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Abstract 

I review my Cold fusion theory as described below, and I also propose the experiment to prove hydride bond 

compression theory based on the currently available reactors and propose the conceptualized Cold fusion reactors 

based on the cold fusion mechanism. 

(1)  Cold fusion occurs at the metal surface T site by the compression of D2 from the surrounding lattice atoms. 

(2)  Compression of D-D bond can create the small D2 based on the electron orbit theory, which has been proved 

experimentally and theoretically. 

(3)  Bond compression is the common mechanism for the successful cold fusion reactors. 

(4)  The reactors of Buffer energy nuclear fusion and E-CAT with Li-H utilize the bond compression of Li-H and 

created small hydrogen (tightly bound proton-electron pair) and Lattice Confinement Fusion utilize the bond 

compression of Er-D and create small D (tightly bound d and electron pair).  

(5)  Because both E-CAT with Li-H nuclear reaction and Lattice Confinement fusion of Er-D have no mechanism 

of bond compression, their reactions can be unstable and irreproducible.  

(6)  I propose that Lattice Confinement Fusion reactor will be used to prove the mechanism of bond compression to 

produce excess heat because it seems to be designed to prove the lattice confinement fusion because the transmuted 

element seems to be stable and it is easy to compress Er-d films by mechanical stress. 

(7)  I propose the conceptualized Cold Fusion Reactor with nano-metal particles which potential is controlled by 

the metal 2 parallel electrode, and location of nano-particles can be mixed by ultrasonic oscillator to vibrate 

nano-metal particle in D2O to get the uniform reaction of D absorption and cold fusion. 

(8)  Li-H bond can be compressed effectively by the collision of nano Li-H particle by ultrasonic oscillator 

vibration of Nano-Li-H particle, and can be compressed by 2 parallel metal plates directly This direct compression 

can be applicable to Lattice Confinement Fusion, however the efficiency is low due to the reaction of D to Er. 

I also propose the conceptualized Cold fusion reactor for transmutation with metal surface for Cold fusion to create 

small H2 and backside potential control for H absorption with H2 gas in place of D2 gas to prevent the heat 

generation because small D2 can be reduced by D+D fusion. 

 

Keywords: LENR, Cold fusion, neutron, EDO, Electron Deep Orbit, Coulomb repulsive force shielding, 

transmutation, nano particle Li hydride, SO(4), Lattice assisted nuclear fusion, Buffer energy nuclear fusion, 

E-CAT, Lattice confinement Fusion 
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Because the D absorption and Cold fusion must proceed under the different conditions, let’s start with the stage 

when hydrogen storage is finished in Fig. 3  

The hydrogen nature in metals is explained in [11]-[21], and I would like to summarize here the nature of hydrogen 

in metals illustrated by Fig. 3. Hydrogen is H0 at O site in Fig. 3, however, strictly speaking, hydrogen can be 

positive, neutral, and negative ion, depending on the electron exchange with the surrounding electronic state. In 

case of Hydrogen at T site, Hydrogen is negative (D-) because it accepts the electron from the surrounding metal 

atoms due to their electronegativity. Due to the size difference between D- and T site  

The recent theoretical calculations of the electronic structure of metal hydrides performed, founded by Switendick, 

have shown that both the H+ or H- models capture only one aspect of the facts [13]. Based on these features of 

hydrogen in metals it may comprise positive, neutral, or negative ion meaning that hydrogen has the resonance 

state between H- to H+. Therefore, the diffusion and status of hydrogen in the interstitials in metals need to be 

interpreted with the resonance, namely the charge of hydrogen can vary from negative (-1) to positive (+1) 

depending on the surrounding electronic state. 

D can occupy the surface T site as D- with the high priority due to the elastic surface lattice atoms on the surface as 

is shown in Fig. 3(A-1), (A-2).  

 

2.2 Compression of D-D bond to create small D2 

The compression of D2 is explained in Fig. 3(B-C). Based on the geometry of the fcc lattice parameters and the 

hydrogen ionic radius, the T site lattice atoms compress the D2 molecule to make the d-d distance shorter by the 

compression of the D2 covalent bonding. The D2 molecule stretches and vibrates indicating the elasticity of 

covalent bonding. However, the force keeping the d-d distance at fusion distance is large enough to prevent this. 

Thus, the proper Coulomb repulsive force shielding is needed to for the fusion. This can be achieved following the 

theory of Electron Deep Orbit (EDO) explained in section 4.1 

 

3.1 Parameters/Mechanism for cold Fusion reactor 

This section is the summary in ref [2]. I think the requirement of parameter of the reactor based on the cold fusion 

mechanism is explained here. 
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fusion need to switch properly and swiftly as is shown in Fig.5, to optimize the total excess heat generation. 

Because smaller nano metal particle has very high occupation of D at the surface T site with very high D capture 

probability, and the total number of T site occupied by D is larger foe the same weight of nano-metal particle, so it 

is very important to optimize the tool configuration, and especially potential of nano metal particle has not been 

controlled, which is very important for the cold fusion and D absorption as is shown in Fig.4 and Fig.5. 
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infinite at r = 0. The infinity comes from the Coulomb potential shape, which has the infinity at r = 0 as is shown in 

Fig.8(a).; it was a consequence of the assumption that the nucleus is point-like. In addition, nobody has observed a 

small hydrogen. At that point, the idea of a small hydrogen died.  

 However, its idea was revived again ~70 years later [33,34], where Maly and Va'vra argued that the proton has a 

finite size, being formed from quarks and gluons and that the electron experiences a different non-Coulomb 

potential at a very small radius. In fact, such non-Coulomb potentials are used in relativistic Hartree–Fock 

calculations for very heavy atoms, where inner-shell electrons are close to the nucleus [35,36]. Maly and Va'vra 

simply applied a similar idea to the problem of small hydrogen, i.e., they used the modified realistic non-Coulomb 

potential that at a very small radius, realistic potential model is that the positive charge is distributed in nucleus 

uniformly to prevent Infinity at r=0 (in Fig.8(b)), in the Schrödinger and Dirac equations to solve the problem 

outside the nucleus first, then, they used the above mentioned the non-Coulomb potentials in a separate solution for 

small radius, and then matched the two solutions at a certain radius. Using this method, they retained solutions for 

small hydrogen, which were previously rejected. They called these new solutions “deep Dirac levels” (or electron 

deep orbits (EDOs)) as is shown in Fig.8(d) 

Due to the denser electron density between p-p, Coulomb repulsive force can be shielded completely as is shown in 

Fig8(c) and (d). 

 This section is based on the works [37]-[49], and the background of the study is described in [39]. 

 Because EDO was proved by experiment of engineering study of hydrogen storage separator study as is shown in 

sec3.2 and soft x-ray spectra study as is shown in sec 3.3, the Cold fusion mechanism can be based on EDO or 

small hydrogen. 
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