
13 | DIVIDING

POLYNOMIALS

Figure 13.1 Lincoln Memorial, Washington, D.C. (credit:
Ron Cogswell, Flickr)

The exterior of the Lincoln Memorial in Washington, D.C., is a large rectangular solid with length 61.5 meters (m), width
40 m, and height 30 m.[1] We can easily find the volume using elementary geometry.

V = l ⋅ w ⋅ h
  = 61.5 ⋅ 40 ⋅ 30
  = 73,800

So the volume is 73,800 cubic meters  (m ³ ).  Suppose we knew the volume, length, and width. We could divide to find the

height.

h = V
l ⋅ w

  = 73, 800
61.5 ⋅ 40

  = 30

As we can confirm from the dimensions above, the height is 30 m. We can use similar methods to find any of the missing
dimensions. We can also use the same method if any or all of the measurements contain variable expressions. For example,

suppose the volume of a rectangular solid is given by the polynomial  3x4 − 3x3 − 33x2 + 54x.  The length of the solid is

given by  3x;   the width is given by  x − 2.  To find the height of the solid, we can use polynomial division, which is the

focus of this section.

13.1 | Using Long Division to Divide Polynomials
We are familiar with the long division algorithm for ordinary arithmetic. We begin by dividing into the digits of the dividend
that have the greatest place value. We divide, multiply, subtract, include the digit in the next place value position, and repeat.
For example, let’s divide 178 by 3 using long division.

1. National Park Service. "Lincoln Memorial Building Statistics." http://www.nps.gov/linc/historyculture/lincoln-
memorial-building-statistics.htm. Accessed 4/3/2014
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Another way to look at the solution is as a sum of parts. This should look familiar, since it is the same method used to check
division in elementary arithmetic.

dividend = (divisor ⋅  quotient) + remainder
              178 = (3 ⋅ 59) + 1
                        = 177 + 1
                        = 178

We call this the Division Algorithm and will discuss it more formally after looking at an example.

Division of polynomials that contain more than one term has similarities to long division of whole numbers. We can write
a polynomial dividend as the product of the divisor and the quotient added to the remainder. The terms of the polynomial
division correspond to the digits (and place values) of the whole number division. This method allows us to divide two

polynomials. For example, if we were to divide  2x3 − 3x2 + 4x + 5  by  x + 2  using the long division algorithm, it would

look like this:

We have found

2x3 − 3x2 + 4x + 5
x + 2 = 2x2 − 7x + 18 − 31

x + 2

or

2x3 − 3x2 + 4x + 5
x + 2 = (x + 2)(2x2 − 7x + 18) − 31

We can identify the dividend, the divisor, the quotient, and the remainder.

292 Chapter 13 | Dividing Polynomials*

This OpenStax book is available for free at https://legacy.cnx.org/content/col26293/1.1



Writing the result in this manner illustrates the Division Algorithm.

The Division Algorithm

The Division Algorithm states that, given a polynomial dividend   f (x)  and a non-zero polynomial divisor  d(x) 
where the degree of  d(x)  is less than or equal to the degree of   f (x),   there exist unique polynomials  q(x)  and  r(x) 
such that

(13.1)f (x) = d(x)q(x) + r(x)

q(x)  is the quotient and  r(x)  is the remainder. The remainder is either equal to zero or has degree strictly less than

 d(x). 

If  r(x) = 0,   then  d(x)  divides evenly into   f (x).  This means that, in this case, both  d(x)  and  q(x)  are factors of

  f (x). 

Given a polynomial and a binomial, use long division to divide the polynomial by the binomial.
1. Set up the division problem.

2. Determine the first term of the quotient by dividing the leading term of the dividend by the leading term
of the divisor.

3. Multiply the answer by the divisor and write it below the like terms of the dividend.

4. Subtract the bottom binomial from the top binomial.

5. Bring down the next term of the dividend.

6. Repeat steps 2–5 until reaching the last term of the dividend.

7. If the remainder is non-zero, express as a fraction using the divisor as the denominator.

Example 13.1

Using Long Division to Divide a Second-Degree Polynomial

Divide  5x2 + 3x − 2  by  x + 1.

Solution
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The quotient is  5x − 2.  The remainder is 0. We write the result as

5x2 + 3x − 2
x + 1 = 5x − 2

or

5x2 + 3x − 2 = (x + 1)(5x − 2)

Analysis
This division problem had a remainder of 0. This tells us that the dividend is divided evenly by the divisor, and
that the divisor is a factor of the dividend.

Example 13.2

Using Long Division to Divide a Third-Degree Polynomial

Divide  6x3 + 11x2 − 31x + 15  by  3x − 2. 

Solution

There is a remainder of 1. We can express the result as:
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13.1

6x3 + 11x2 − 31x + 15
3x − 2 = 2x2 + 5x − 7 + 1

3x − 2

Analysis
We can check our work by using the Division Algorithm to rewrite the solution. Then multiply.

(3x − 2)(2x2 + 5x − 7) + 1 = 6x3 + 11x2 − 31x + 15

Notice, as we write our result,

• the dividend is  6x3 + 11x2 − 31x + 15 

• the divisor is  3x − 2 

• the quotient is  2x2 + 5x − 7 

• the remainder is  1 

Divide  16x3 − 12x2 + 20x − 3  by  4x + 5. 

13.2 | Using Synthetic Division to Divide Polynomials
As we’ve seen, long division of polynomials can involve many steps and be quite cumbersome. Synthetic division is a
shorthand method of dividing polynomials for the special case of dividing by a linear factor whose leading coefficient is 1.

To illustrate the process, recall the example at the beginning of the section.

Divide  2x3 − 3x2 + 4x + 5  by  x + 2  using the long division algorithm.

The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the variables but, instead, line up their coefficients in columns
under the division sign and also eliminate the partial products, we already have a simpler version of the entire problem.

Synthetic division carries this simplification even a few more steps. Collapse the table by moving each of the rows up to fill
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any vacant spots. Also, instead of dividing by 2, as we would in division of whole numbers, then multiplying and subtracting
the middle product, we change the sign of the “divisor” to –2, multiply and add. The process starts by bringing down the
leading coefficient.

We then multiply it by the “divisor” and add, repeating this process column by column, until there are no entries left. The
bottom row represents the coefficients of the quotient; the last entry of the bottom row is the remainder. In this case, the
quotient is  2x ² – 7x + 18  and the remainder is  –31.  The process will be made more clear in Example 13.3.

Synthetic Division

Synthetic division is a shortcut that can be used when the divisor is a binomial in the form  x − k.  In synthetic

division, only the coefficients are used in the division process.

Given two polynomials, use synthetic division to divide.

1. Write  k  for the divisor.

2. Write the coefficients of the dividend.

3. Bring the lead coefficient down.

4. Multiply the lead coefficient by  k.  Write the product in the next column.

5. Add the terms of the second column.

6. Multiply the result by  k.  Write the product in the next column.

7. Repeat steps 5 and 6 for the remaining columns.

8. Use the bottom numbers to write the quotient. The number in the last column is the remainder and has
degree 0, the next number from the right has degree 1, the next number from the right has degree 2, and so
on.

Example 13.3

Using Synthetic Division to Divide a Second-Degree Polynomial

Use synthetic division to divide  5x2 − 3x − 36  by  x − 3. 

Solution

Begin by setting up the synthetic division. Write  k  and the coefficients.

Bring down the lead coefficient. Multiply the lead coefficient by  k. 

Continue by adding the numbers in the second column. Multiply the resulting number by  k.  Write the result in

the next column. Then add the numbers in the third column.
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The result is  5x + 12.  The remainder is 0. So  x − 3  is a factor of the original polynomial.

Analysis
Just as with long division, we can check our work by multiplying the quotient by the divisor and adding the
remainder.

(x − 3)(5x + 12) + 0 = 5x2 − 3x − 36

Example 13.4

Using Synthetic Division to Divide a Third-Degree Polynomial

Use synthetic division to divide  4x3 + 10x2 − 6x − 20  by  x + 2. 

Solution

The binomial divisor is  x + 2  so  k = − 2.  Add each column, multiply the result by –2, and repeat until the last

column is reached.

The result is  4x2 + 2x − 10.  The remainder is 0. Thus,  x + 2  is a factor of  4x3 + 10x2 − 6x − 20. 

Analysis

The graph of the polynomial function   f (x) = 4x3 + 10x2 − 6x − 20  in Figure 13.2 shows a zero at

 x = k = −2.  This confirms that  x + 2  is a factor of  4x3 + 10x2 − 6x − 20. 
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Figure 13.2

Example 13.5

Using Synthetic Division to Divide a Fourth-Degree Polynomial

Use synthetic division to divide  − 9x4 + 10x3 + 7x2 − 6  by  x − 1. 

Solution

Notice there is no x-term. We will use a zero as the coefficient for that term.
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13.2

The result is  − 9x3 + x2 + 8x + 8 + 2
x − 1.

Use synthetic division to divide  3x4 + 18x3 − 3x + 40  by  x + 7.

13.3 | Using Polynomial Division to Solve Application
Problems
Polynomial division can be used to solve a variety of application problems involving expressions for area and volume. We
looked at an application at the beginning of this section. Now we will solve that problem in the following example.

Example 13.6

Using Polynomial Division in an Application Problem

The volume of a rectangular solid is given by the polynomial  3x4 − 3x3 − 33x2 + 54x.  The length of the solid

is given by  3x  and the width is given by  x − 2.  Find the height of the solid.

Solution

There are a few ways to approach this problem. We need to divide the expression for the volume of the solid by
the expressions for the length and width. Let us create a sketch as in Figure 13.3.

Figure 13.3

We can now write an equation by substituting the known values into the formula for the volume of a rectangular
solid.

                                       V = l ⋅ w ⋅ h
3x4 − 3x3 − 33x2 + 54x = 3x ⋅ (x − 2) ⋅ h

To solve for  h,   first divide both sides by  3x.

3x ⋅ (x − 2) ⋅ h
3x = 3x4 − 3x3 − 33x2 + 54x

3x
 (x − 2)h = x3 − x2 − 11x + 18

Now solve for  h  using synthetic division.

h = x3 − x2 − 11x + 18
x − 2
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13.3

21 −1 −11 18
2 2 −18

   1    1  − 9     0

The quotient is  x2 + x − 9  and the remainder is 0. The height of the solid is  x2 + x − 9.

The area of a rectangle is given by  3x3 + 14x2 − 23x + 6.  The width of the rectangle is given by

 x + 6.  Find an expression for the length of the rectangle.

Access these online resources for additional instruction and practice with polynomial division.

• Dividing a Trinomial by a Binomial Using Long Division (http://openstax.org/l/
dividetribild)

• Dividing a Polynomial by a Binomial Using Long Division (http://openstax.org/l/
dividepolybild)

• Ex 2: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstax.org/l/
dividepolybisd2)

• Ex 4: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstax.org/l/
dividepolybisd4)

13.4 | Key Equations

Division Algorithm f (x) = d(x)q(x) + r(x) where q(x) ≠ 0

Table 13.1

13.5 | Key Concepts
• Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree. See

Example 13.1 and Example 13.2.

• The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the
quotient added to the remainder.

• Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form  x − k.  See

Example 13.3, Example 13.4, and Example 13.5.

• Polynomial division can be used to solve application problems, including area and volume. See Example 13.6.
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13.6 EXERCISES

Verbal

1. If division of a polynomial by a binomial results in a
remainder of zero, what can be conclude?

2. If a polynomial of degree  n  is divided by a binomial of

degree 1, what is the degree of the quotient?

Algebraic
For the following exercises, use long division to divide.
Specify the quotient and the remainder.

3. ⎛⎝x2 + 5x − 1⎞⎠ ÷ (x − 1)

4. ⎛⎝2x2 − 9x − 5⎞⎠ ÷ (x − 5)

5. ⎛⎝3x2 + 23x + 14⎞⎠ ÷ (x + 7)

6. ⎛⎝4x2 − 10x + 6⎞⎠ ÷ (4x + 2)

7. ⎛⎝6x2 − 25x − 25⎞⎠ ÷ (6x + 5)

8. ⎛⎝−x2 − 1⎞⎠ ÷ (x + 1)

9. ⎛⎝2x2 − 3x + 2⎞⎠ ÷ (x + 2)

10. ⎛⎝x3 − 126⎞⎠ ÷ (x − 5)

11. ⎛⎝3x2 − 5x + 4⎞⎠ ÷ (3x + 1)

12. ⎛⎝x3 − 3x2 + 5x − 6⎞⎠ ÷ (x − 2)

13. ⎛⎝2x3 + 3x2 − 4x + 15⎞⎠ ÷ (x + 3)

For the following exercises, use synthetic division to find
the quotient.

14. ⎛⎝3x3 − 2x2 + x − 4⎞⎠ ÷ (x + 3)

15. ⎛⎝2x3 − 6x2 − 7x + 6⎞⎠ ÷ (x − 4)

16. ⎛⎝6x3 − 10x2 − 7x − 15⎞⎠ ÷ (x + 1)

17. ⎛⎝4x3 − 12x2 − 5x − 1⎞⎠ ÷ (2x + 1)

18. ⎛⎝9x3 − 9x2 + 18x + 5⎞⎠ ÷ (3x − 1)

19. ⎛⎝3x3 − 2x2 + x − 4⎞⎠ ÷ (x + 3)

20. ⎛⎝−6x3 + x2 − 4⎞⎠ ÷ (2x − 3)

21. ⎛⎝2x3 + 7x2 − 13x − 3⎞⎠ ÷ (2x − 3)

22. ⎛⎝3x3 − 5x2 + 2x + 3⎞⎠ ÷ (x + 2)

23. ⎛⎝4x3 − 5x2 + 13⎞⎠ ÷ (x + 4)

24. ⎛⎝x3 − 3x + 2⎞⎠ ÷ (x + 2)

25. ⎛⎝x3 − 21x2 + 147x − 343⎞⎠ ÷ (x − 7)

26. ⎛⎝x3 − 15x2 + 75x − 125⎞⎠ ÷ (x − 5)

27. ⎛⎝9x3 − x + 2⎞⎠ ÷ (3x − 1)

28. ⎛⎝6x3 − x2 + 5x + 2⎞⎠ ÷ (3x + 1)

29. ⎛⎝x4 + x3 − 3x2 − 2x + 1⎞⎠ ÷ (x + 1)

30. ⎛⎝x4 − 3x2 + 1⎞⎠ ÷ (x − 1)

31. ⎛⎝x4 + 2x3 − 3x2 + 2x + 6⎞⎠ ÷ (x + 3)

32. ⎛⎝x4 − 10x3 + 37x2 − 60x + 36⎞⎠ ÷ (x − 2)

33. ⎛⎝x4 − 8x3 + 24x2 − 32x + 16⎞⎠ ÷ (x − 2)

34. ⎛⎝x4 + 5x3 − 3x2 − 13x + 10⎞⎠ ÷ (x + 5)

35. ⎛⎝x4 − 12x3 + 54x2 − 108x + 81⎞⎠ ÷ (x − 3)

36. ⎛⎝4x4 − 2x3 − 4x + 2⎞⎠ ÷ (2x − 1)

37. ⎛⎝4x4 + 2x3 − 4x2 + 2x + 2⎞⎠ ÷ (2x + 1)

For the following exercises, use synthetic division to
determine whether the first expression is a factor of the
second. If it is, indicate the factorization.
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38. x − 2,  4x3 − 3x2 − 8x + 4

39. x − 2,  3x4 − 6x3 − 5x + 10

40. x + 3,  − 4x3 + 5x2 + 8

41. x − 2,  4x4 − 15x2 − 4

42. x − 1
2,  2x4 − x3 + 2x − 1

43. x + 1
3,  3x4 + x3 − 3x + 1

Graphical
For the following exercises, use the graph of the third-
degree polynomial and one factor to write the factored form
of the polynomial suggested by the graph. The leading
coefficient is one.

44. Factor is  x2 − x + 3

45. Factor is  (x2 + 2x + 4)

46. Factor is  x2 + 2x + 5

47. Factor is  x2 + x + 1

48. Factor is x2 + 2x + 2

For the following exercises, use synthetic division to find
the quotient and remainder.

49. 4x3 − 33
x − 2

50. 2x3 + 25
x + 3
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51. 3x3 + 2x − 5
x − 1

52. −4x3 − x2 − 12
x + 4

53. x4 − 22
x + 2

Technology
For the following exercises, use a calculator with CAS to
answer the questions.

54. Consider  x
k − 1

x − 1  with  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

55. Consider  x
k + 1

x + 1   for  k = 1,  3,  5. What do you

expect the result to be if  k = 7?

56. Consider  x
4 − k4

x − k   for  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

57. Consider   xk

x + 1  with  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

58. Consider   xk

x − 1  with  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

Extensions
For the following exercises, use synthetic division to
determine the quotient involving a complex number.

59. x + 1
x − i

60. x2 + 1
x − i

61. x + 1
x + i

62. x2 + 1
x + i

63. x3 + 1
x − i

Real-World Applications
For the following exercises, use the given length and area
of a rectangle to express the width algebraically.

64. Length is  x + 5,   area is  2x2 + 9x − 5.

65. Length is  2x +  5,   area is  4x3 + 10x2 + 6x + 15

66. Length is  3x – 4,   area is

 6x4 − 8x3 + 9x2 − 9x − 4

For the following exercises, use the given volume of a box
and its length and width to express the height of the box
algebraically.

67. Volume is  12x3 + 20x2 − 21x − 36,   length is

 2x + 3,  width is  3x − 4.

68. Volume is  18x3 − 21x2 − 40x + 48,   length is

 3x – 4,   width is  3x – 4.

69. Volume is  10x3 + 27x2 + 2x − 24,   length is

 5x – 4,   width is  2x + 3.

70. Volume is  10x3 + 30x2 − 8x − 24,   length is  2,  
width is  x + 3.

For the following exercises, use the given volume and
radius of a cylinder to express the height of the cylinder
algebraically.

71. Volume is  π(25x3 − 65x2 − 29x − 3),   radius is

 5x + 1.

72. Volume is  π(4x3 + 12x2 − 15x − 50),   radius is

 2x + 5.

73. Volume is  π(3x4 + 24x3 + 46x2 − 16x − 32),  
radius is  x + 4.
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