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Abstract Recent science and technology studies in neuro-

science, rehabilitation, and machine learning have focused

attention on the EEG-based brain–computer interface (BCI)

as an exciting field of research. Though the primary goal of

the BCI has been to restore communication in the severely

paralyzed, BCI for speech communication has acquired

recognition in a variety of non-medical fields. These fields

include silent speech communication, cognitive biometrics,

and synthetic telepathy, to name a few. Though potentially a

very sensitive issue on various counts, it is likely to revolu-

tionize the whole system of communication. Considering the

wide range of application, this paper presents innovative

research on BCI for speech communication. Since imagined

speech suffers from quite a few factors, we have chosen to

focus on subvocalized speech for the current work. The

current work is considered to be the first to utilize the sub-

vocal verbalization for EEG-based BCI in speech commu-

nication. The electrical signals generated by the human brain

during subvocalized speech are captured, analyzed, and

interpreted as speech. Further, the processed EEG signals are

used to drive a speech synthesizer, enabling communication

and acoustical feedback for the user. We attempt to

demonstrate and justify that the BCI is capable of providing

good results. The basis of this effort is the presumption that,

whether the speech is overt or covert, it always originates in

the mind. The scalp maps provide evidence that subvocal

speech prediction, from the neurological signals, is achiev-

able. The statistical results obtained from the current study

demonstrate that speech prediction is possible. EEG signals

suffer from the curse of dimensionality due to the intrinsic

biological and electromagnetic complexities. Therefore, in

the current work, the subset selection method, using pairwise

cross-correlation, is proposed to reduce the size of the data

while minimizing loss of information. The prominent vari-

ances obtained from the SSM, based on principal represen-

tative features, were deployed to analyze multiclass EEG

signals. A multiclass support vector machine is used for the

classification of EEG signals of five subvocalized words

extracted from scalp electrodes. Though the current work

identifies many challenges, the promise of this technology is

exhibited.
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Electroencephalography � Subvocalized speech � Speech
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machine

Introduction

The brain–computer interface (BCI) is an evolving tech-

nology that facilitates the communication between the

human brain and any external device without using the

normal output pathways [1]. The BCI is an interface that

translates human brain signals into machine control signals

to be used where no muscular movements is made. The

machine can be a computer, wheelchair, robot, assistive

device, or an alternative communication device. The BCI has

a broad range of applications, in both the medical and non-

medical domains. Using BCI for speech communication is
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one such application; the attempted speech is used to actuate

a speech synthesizer, enabling a person to communicate with

the external world through his brain signals. An electroen-

cephalography (EEG)-based BCI for speech communication

measures the brain electrical activity of an individual during

attempted speech through the scalp electrodes. The brain

signals picked by the electrodes are sent to the computer,

processed, and converted into meaningful words that can be

communicated as aural information. Though the primary

goal of the speech BCI is to act as an alternative communi-

cation device for physically challenged people, it also

extends its applications to non-medical fields such as silent

speech communication, synthetic telepathy, and cognitive

biometrics [2, 3].

A survey of leading-edge literature identifies a gap in

the ability to provide speech communication using brain

signals to produce meaningful words (such a provision

already exists, only for syllables and phonemes). The silent

speech can be produced in three ways: (1) talking by

moving the speech articulators but without producing any

audible sound. The signals are captured mainly by using

EMG sensors placed around the neck and mouth; (2)

speech imagery—imagine the word to be produced; (3)

talking in the mind without moving any speech articulators

and without making any audible sound (Subvocalization).

Although earlier research has demonstrated that EEG-

based BCI for speech communication is possible with

imagined speech, the lack of lateralization exhibits a sig-

nificant challenge in analyzing the neural signals of

imagined speech [4]. To date, most of the studies on speech

communication are based on invasive approaches. How-

ever, a few researchers have decoded only the phonemes

and syllables, in a noninvasive way, using EEG signals

(shown in Table 4). Therefore, in the current study an

effort is made to develop a BCI designed for speech

communication using the neural activity of the brain

through subvocalized speech. The authors tested the sub-

vocalized speech behavior of the subject, for a selected

number of words, measured by the scalp electrodes. Sub-

vocalization is the mental rehearsal of the word without

making any audible sound and without moving any speech

articulators. Subvocalization refers to the subconscious

motor activity that occurs during speech without the pres-

ence of a sound wave. Neuroscience studies have shown

that the subvocalization of speech plays several roles in

auditory imagery. Subvocalization activates motor and

auditory pathways, so during subvocal verbalization,

additional brain pathways are activated. These induce

significantly different activation pattern when compared to

the results of imagined speech or visual imagery.

One of the main techniques for studying subvocalization

is electromyography, which detects minute muscle poten-

tials in speech organs. The procedure records diffuse

muscle activities and hence show only the overall activity

level, but not the exact words or sounds being subvocal-

ized. Identifying the articulatory pattern is not possible

accurately. Hence, in the current work, EEG is used to

acquire the brain signals during subvocal verbalization of

the words. The basis of this effort is the presumption that,

whether the speech is overt or covert, it always originates

in the mind. The human act of talking involves a complex

set of phonatory and articulatory mechanisms. But even

when the acoustic aspects of phonetics are removed, we are

still ‘‘speaking’’ in our head. This introduces brain acti-

vation and changes in the power dynamics of the brain. So,

in the current work, EEG is used to measure changes in

voltage in the brain during subvocalized speech production.

As a preliminary investigation, in this study the subvo-

calized speech behavior of three normal subjects was tested

for later comparison to speech disabled subjects. The

experiment was conducted for a selected number of words

measured from the scalp EEG electrodes. The model used

in developing a BCI for speech communication is pre-

sented in module 2. Limitations of the methods used and

future enhancements are also discussed.

Methods

The architecture used in the BCI speech communication

system is shown in Fig. 1. The data acquisition system

captures the EEG data from the electrodes at specific

locations on the scalp for input to the BCI system. The

preprocessing module involves amplification, analog fil-

tering, A/D conversion, and artifact removal, thereby

improving the signal-to-noise ratio of the EEG signal.

Next, in the feature selection stage the dependent dis-

criminatory features of each subvocalized word are

extracted from the preprocessed signals. These features

form a feature vector, upon which the classification is done.

In the classification stage, feature patterns are identified to

determine the subvocalized words spoken by the user.

Once the classification into such categories is done, the

words are quickly recognized and the speech sounds are

produced by the speech synthesizer.

To accept the electrical activity of the brain from

scalp recordings, the signals must be of sufficient

strength and duration from a considerable number of

trials. The EEG signals are extracted from a large

number of channels due to the brain’s voluminous con-

ductive output, yielding a large dataset and a significant

computational challenge. Selecting relevant features from

such large datasets is a fundamental challenge in EEG-

based BCI. Much of the data extracted from electrodes,

placed in various regions, may be extraneous, irrelevant,

or even ‘‘noise’’ for the classification problem at hand.
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Hence, the objective of this study is to investigate data

reduction and classification methods to minimize the

computational complexity of analyzing the EEG signals.

EEG signals suffer from the curse of dimensionality due

to the intrinsic biological and electromagnetic complex-

ities. In this context, the subset selection method (SSM),

based on a focused set of principal representative fea-

tures (PRF), is used to select data and reduce the

dimensionality. The respective variance contributions,

computed for an optimal number of channels, are con-

sidered as principal features. The prominent variances

obtained from the SSM, based on principal features, are

selected for multiclass EEG signal analysis. At this point,

a multiclass support vector machine (SVM) is used to

classify the EEG signals for five subvocalized words

extracted from the scalp electrodes.

Data Acquisition Paradigm

The EEG data are recorded using a Neuroscan 64-channel

cap-based EEG device with the standard 10–20 montage

placements. Vertical eye movements were detected using

separate channels, placed above and below the subject’s

right eye. Horizontal eye movements were recorded by

different electrodes put on either side of the eyes (temple

region—temporal). In this study, meaningful words,

catering to the basic needs of a person, are considered.

The EEG data are extracted during subvocalization of the

word, i.e., when the subject talks silently in his mind

without any overt physical manifestation of speech. The

data acquisition paradigm is shown in Fig. 2. The exper-

iment involved three volunteer participants referred to as

subject1 through subject3. The five words selected are

‘‘water,’’ ‘‘help,’’ ‘‘thanks,’’ ‘‘food,’’ and ‘‘stop’’—referred

as word1, word2, word3, word4, and word5, respectively,

in subsequent modules. Subject1 had been trained in the

BCI experiments of subvocalized speech; the other sub-

jects had never participated before in BCI experiments.

All volunteer subjects were right-handed male students

between the ages of 20 and 25. All subjects are otherwise

normal and underwent the EEG process without any

neurological antecedents.

While the participant subvocalized the word in his mind,

the brain electrical activity was recorded by the EEG sys-

tem. The experimental paradigm was presented with

E-Prime 2.0 software. In each trial, a word is presented on

the computer screen at time zero. The display of word is

followed by three beeps in a particular rhythm. After the

third beep, the participant has to subvocalize the word in

his mind five times in the same rhythm as the beeps.

During this period, no audio stimulus is presented.

Approximately 2 s after the last beep, the subject starts to

subvocalize the word shown on the monitor at the given

rhythm. The participant is instructed to avoid blinking or

move any muscles and to concentrate on the word shown.

Each trial has five instances of a particular word, and the

duration of a single trial was 17 s followed by a short

break. Then the next word would be displayed for the

subject to subvocalize. The time interval for rest between

each trial was randomized between 8 and 10 s, to prevent

the subjects from getting used to the length of the rest

period. A single experimental session was comprised of the

EEG acquisition for 25 trials of each word. The data were

recorded over two separate sessions with varying word

order contributing to a total of 50 trials of each word (total

number of trials = 50 trials 9 5 words). Each trial has five

instances of subvocalized word. The EEG was recorded in

a controlled environment. The EEG data were recorded in a

EEG signals
Discrimination 

of words

Feature
Vector

Noise 
free data

Feature 
Selection

Pre processing Feature 
Classification

Speech 
synthesizer

Data acquisition system

Participant

Stimulus 
presentation

Verbal 
output

Fig. 1 Functional model of the

EEG-based BCI system
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continuous mode with Neuroscan Synamps 2 amplifiers at

a sampling rate of 1000 Hz.

Preprocessing

The EEG data were analyzed off-line using Neuroscan’s

SCAN 4.5 software. The signals are filtered between 0.5

and 40 Hz using a band-pass filter and down-sampled to

250 Hz. The eyeblink artifact reduction was done in all of

our experiments. The vertical and horizontal ocular arti-

facts were reduced using the independent component

analysis-based blink artifact reduction algorithm imple-

mented in SCAN 4.5. All blink activities were reduced

from the continuous signal. Artifacts other than eye blinks

were not removed. After the removal of artifacts, the sig-

nals are epoched and averaged.

For each trial, the signal was extracted with reference to

the stimulus onset and offset markers on the continuous

file. Each trial has five instances of a word (called epochs),

each epoch with approximately 2-s duration. The epochs

are extracted and averaged over each trial leaving only that

activity that is consistently associated with the stimulus in a

time-locked manner. All the spontaneous EEG signal that

is random about the stimuli onset is averaged out, leaving

only the event-related potentials. Finally, there are 50

epochs of averaged EEG signal of each word, forming a

total of 250 epochs per subject (50 epochs/word 9 5

words).

Feature Selection

Feature selection is a kind of dimensionality reduction that

efficiently identifies and generates discriminatory features

among different classes of data as a trampled feature vec-

tor. In the current work, EEG is measured from 64 channels

with a 2-s epoch for each word, contributing to a huge

amount of data. Hence, the need for dimension reduction is

crucial in EEG data analysis. Due to volume conduction of

the brain signals, the electric potential observed at the scalp

becomes more widespread. Hence, the channels are highly

correlated. Prominent signals are measured by scalp elec-

trodes located above the active cerebral area involved in

the mental processing. So, in multi-channel EEG data,

groups of channels are interrelated. The reason for this

multipronged data analysis is that more than one channel

might be measuring the same EEG potential evoked by the

mental processing. However, to avoid the redundancy of

information, a group of channels can be replaced with a

new single variable/channel. In our work, the representa-

tive feature SSM, using pairwise cross-correlation among

the features, is used to reduce the size of the dataset with

minimal loss of information. The desired outcome from the

SSM, based on principal representative features (PRF), is

to project the feature space onto a smaller subspace that

represents the data with significant discrimination. This

exercise facilitates analysis, as explained in the subsequent

discussion.

2 Sec2 Sec2 Sec2 Sec2 Sec2 Sec2 Sec

17 Seconds

2 Sec

Subject BeepBeepBeep

FoodFoodFoodFoodFood

Stimulus 
onset

Stimulus 
offset

Fig. 2 Data acquisition paradigm includes the experiment design to capture brain signal behavior during subvocalized speech. The diagram

shows capturing one trial of a particular word
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The subset method generates a new set of variables, called

PRF. Each PRF is a linear combination of the original vari-

ables. All the PRFs are orthogonal to each other, so there is no

redundant information. This relationship is ascertained by a

simple pairwise cross-correlation coefficient computation.

The PRFs as a whole form an orthogonal basis for the space of

the data. The coefficients are calculated so that the first PRF

defines the maximum variance. The second PRF is calculated

to have the second highest variance and, importantly, is

uncorrelated with the first PRF. Subsequent PRFs exhibit

decreasing contribution of variance and are uncorrelated with

all other PRFs. The full set of PRFs is as large as the original

set of variables. However, it is common that the cumulative

sum of the variances of the first few PRFs exceeds 80 % of the

total variance of the original data as observed in our experi-

mental procedure. Only the first few variances can be con-

sidered; the remaining is discarded, thus reducing the

dimensionality of the data. The output generated by the SSM

based on principal features is described in Algorithm (1).

The algorithm is explained in detail as follows. Let X 2
Rm�N denote the original matrix, where m and N represent

the number of channels and number of samples per chan-

nel, respectively. Let Y 2 Rm�N denote the transformed

matrix derived from a linear transformation P on X. The

sample mean M, of each channel, given by M ¼ 1
N

PN
i¼1 Xi,

is subtracted from every measurement of each channel. For

m channels, the covariance matrix C is computed, which is

an m 9 m square symmetrical matrix. The elements of C

are defined as:

cik ¼ cki ¼
1

N � 1

XN

t¼1

Xit �Mið Þ Xkt �Mkð Þ ð1Þ

where X is the dataset with N samples and Mi denotes the

mean of channel i. The entry Cik in C for i = k is called the

covariance of Xi and Xk. C is positive definite [5] since it is

of the form XXT.

The SSM based on principal features finds an

orthonormal m 9 m matrix P that transforms X into Y such

that X = PY.

x1
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ð2Þ

Each row in P is a set of new basis vectors for expressing

the columns of X. The new variables y1, y2, …, ym are

uncorrelated and are arranged in decreasing order. Each

observation of xi is transformed to yi, by rotation and

scaling, to align a basis with the axis of maximum variance,

such that xi = Pyi. The xi is rendered into m new uncor-

related variables yi. Obtaining the principal feature axes

involves computing the eigenanalysis of the covariance

matrix C. The eigenvalue ki is found by solving the char-

acteristic equation, C� kIj j ¼ 0. The eigenvalue denotes

the amount of variability captured along that dimension.

The eigenvectors are the columns of matrix P such that

C ¼ PDPT; where D ¼

k1 0 0 0

0 k2 0 0

0 0 . .
.

0

0 0 0 km

2

6
6
6
4

3

7
7
7
5

ð3Þ

The vectors u1, u2, …, um are the unit vectors corre-

sponding to the columns of the orthogonal matrix P. The

unit vectors u1, u2, …, um are called the PRF vectors. They

are derived in decreasing order of importance. The first

PRF u1 determines the new variable y1 as shown in Eq. (4).

Thus, y1 is a linear combination of the original variables x1,
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x2, …, xm where a1, a2, …, am are the entries in PRF vector

u1. Similarly, u2 determines the variable y2 and so on.

y1 ¼ a1x1 þ a2x2 þ � � � þ amxm ð4Þ

Hence, the SSM based on principal features generates a

subset of features endowed with large representative vari-

ances, thus embodying impressive structure, while the

features with lower variances represent noise and are

omitted from the feature space.

Figure 3 shows the variance of the covariance matrix,

computed using the SSM based on principal features. The

cumulative variance (CV) illustrates that the first four

variances explain 99 % of the total variance. The remain-

ing components contribute less than 1 % each. Therefore,

the first four components are chosen to form the feature

vector, and the remaining variances are discarded. A scree

plot helps to select the specific number of variance. The

number of variances to choose depends on the ‘‘elbow’’

point. After the elbow point, the remaining variance values

are relatively small and are all about the same size, and

hence, can be discarded.

The first two PRFs are typically responsible for the bulk of

the variance. They display most of the variance in the data

and give the direction of the maximum spread of the data.

The first PRF gives the direction of the maximum spread of

the data. The second gives the direction of the maximum

spread, perpendicular to the first direction. The loading plot

in Fig. 4a reveals the relationships between variables/chan-

nels in the space of the first two PRFs. An intense loading for

PRF-1 is observed in channels FPZ, F2, CP6, and FZ. Sim-

ilarly, an intense loading for PRF-2 is found in electrode

channels PO4 and FC2. A three-dimensional loading plot of

PRF-1, PRF-2, and PRF-3 is shown in Fig. 4b.

In Table 1, a significant difference in the values is

observed for FPZ, FZ, F2, and CP6 of PRF-1. Also, note

that the majority of the variance in the dataset is along the

aforementioned channels. So, the information from these

channels alone is just sufficient to infer the result.

Fig. 3 Variance, relative variance (RV), and cumulative variance

(CV) for word1 (first ten values), and the corresponding scree plot is

shown

Fig. 4 a Two-dimensional PRFs plot and b three-dimensional PRFs plot reveal the relationship between variables in different subspaces

Table 1 Coefficients of the first four PRFs

Channels Coefficients

of PRF-1

Coefficients

of PRF-2

Coefficients

of PRF-3

Coefficients

of PRF-4

FP1 0.0022 0.0616 0.0317 0.0801

FPZ 0.6193 20.3484 20.4277 0.1128

FP2 0.0016 0.0775 0.0188 0.0778

AF3 0.0018 0.0563 0.0327 0.0806

AF4 0.0016 0.0603 0.0200 0.0737

F7 0.0008 0.0324 0.0163 0.0588

F5 0.0028 0.0494 0.0314 0.0547

F3 0.0038 0.0509 0.0569 0.0717

F1 0.0026 0.0563 0.0405 0.0818

FZ 0.5202 0.5275 0.4171 0.4084

F2 0.5587 20.1185 20.0903 20.2703

CP6 0.1829 0.0911 0.4793 20.7529

PO4 0.0151 20.7200 0.6110 0.2819

FC2 0.0013 0.0434 0.0254 0.0710

The channels from the frontal region and the channels with prominent

variance selected from the PRF matrix are shown
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Therefore, the information from the remaining channels

can be discarded, thus reducing the computational burden

on the system. The PRF-1 expressed as a linear combi-

nation of the original variables is shown in Eq. (5).

PRF1 ¼ 0:0022 � FP1 þ 0:6192 � FPZ þ 0:0016 � FP2

þ 0:0018 � AF3 þ 0:0016 � AF4 þ 0:0008 � F7

þ 0:0028 � F5 þ � � � ð5Þ

The current study shows significant differences in the

variance across different words (given in Table 2). These

variances correspond to the EEG change due to a particular

component of mental rehearsal of different words. These

features from the training set and the testing set were fed to

the classifier, in the form of feature vectors, for classifi-

cation of the test data.

Feature Classification

An SVM is a supervised learning model that classifies the

data by finding the best hyperplane [6] that separates all

data points of one class from those of the other class. The

best hyperplane for an SVM is the one with the maximum

margin between the two classes. Margin is the width of the

slab parallel to the hyperplane that has no interior data

points. Given the features of the data, the support vector

machine is first trained to compute a model to distinguish

the data from two classes. The trained model is then used to

classify the new incoming data. The details are given in

Algorithm (2).

For a specified set of training data (xi, yi), where i = 1,

…, N, and xi [ Rd and yi [ {?1, -1} (representing two

different classes of the subvocalized word), train a classi-

fier f(x) such that:

f ðxiÞ
� 0

\0

yi ¼ þ1

yi ¼ �1

�

ð6Þ

The linear classifier is of the form f(xi) = wTxi ? b (dot

product) where w is the normal to the hyperplane, known

as weight vector, and b is the bias. For a linear classifier,

the w is learned from the training data and is needed for

classifying the new incoming data. The support vectors are

the data points xi on the boundary, for which yif(xi) = 1.

The optimal hyperplane can be represented as |wTxi ? -

b| = 1. The distance between a support vector xi and the

Augment Hum Res (2016) 1:3 Page 7 of 14 3
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hyperplane can be written as shown in Eq. (7). For a

canonical hyperplane, the numerator is equal to one.

Therefore, the distance from the hyperplane to the support

vectors is 1
Wj jj j

Distance ¼ wTxi þ bj j
wj jj j ¼ 1

wj jj j ð7Þ

The margin M is twice the distance from the hyperplane to

the support vectors. Therefore, M ¼ 2= wj jj j. To find the

best separating hyperplane, estimate w and b that maxi-

mize the margin 2= wj jj j, such that for yi = ? 1, wTxi ?

b C 1 and for yi = -1, wTxi ? b B -1 or equivalently,

minimize 1
2

wj jj j2 subject to the constraint yi(w
Txi ?

b) C 1. Learning an SVM can be formulated as a convex

quadratic optimization problem, subject to linear inequality

constraints for a unique solution. The objective function [7]

of this problem is formulated as:

min
w2Rd JðwÞ ¼ 1

2
wj jj j2

s:t yi w
Txi þ b

� �
� 1

�
; i ¼ 1; 2; . . .;N

ð8Þ

We can express the inequality constraint as Ci(w) =

yi(w
Txi ? b) - 1. The Lagrangian function is used as the

method to find the solution for constrained optimization

problems with one or more equalities. However, when the

function has inequality constraints, we need to extend the

method to Karush–Kuhn–Tucker (KKT) conditions. The

KKT defines the necessary conditions for a local minimum of

constrained optimization. The necessary conditions define the

properties of the gradients of the objective and constraint

functions. According to the KKT dual complementarity

condition—aiCi(x) = 0, the objective function of Eq. (8) can

be expressed by a Lagrangian function as shown in Eq. (9).

min L w; b; aið Þ ¼ 1

2
wj jj j2�

Xd

i¼1

ai yi w
Txi þ b

� �
� 1

� �

s:t ai � 0; i ¼ 1; 2; . . .;N ð9Þ

The scalar quantity ai is the Lagrange multiplier for the

corresponding data point xi. The optimal condition for the

Lagrange function is at some point w when no first-order

feasible descent direction exists (saddle point). At this

point w, there exists a scalar ai such that

oL

ow
¼ 0 ) w ¼

Xd

i¼1

aiyixi ð10Þ

and

oL

ob
¼ 0 )

Xd

i¼1

aiyi ¼ 0 ð11Þ

If we exploit the definition of w from Eq. (10) and

substitute it in the Lagrangian Eq. (9), then simplify, we get

L w; b; aið Þ ¼
Xd

i¼1

ai �
1

2

Xd

i;j¼1

aiajyiyjx
T
i xj � b

Xd

i¼1

aiyi ð12Þ

However, from Eq. (11) the last term in Eq. (12) must be

zero. Positioning the constraints ai C 0 and the constraint

given in Eq. (11), we obtain the dual optimization problem

shown in Eq. (13).

max WðaÞ ¼
Xd

i¼1

ai �
1

2

Xd

i;j¼1

aiajyiyjx
T
i xj

s:t
Xd

i¼1

aiyi ¼ 0 and ai � 0 8i
ð13Þ

The optimal value of a, substituted in Eq. (10), gives the

optimal value of w in terms of a. There exists a Lagrange

multiplier ai for every training data point xi. Suppose we

have fit our model’s parameters to a training set, and now

wish to make a prediction at a new input point, x. We

would then calculate the linear discriminate function

g(x) = wTx ? b and predict y = 1 if and only if this

quantity is greater than zero. Using Eq. (10), the discrim-

ination function can be written as:

wTxþ b ¼
Xd

i¼1

aiyixi

 !T

xþ b

wTxþ b ¼
Xd

i¼1

aiyi xi; xh i þ b

ð14Þ

The prediction of the class labels from the Eq. (14)

depends on the inner product between the input point x and

the support vectors xi of the training set. In the solution, the

points that have ai[ 0 are called the support vectors.

Table 2 Range

(mean ± standard deviation) of

the first four features (variances)

across 50 trials of EEG signals

for the five subvocalized words

Features Words

Word1 Word2 Word3 Word4 Word5

Feature 1 232.07 ± 0.20 424.73 ± 0.28 143.12 ± 0.20 807.84 ± 0.09 322.01 ± 0.34

Feature 2 15.38 ± 0.23 20.00 ± 0.16 17.12 ± 0.29 28.44 ± 0.11 14.56 ± 0.29

Feature 3 8.05 ± 0.34 10.66 ± 0.24 8.89 ± 0.17 9.96 ± 0.25 9.02 ± 0.24

Feature 4 5.33 ± 0.18 5.70 ± 0.30 5.14 ± 0.17 5.72 ± 0.36 4.89 ± 0.14

A major difference in the variance across each word facilitated classifying the word appropriately
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In general, if the problem does not have a simple

hyperplane as a separating criterion, we need nonlinear

separators. A nonlinear classifier can be created by

applying the kernel trick. A kernel function maps the data

points onto a higher-dimensional space, hoping to improve

the separateness of data. The kernel function is expressed

as a dot product in an infinite dimensional feature space.

Therefore, the dot product between the input point x and

the support vectors xi in Eq. (14) can be computed by a

kernel function. Using kernels, the discriminate function

g(x) with support vectors xi can be written as:

gðxÞ ¼ wTxþ b ¼
Xd

i¼1

aiyik xi; xð Þ þ b ð15Þ

Using the kernel function, the algorithm can be carried into

a higher-dimensional space without explicitly mapping the

input points into this space. This is highly desirable as

sometimes our higher-dimensional feature space could

even have infinite dimension and, thus, be infeasible to

compute. With the kernel functions, it is possible to operate

in a theoretical feature space of infinite dimension. Some

standard kernel functions include the polynomial function,

the radial basis function, and the Gaussian functions.

In the present work, a one-against-all multiclass SVM,

with the default linear kernel, was constructed to discrim-

inate the five subvocalized words competently. The feature

classification, using the SVM classifier, is described in

Algorithm (2). Linear kernel SVM was used as the data are

found to be linearly separable. The linearity of the data was

verified using the perceptron learning algorithm. The one-

against-all model constructs N (N = 5 in the present work)

binary SVM classifiers, each of which separates one class

from the rest. The jth SVM is trained with the features of

the jth class and labeled as a positive class; all of the others

are labeled as a negative class. The N classes can be lin-

early separated such that the jth hyperplane puts the jth

class on its positive side and the rest of the classes on its

negative side. However, the drawback of this method is

that when the results from the multiple classifiers are

combined into the final decision, the outputs of the decision

functions are directly compared, without considering the

competence of the classifiers [8]. Another drawback of the

SVM is that there is no definite method to select the best

suitable kernel for the problem at hand.

Results and Discussion

A number of experiments were conducted to evaluate the

performance of the designed BCI model in classifying the

EEG signals of subvocalized words. The SSM, based on

principal features, was applied to the preprocessed EEG

signals of five subvocalized words. The dataset had 50

trials of each word, measured for 2 s, from a 64-channel

EEG headset. A total of 250 trials, measured from five

subvocalized words, were used for evaluating the possi-

bility of recognizing the subvocalized word from the EEG

signals. Due to the vast dimension of the dataset, the SSM,

based on principal features, was used to project the data to

reduce the dimension while preserving maximum useful

information. An optimal number of coefficients, con-

tributing to 99 % of the variance, were selected as features

for each trial of the EEG signal. The classification per-

formance is evaluated by a multiclass SVM (one-against-

all) using a fivefold classification procedure. The features

selected, using the SSM based on principal features, were

used to build the classifier. To develop a generalized,

robust classifier that performs well when new samples are

input, we choose a fivefold cross-validation data re-sam-

pling technique for training and testing the classifier. In this

procedure, the data are split into five equal-sized subsam-

ples. Four subsamples of the data are used for training the

classifier, and one subsample is used for testing. This

procedure is repeated five times using a randomly picked

different subsample for testing in each case. Based on the

results obtained, the precision, recall, F-measure, and

accuracy are calculated. The average performance over

fivefold is taken as the actual estimate of the classifier’s

performance.

The classifier performance is determined by computing

the precision, recall, F-measure, and classification accuracy

drawn from the confusion matrix. The confusion matrix

illustrates the true positive (TP), false negative (FN), false

positive (FP), and true negative (TN) of the classified data.

The metrics are calculated using the following formulae:

Recall ¼ TP=ðTP þ FNÞ ð16Þ
Precision ¼ TP=ðTP þ FPÞ ð17Þ

F-measure ¼ 2ððprecision � recallÞ
=ðprecision þ recallÞÞ

ð18Þ

Accuracy ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ ð19Þ

Table 3 shows the precision, recall, F-measure, and accu-

racy of the model in classifying the data. The recall rep-

resents the ability of the test to retrieve the correct

information. In the present work, a recall of 0.6 was

achieved which means 60 % of the activity was detected

(TP), but 40 % of the activity was undetected (FN). Pre-

cision identifies the percentage of the selected information

that is correct. A precision of 0.5 detected 50 % of the

activity correctly (TP), but the remaining 50 % of the

activity was mistaken as belonging to the same class (FP).

Higher recall indicates that most of the relevant informa-

tion was extracted, and higher precision means that
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substantially more relevant than irrelevant information was

retrieved. The precision and recall are inversely related.

Often it is possible to increase one at the cost of reducing

the other. The feature selection and classifier model used in

data analysis affect the level of recall and precision. The

balanced F-measure is a combined measure that assesses

the precision-recall trade-off. It is the average of the two

parameters and varies between a best value of 1 and a worst

value of 0. In the current work, the F-measure ranged

between 0.27 and 0.75. The classification accuracy varied

between 60 and 92 %, which appreciably is good compared

to the results given in Table 4. The results indicate that

there is a significant potential for the use of subvocalized

speech in EEG-based direct speech communication.

The scalp maps in Fig. 5a show the brain electrical

activity during subvocal verbalization of the words. Note

that the neural activations are significantly prominent in the

frontal lobes during subvocalized speech. Since these

regions are directly responsible for speech production, the

results appear promising. Figure 5b shows the plot of the

scalp maps after using the SSM. The discrete sources of

EEG signals are decomposed to distinguish the co-occur-

rence of brain electrical activity in the spatial domain, and

then the signal components are mapped to a lower-di-

mensional space, retaining the most discriminate features.

The discrimination of the brain signals corresponding to

five subvocalized words is shown in Fig. 5. The plot of

classification accuracy against the increasing number of

features used in the feature vector to discriminate the

subvocalized speech of word1 is displayed in Fig. 6. It is

observed that the classification accuracy increases as the

number of features increases and remains constant after the

fourth value. So in the current work, only four discrimi-

nating features are used to form a feature vector. The

Table 3 Precision, recall, F-measure, and accuracy assessment for

different words with three subjects

Task Recall Precision F-measure Classification

accuracy

Word1 0.60 0.50 0.55 0.80

Word2 0.40 0.40 0.40 0.76

Word3 0.20 0.50 0.28 0.80

Word4 0.60 1.00 0.75 0.92

Word5 0.40 0.20 0.27 0.60

Table 4 Comparison of the results obtained for speech communication using ECoG and EEG signals by different researchers

Neuroimaging

method

Modality Description Authors Recognition rate

Invasive

(implanted

electrodes)

Intracortical

microelectrode

Speech BCI using ECoG. Intended vowel

productions by the user. The decoded

signals from the attempted speech are used

to drive an artificial speech synthesizer

Brumberg et al.

[18–20] and

Guenther et al.

[21, 22]

Maximum rate of 80–90 % accuracy

with a mean accuracy of 70 %

ECoG signals Control a one-dimensional computer cursor

with ECoG features of different overt and

imagined phoneme articulations

Leuthardt et al.

[23–25]

74–100 % in a one-dimensional binary

task and accuracies between 68 % and

91 % from the higher gamma

frequency

ECoG signals To control a visual keyboard through BCI.

Predict the intended target letters

Krusienski and

Shih [26]

Greater than 70 % accuracy with 12 bits

per minute bit rate

ECoG signals Decode elements of speech production using

ECoG

Mugler et al.

[28]

Classified phonemes with up to 36 %

accuracy when classifying all

phonemes and up to 63 % accuracy

for a single phoneme

Noninvasive

(EEG)

Direct

methods

Speech imagery Recognition of words silently spoken for

auditory and visual comprehension

Suppes et al.

[13]

Recognition rates varied between 34

and 97 %

Speech imagery Imaginary speech of the English vowels /a/

and /u/, and a no-action state as control

Da Salla et al.

[14]

Classification accuracies ranged from 68

to 78 %

Speech imagery Subjects imagining two syllables, /ba/ and /

ku/, without speaking or performing any

overt actions

D’Zmura et al.

[15] and

Brigham et al.

[16]

87 % in the beta band

Speech imagery Recognizing unspoken/imagined speech of

five words

Porbadnigk et al.

[27]

Average recognition rate of 45.50 %
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receiver operating characteristic curve (ROC) is drawn to

show the effective discrimination of the proposed SSM

algorithm through the multiclass SVM classifier (Fig. 7).

The ROC curve serves as a measure of performance of the

algorithm by plotting the true positive rate verses the false

positive rate in a unit square. An ROC curve of Fig. 7

reflects that the performance of the proposed BCI model is

better than chance level.

Related Work

Research on synthetic telepathy is being carried out by the

US Army, with the intention to allow its soldiers to com-

municate just by thinking [9]. The aim is to build a

thought-helmet, a device that can read and broadcast the

unspoken speech of soldiers. The goal is to enable soldiers

to communicate silently. Silent speech communication is

one of the most exciting future technologies. Silent speech

communication [10] allows people to communicate with

each other by using a whispering sound or even soundless,

speech. This technology is used by NASA astronauts who

need to communicate despite surrounding noise. Currently,

electromyography (EMG) signals captured by small, but-

ton-sized sensors affixed below the jawbone on either side

of the throat [11] are used to collect the signals. A new

(b) Scalp maps of the sub-vocalized words after applying the SSM

Word 5Word 4

(a) Scalp maps of the sub-vocalized words before applying the SSM

Word 2Word 1 Word 3

Word 5Word 3Word 2Word 1 Word 4

Fig. 5 Scalp topographical presentation of the brain activity,

recorded from 64-electrode EEG, during subvocal verbalization of

the words by subject-1. a The brain activity during subvocal

verbalization of five different words. b The signal components

mapped to a lower-dimensional space using the SSM

Fig. 6 Graph shows the variation in classification accuracy versus

number of features used in the feature vector to discriminate the

subvocalized speech of word1

Fig. 7 ROC curve drawn for the classification of the subvocalized

words using the proposed SSM algorithm
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class of biometrics, based on the cognitive aspects of

human behavior, called cognitive biometrics, presents a

novel approach to user authentication. The brain state of

individuals, used for the authentication mechanism,

increases the robustness and enables cross-validation when

used in combination with traditional biometric methods.

The cognitive biometric cannot be hacked, stolen, or

transferred from one person to another; they are unique for

each individual. The BCI for speech communication is

used as an alternative augmentative communication (AAC)

device for severely disabled people who can communicate

only through computer interfaces that can interpret neuro-

logical signals. For example, people suffering from amy-

otrophic lateral sclerosis (ALS) and locked-in syndrome

(LIS) are the targeted beneficiaries.

In the past decade, several BCI techniques have been

developed to restore communication in patients with varied

and severe paralysis. The indirect communication devices

generally used in these types of communication, such as

the speller device or a virtual keyboard, suffer from slow

selection rate of just one word per minute [12]. This

sometimes limits the user’s fluency and comprehension.

Moreover, these indirect methods fail to improve the

patients’ behavioral abnormalities. Besides, these methods

do not improve the subjects’ psychological condition and

constrain related speech communication. To address the

above-mentioned problems and make BCI speech produc-

tion more natural and fluent, direct methods are being

developed. The direct approach involves capturing the

neural activity of the intended speech through an EEG. The

signals are then processed to predict the speech and syn-

thesize speech production in real-time. Suppes et al. [13]

used electrical and magnetic brain waves for recognition of

words and sentences that were supposed to have been

silently spoken. DaSalla et al. [14] developed a BCI using

EEG for ‘‘imaginary speech’’ of the English vowels /a/ and

/u/, and a no-action state as a control. The potential use of

EEG as a means of silent communication has been

explored by D’Zmura et al. [15] and Brigham et al. [16].

Subjects imagining two syllables, /ba/ and /ku/, without

speaking or performing any overt actions, are assessed for

feasibility and considered for subject identification [4, 17].

In Table 4, the authors are showing the evidence that

though considerable amount of research is being carried

out on silent speech, most of the work is using invasive

method, which has lot of shortcomings. And the noninva-

sive teams are able to decode only the phonemes and syl-

lables. Nobody has reported about decoding a complete

meaningful word using EEG signals during subvocalized

speech production, so we claim that the present work is

novel.

Though speech communication has extensive scope in

various domains of application, the challenges in

processing the EEG signals in real-time are significant. At

the very outset, it must be acknowledged that the EEG

signals are extremely complex and prone to internal and

external interference.

Conclusion

The motivation for this study was to build a practical BCI

framework for speech communication using current tech-

nology. The priority is to enable communication with a

simple BCI setup providing high performance and speed.

The study was conducted with an eye on the vast number of

applications for BCI speech communication. Potential

applications include synthetic telepathy, speech commu-

nication in LIS patients, silent communication, and cog-

nitive biometrics. EEG was chosen for this experiment

since it is low cost, portable, and has high temporal reso-

lution compared to other brain-imaging modalities. Also,

EEG can detect covert processing in the brain, even

without the external stimulus; our input was mainly from

covert activities.

An essential contribution of the present work is the

usage of subvocalized speech for the development of an

EEG-based BCI for speech communication. Subvocal

verbalization is associated with activation in the frontal and

temporal cortex, with bi-hemispheric lateralization. This

activation alleges the frontal and temporal lobes to be

involved in the articulation of speech output.

The EEG signals were acquired from three healthy

subjects, while they subvocally articulated one of the five

words. The EEG patterns for those five essential words

were then selected from each subject. The data acquired

were for five complete words that were felt to relate to

patients’ needs as opposed to phonemes and syllables. The

signals were processed using an SSM algorithm devised to

reduce the magnitude of sensor data processed for feature

selection.

A multiclass SVM classifier (one-against-all) was used

to classify the data. The developed model was verified/

evaluated using standard metrics. Several performance

measures were used to investigate the feasibility and lim-

itations of the developed BCI model. In the present system,

a satisfactory accuracy in the range 80–92 % was achieved.

The results show that the presented model of BCI for

speech communication, using subvocalized speech, is

viable, but needs improvement in classification accuracy.

The significant challenge in analyzing the EEG signals

is the low signal-to-noise ratio; they are prone to internal

and external noise. A more refined data analysis and

comparatively large number of data are required to extract

useful information from EEG. In addition, as the number of

words to be classified increases, we need to build
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intelligent algorithms that learn the most discriminatory

features. In real-time application, classification of a vast

number of words needs to be developed to make the system

scalable. Furthermore, an accurate mechanism to capture

the subject’s focus is required to impose discrimination

among the different words. Advances in sensor technology,

acquisition protocols, and intelligent algorithms will be

needed by BCIs to meet the desired performance. The data

were acquired in a restricted atmosphere, but promises also

to work well in outside situations.

Future Work

As a future work, an improved method of feature selection

and classification, using advanced machine learning tech-

niques, could be explored. Furthermore, classifier ensem-

bles could be used to capture the significant variability in

EEG data and augment the accuracy and receptiveness of

the system. The next step would be to work on an expanded

list of recognized subvocalized words.

The work reported so far is just an embryo in the

development of a BCI system for speech communication.

Future steps would be to build a commercial headset with a

minimum number of electrodes to enable speech commu-

nication through subvocal verbalization. We are confident

that the technologies and methodologies presented in this

study provide a foundation for future development that will

enable the speechless to generate assisted speech in a

geometrically augmenting mode.
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