registers with
1√
M

[
α0,0 .. α0,N−1 .. αM−1,N−1

]T
, where M is the

number of fingerprint locations, and N is the number of BSs.
Note also that a fingerprint with data from N BS’s at M
locations can be stored in a quantum registers of size n+m,
where n = log(N) and m = log(M), as compared to the
classical fingerprint size of N ×M .

C. Example

In this section, we give a simple numerical example of
the proposed quantum circuit that is used to get the cosine
similarity between the UE’s RSS sample vector (ψ) and a

fingerprint at two different locations (ϕj , j ∈ {0, 1}, M=2).
Each RSS vector has the RSS from two different BS’s (N=2).
All vectors are unit vectors.

Figure 6 shows the quantum circuit used to obtain the
cosine similarity between the online UE’s RSS sample vector
ψ =

[
0.899 0.437

]
(encoded in a quantum register |ψ⟩),

and each fingerprint vector ϕj at each index j, where ϕ0 =[
0.800 0.599

]
and ϕ1 =

[
0.543 0.839

]
(encoded in a

quantum register |ϕ⟩).
Oracle Oψ is implemented using a rotational gate around

the Y-axis (Ry) to set the UE’s RSS sample register state

to be |ψ⟩ =

[
0.899
0.437

]
. This is done by applying a rotation

with angle θψ = 2 × arctan
(
b
a

)
, where a,b are the required

probability amplitudes of the test sample |ψ⟩, i.e. a = 0.899
and b = 0.437, which results in θψ = 0.905.

Oracle Oϕ is implemented with the same idea as Oracle Oψ ,
but here we are initializing the fingerprint register depending
on the index value. So to initialize the fingerprint register
with the first training sample ϕ0 = [0.800, 0.599], we need
to apply an Ry gate with θϕ0

= 2 × arctan
(
0.599
0.800

)
=

1.285, and to initialize it with the second training sample
ϕ1 = [0.543, 0.839], we need to apply another Ry gate
with θϕ1

= 2 × arctan
(
0.839
0.543

)
= 1.992. One way to do

that is by finding the difference between the two rotations
diff = (θϕ0 − θϕ1) and then applying the rotation in two
steps, first we rotate the register with θϕ0

− diff
2 = 1.638;

then if the index register has value 0, we add this difference
again by applying rotation with angle diff

2 = −0.353; and if
it has value 1, we should apply the same rotation but in the
opposite direction to reach the state ⟨ϕ1| = [0.543, 0.839]. We
use CNOT to flip the rotation direction controlled on the index
register as shown in the initialization block in Figure 6.

We ran this circuit with number of shots equals 1024 (K =
1024), and we counted the cases where index register equals
0 (i.e. count(i = 0)) and the cases where it equals 1 (i.e.
count(i = 1)), and for each case we counted the number of
cases where ancilla qubit equals 0 (i.e. count(a = 0∩ i = j)).
We measured count(a = 0 ∩ i = 0) = 502, and count(a =
0 ∩ i = 1) = 436. Since count(a = 0 ∩ i = 0) > count(a =
0 ∩ i = 1), then we can estimate the UE’s location as the
location of ϕ0 stored in the fingerprint.
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Fig. 7: Cellular outdoor testbed area.

V. EVALUATION

In this section, we implement our quantum algorithm in a
real testbed and evaluate its performance side-by-side against
its classical counterpart and the state-of-the-art quantum posi-
tioning algorithms.

We start by describing our testbed. Then, we show the
accuracy using a real IBM quantum machine in a small
testbed followed by a larger scale experiment on the IBM
quantum simulator. After that, we quantify the theoretical
space and time complexity of the proposed algorithm. Finally,
we present experiments to evaluate different practical aspects
of the algorithm.

We end the section with a discussion of the different aspects
of the algorithm.

A. Testbed Setup

We use a real cellular testbed in an 0.2Km2 urban area
(Figure 7). The area is covered by 21 different cell-towers
(N = 21).

In the offline phase, we use different Android devices to
collect the fingerprint data at 44 different locations uniformly
distributed over the area of interest. Each device has a data
collector software that collects GPS ground-truth locations, the
base stations received signal strengths (RSS), and timestamps.
We also collect an independent dataset of another 44 samples
to use as the online phase samples. In the online phase, the
user’s sample is sent to a quantum computer along with the
fingerprint samples where the quantum circuit is run for K
times. Then we retrieve the results and calculate the fingerprint
index with the maximum similarity to the user’s sample and
return the location of this fingerprint sample as the estimated
user location.

B. Accuracy Evaluation

We evaluate the performance of our algorithm on a real
5-qubits quantum IBM machine as well as the IBM quantum
machine simulator. For the real quantum machine, we used the
ibmq manila machine with 5 qubits. Given the limited number
of available qubits, we can only process a small testbed with
two base stations (N = 2) and four fingerprint locations
(M = 4): one qubit for the ancilla, one qubit for encoding the
RSS from two base stations for the unknown testing location,
three qubits for encoding the four fingerprint locations with

their indices. To do that, we selected the two base stations
that are most commonly heard in the testbed area as well as
four fingerprint locations uniformly spread over the area. For
simulation, we use the IBM Quantum Machine Simulator with
the total testbed samples.

Figure 8 shows a comparison between the positioning
error distribution of our proposed quantum algorithm which
runs in o(log(MN)) implemented on ibmq manila real ma-
chine and simulator, the state-of-the-art quantum positioning
algorithms [18]–[22] which runs in o(M log(N)), and the
classical version of the cosine-similarity positioning algorithm
which runs in o(MN). The figure confirms that the proposed
quantum algorithm can achieve the same accuracy as the
classical counterpart and state-of-the-art quantum algorithms.
This comes with the exponential enhancement in space and
time in both N and M compared to the classical version.
Moreover, it comes with the exponential gain in M over the
state-of-the-art quantum algorithms [18]–[22] as we quantify
in Section V-C. The figure further validates that the perfor-
mance obtained from the simulator matches the performance
of the real quantum machine, which we discuss next.

To show the scalability of the algorithm, in the rest of this
section we used the total testbed samples and implemented
it over the IBM quantum machine simulator. Figure 9 shows
the positioning error distribution for our proposed quantum
algorithm, the state-of-the-art quantum positioning [18]–[22],
and the classical algorithm. The figure confirms that our al-
gorithm has the same accuracy as the state-of-the-art quantum
algorithms and the classical version over the larger testbed.

Figure 10 further compares the proposed quantum algorithm
with the state-of-the-art quantum algorithms while increasing
the number of fingerprint locations. The figure shows that, as
expected, the higher the density of the fingerprint locations, the
higher the accuracy will be. The figure also confirms that the
proposed quantum algorithm can achieve the same accuracy
as the o(M log(N)) algorithms while having an exponential
saving in the number of shots (K) needed to run the circuit
as we show in the next section.

Figure 11, shows the median positioning error for the
proposed quantum algorithm with the state-of-the-art algo-
rithms at different numbers of base stations (N ). The figure
highlights that the higher the number of base stations used in
the positioning, the better the accuracy will be. It shows also
that our algorithm gives similar results as the state-of-the-art
at different numbers of base stations but with the exponential
time and space enhancement.

C. Complexity Analysis

In general, the complexity of the fingerprint-based tech-
niques depends on the number of fingerprint locations (M )
and the number of BSs (N ).

The first stage of the proposed algorithm, the Initialization
Stage, uses quantum state preparation techniques to initialize
the quantum registers with the classical user sample and finger-
print data. Efficient state preparation techniques can be used
for state preparation to load the data in logarithmic complexity,
such as Quantum Random Access Memory (QRAM) [38],
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Our quantum
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quantum
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Classical
algorithm
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Fig. 8: Real Quantum IBM machine experiment: positioning
error distributions comparing the proposed algorithm, to quan-
tum simulator, state-of-the-art quantum algorithms [18]–[22],
and the classical algorithm.

Our quantum
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Fig. 9: IBM Quantum Simulator: positioning error distribu-
tions comparison on a larger testbed for the different algo-
rithms.
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[40], [41], where a vector with size N can be loaded in
o(log(N)) [40] in parallel into a qubit register and conditional
rotations are performed to encode the vector data as amplitudes
in the quantum registers. Therefore, loading M fingerprint vec-
tors each with N values will require o(log(MN)) complexity.
Moreover, quantum sensors [42]–[45] are evolving over time
and the proposed algorithm can leverage this development by
taking the data as input directly from quantum sensors, which
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Fig. 11: Median positioning error for different numbers of
base stations (N).
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can make the quantum state preparation step complexity o(1).
The second stage is the quantum similarity matching, which

is done using the Swap Test where two H gates are used on the
ancilla qubit, and log(N) CSWAP gates are used to entangle
the ancilla qubit, with the UE’s RSS register and the fingerprint
register. This leads to o(log(N)) complexity used in this stage.

Finally, to find the fingerprint index with the maximum co-
sine similarity, we run the circuit for K times and observe the
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circuit output to find the fingerprint index with the maximum
count of measuring the ancilla qubit output as zero, i.e. finding
index value j where count(a = 0 ∩ i = j) is maximum.
The index register length is log(M), therefore, measuring the
output of the register has a complexity of o(log(M)). Hence,
the algorithm has an overall complexity of o(log(MN)),
compared to the state-of-the-art quantum algorithms [18]–[22]
that take o(M log(N)).

Note that the proposed quantum algorithm complexity
of o(log(MN)) is more than exponentially better than
the other-state-of-the-art quantum algorithms complexity of
o(M log(N)), as an exponential enhancement would reduce
the complexity to o(log(M) log(N)) only.

Figure 12 shows the difference between the complexity of
the state-of-the-art quantum algorithms (o(M log(N))) [18]–
[22] and our proposed quantum algorithm (o(log(MN))) for
different values of N and M . The figure highlights that there
is a significant better than-exponential gain of the proposed
algorithm compared to the other state-of-the-art quantum al-
gorithm.

Figure 13 shows the number of shots K used for the state-
of-the-art quantum algorithms [18]–[22] and our proposed
algorithm at different number of fingerprint sizes (M ). The
figure highlights that the proposed algorithm can have an
exponential saving in the required number of circuit runs.

D. Practical Considerations

In this section, we evaluate some practical considerations of
the proposed algorithm: the effect of machine noise on accu-
racy and the effect of the number of shots on the complexity.

We use three quantum machines that have 5 physical qubits
each: ibmq manila, ibmq quito, and ibmq lima. Each quan-
tum machine has different characteristics that can affect the
overall accuracy [46]–[48]. To capture all these different char-
acteristics in one metric, the quantum volume (QV) has been
proposed [48], [49], which measures a quantum computer’s
performance taking into account gates’ errors, measurement
errors, quality of the circuit compiler, among others [32]. The
higher the QV is, the less error-prone the machine is. Figure 14
shows that, as expected, the localization accuracy increases
as the quantum volume increases (i.e. the quantum machine’s
noise is lower).

Finally, Figure 15 compares the total number of operations
required for our proposed quantum algorithm and its classical
counterpart, considering number of shots K = 214 = 16384
for the quantum algorithm at different numbers of base stations
(N ). The black circles show the point where the quantum
algorithm has the same number of operations as the classical
version. The figure highlights that the proposed quantum
algorithm can perform much better than the classical algorithm
at high fingerprint data size and high number of base stations,
taking into account the number of shots required in the
quantum algorithm.

E. Discussion

The cosine similarity-based classical positioning algorithm
has a quadratic complexity (o(MN)) in both space and time,
where M is the number of fingerprint locations and N is the
number of BSs in the environment. In contrast, the proposed
quantum positioning algorithm has a sub-linear complexity
(o(log(MN))) in space and time.

Unlike the state-of-the-art quantum algorithms that need
sub-quadratic space and time (o(M log(N))), the proposed
quantum algorithm sub-linear complexity offers an exponential
enhancement in the number of fingerprint locations for both
space and running time.

The exponential improvement in the number of fingerprint
locations (M ) enables us to get more accurate positioning
using larger fingerprint data. On the other hand, the expo-
nential improvement in the number of BSs (N ) enables us to
build a fingerprint with a large-scale of heterogeneous BSs
(e.g. cellular towers, WiFi APs, BLE), which has the potential
of higher positioning accuracy. This can be used for different
scenarios, e.g., where each device can be used as a reference
point for positioning, as in intelligent transportation systems,
connected and automated vehicles, and industrial internet of
things (IIOT) applications. All of these are potential targets
for 5G/6G high-accuracy low-latency positioning as defined
by 3GPP Release-17 [6].

On the other hand, the storage space required for offline
quantum fingerprint building is reduced exponentially, as the
fingerprint size is reduced from o(MN) to o(log(MN)).
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With the emergence of quantum co-processors (similar to
GPUs) [50], the proposed quantum algorithm can be com-
pletely run on the user equipment, e.g., for privacy issues.
For this, the fingerprint data can be downloaded from a server
to the UE. In such cases, the proposed quantum algorithm
saves both the storage space required on the UE as well as
the required download bandwidth.

We show experimental results for the algorithm implementa-
tion on a real quantum machine with 5 qubits. However, more
advanced quantum machines are available with a higher num-
ber of qubits reaching up to 433 qubits as in the ibm seattle
machine [51] (though not freely accessible). Given that the
algorithm circuit needs 1 + log(M) + 2 log(N) qubits, this
machine can accommodate a very large number of fingerprint
samples and base stations. The quantum machines have dif-
ferent error characteristics due to different sources of noise
such as the quantum decoherence, gates errors and readout
error [46]–[48], and all need to be taken into consideration.
However, The development of quantum computers is growing
fast, allowing quantum algorithms to be more practical and
feasible in the foreseeable future [52]. Furthermore, our results
show that the number of shots K affects the overall positioning
accuracy. Although the number of shots K is considered
constant in the theoretical analysis, it should be taken into
account in practical consideration since the required number
of shots may be high.

VI. CONCLUSION

In this paper, we have presented a cosine similarity-based
quantum algorithm for enabling large-scale worldwide posi-
tioning. Unlike the classical techniques, which need o(MN)
time and space, the proposed quantum algorithm requires
o(log(MN)) time and space for a fingerprint with M locations
and N BSs. We implemented the proposed algorithm on a real
IBM quantum machine as well as a simulator and evaluated
it in a real cellular outdoor testbed. We also compared the
proposed algorithm with the state-of-the-art quantum algo-
rithms for positioning, showed how the algorithm accuracy
changes across different quantum machines with different
noise profiles, quantified its complexity, and discussed its
practicality. The proposed quantum algorithm can provide an
exponential saving in both the number of fingerprint locations
and the number of BSs, taking positioning systems a step
toward a more accurate and ubiquitous positioning that can
work on a worldwide scale and meet the requirements of the
next generation 5G, 6G, and beyond.

Currently, we are working on multiple research directions
for positioning systems using quantum computing including
exploring different quantum similarity metrics, using quantum
computing techniques for floor detection, among others.

APPENDIX A
DERIVATIONS OF EQUATION 10 AND 11

A. Derivation of Equation 10

Before measuring the ancilla qubit and index register in
circuit shown in Figure 5, the state of the quantum system is:

|γ4⟩ =
1

2
√
M

M−1∑
j=0

(|0⟩ [|ψ⟩ |ϕj⟩+ |ϕj⟩ |ψ⟩]

+ |1⟩ [|ψ⟩ |ϕj⟩ − |ϕj⟩ |ψ⟩]) |j⟩

which can be rewritten for simplicity as:

|γ4⟩ =
1

2
√
M

M−1∑
j=0

|ζj⟩ |j⟩

where |ζj⟩ = |0⟩ [|ψ⟩ |ϕj⟩ + |ϕj⟩ |ψ⟩] + |1⟩ [|ψ⟩ |ϕj⟩ −
|ϕj⟩ |ψ⟩] = |0ψϕj⟩+ |0ϕjψ⟩+ |1ψϕj⟩ − |1ϕjψ⟩.

After measuring index register, the quantum system moves
to the normalized state:

1
∥ζj∥ |ζj⟩, where ∥ζj∥ is the euclidean norm of |ζj⟩. The

value of ∥ζj∥ is calculated as follows:

∥ζj∥2 = ⟨ζj |ζj⟩
= ⟨0ψϕj |0ψϕj⟩+ ⟨0ψϕj |0ϕjψ⟩+ ⟨0ψϕj |1ψϕj⟩ − ⟨0ψϕj |1ϕjψ⟩
+ ⟨0ϕjψ|0ψϕj⟩+ ⟨0ϕjψ|0ϕjψ⟩+ ⟨0ϕjψ|1ψϕj⟩ − ⟨0ϕjψ|1ϕjψ⟩
+ ⟨1ψϕj |0ψϕj⟩+ ⟨1ψϕj |0ϕjψ⟩+ ⟨1ψϕj |1ψϕj⟩ − ⟨1ψϕj |1ϕjψ⟩
− ⟨1ϕjψ|0ψϕj⟩ − ⟨1ϕjψ|0ϕjψ⟩ − ⟨1ϕjψ|1ψϕj⟩+ ⟨1ϕjψ|1ϕjψ⟩

And since the dot product of normalized vector by itself equals
1, and the dot product of orthogonal vectors |0⟩ and |1⟩ equals
0, we can say that:

∥ζj∥2

= 1 + ⟨0ψϕj |0ϕjψ⟩+ 0− 0 + ⟨0ϕjψ|0ψϕj⟩+ 1 + 0− 0

+0 + 0 + 1− ⟨1ψϕj |1ϕjψ⟩ − 0− 0− ⟨1ϕjψ|1ψϕj⟩+ 1

And it can be proved mathematically that ⟨0ψϕj |0ϕjψ⟩ =
⟨0ϕjψ|0ψϕj⟩ = ⟨1ψϕj |1ϕjψ⟩ = ⟨1ϕjψ|1ψϕj⟩, hence we get
∥ζj∥ = 2. Now we can write the quantum system state after
measuring index register as in Equation 10:

1

2
|ζj⟩ =

1

2
(|0⟩ [|ψ⟩ |ϕj⟩+ |ϕj⟩ |ψ⟩] + |1⟩ [|ψ⟩ |ϕj⟩− |ϕj⟩ |ψ⟩])

B. Derivation of Equation 11

To find the conditional probability p(a = 0|i = j) we need
to find the probability that the ancilla qubit equals zero. For
simplicity, we can write the state obtained in Equation 10 as:

1

2
(|0⟩ [|ψ⟩ |ϕj⟩+ |ϕj⟩ |ψ⟩] + |1⟩ [|ψ⟩ |ϕj⟩ − |ϕj⟩ |ψ⟩])

=
1

2
(∥η0∥ |0⟩

|η0⟩
∥η0∥

+ ∥η1∥ |1⟩
|η1⟩
∥η1∥

)

where |η0⟩ = [|ψ⟩ |ϕj⟩+ |ϕj⟩ |ψ⟩] and |η1⟩
= [|ψ⟩ |ϕj⟩ − |ϕj⟩ |ψ⟩], and ∥ηi∥ is the euclidean norm of
|ηi⟩. The probability that the ancilla qubit is in state |0⟩ equals
p(a = 0|i = j) =

(∥η0∥
2

)2
. Note that this is after measuring

index register (conditional probability).
The value of ∥η0∥ is found as follows:
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∥η0∥2 = ⟨η0|η0⟩
= ⟨ψϕj |ψϕj⟩+ ⟨ψϕj |ϕjψ⟩+ ⟨ϕjψ|ψϕj⟩+ ⟨ϕjψ|ϕjψ⟩

= 2 + 2 ⟨ψϕj |ϕjψ⟩ = 2 + 2
∣∣ ⟨ψ|ϕj⟩ ∣∣2

So the probability of a = 0 given that i = j is (as shown
in Equation 11):

p(a = 0|i = j) = (
∥η0∥
2

)2 =
∥η0∥2

4

=
1

4
(2 + 2

∣∣ ⟨ψ|ϕj⟩ ∣∣2) = 1

2
+

1

2

∣∣ ⟨ψ|ϕj⟩ ∣∣2
APPENDIX B

PROOF THAT cos(ψ, ϕj) ∝ COUNT(a = 0 ∩ i = j)

Since the cosine similarity is directly proportional to p(a =
0|i = j) (from Equation 12). And since p(a = 0|i = j) =
count(a=0∩i=j)

count(i=j) (from Equation 13), then we can say that the
cosine similarity is directly proportional to count(a = 0∩ i =
j) if count(i = j) is equal for all j ∈ {0, ..,M − 1}.

To prove that count(i = j) is equal for all j ∈ {0, ..,M−1},
we start from Equation 9, where the quantum system is in the
state:

|γ4⟩ =
1

2
√
M

M−1∑
j=0

|ζj⟩ |j⟩

where |ζj⟩ = |0⟩ [|ψ⟩ |ϕj⟩ + |ϕj⟩ |ψ⟩] + |1⟩ [|ψ⟩ |ϕj⟩ −
|ϕj⟩ |ψ⟩] = |0ψϕj⟩+ |0ϕjψ⟩+ |1ψϕj⟩ − |1ϕjψ⟩.

As shown in Appendix A, the euclidean norm of |ζj⟩ is
∥ζj∥ = 2. Therefore, the system is in the normalized state:

|γ4⟩ =
1√
M

M−1∑
j=0

(
1

2
|ζj⟩) |j⟩

which means that the probability of measuring the index
register is p(i = j) = 1

M for all values of j ∈ {0, ..,M − 1},
i.e. count(i = j) is equal for all j ∈ {0, ..,M − 1},
which proves that cos(ψ, ϕj) ∝ count(a = 0 ∩ i = j), i.e.
argmaxj(cos(ψ, ϕj)) = argmaxj(count(a = 0 ∩ i = j)).
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