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Preface

These notes are intended as a study material for a class on theory of open quantum systems
that I thought at ETH Zürich in the spring semester 2014. They do not aim to be a self-
contained exposition of the subject. I used several textbooks [8, 12, 5, 2, 16, 14, 1] during
the preparation for the class and I often refer to these textbooks instead of rewriting the
same material here. The main aim of the lectures was to present the mathematical struc-
ture of the theory without using involved language of functional analysis and C∗-algebras.
In the range of above mentioned textbooks my exposition is in between mathematically
oriented books of Davies [8], Holevo [12], Attal et. al. [2] and more physically minded
books of Breuer-Petruccione [5], Alicki-Lendi [1].

1 Introduction

We recall the description of a closed system in quantum mechanics.

Closed system

A state of a closed system S is described (up to a phase) by a normalized vector |ψ〉 in a
Hilbert space HS. Observables correspond to hermitian operators A = A∗, and statistics
of measurement outcomes is determined by

< A >= 〈ψ|A|ψ〉.

The evolution of the state is generated by a Hamiltonian H via the Schrödinger equation

i
d

dt
|ψ(t)〉 = H|ψ(t)〉.

Open system

An open system is made out of two parts, a system S and an environment E:

S̄ = S ∨ E,

where S̄ is a closed system. The Hilbert space of S̄ is a tensor product HS⊗HE and states
on S̄ formed by linear combinations of product states |ψ〉 = |ψS〉 ⊗ |ψE〉. The evolution
is generated by a Hamiltonian

H = HS ⊗ 1 +HI + 1⊗HE,

where HI =
∑

αAα ⊗ Bα describes the interaction between the system and the environ-
ment.

The boundary between S and E is arbitrary. The most typical reason to impose the
boundary is that only properties of S can (or want to) be measured. However other
reasons like separation of scales have to be also considered. The boundary is at the end
always just a matter of convenience.
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Density matrix and partial trace

Density matrix and partial trace are the most important objects in the theory of open
systems. Both were introduced by Landau in his 1927 paper ”The damping problem in
wave mechanics” and later independently discovered by von Neumann in 1932. We will
now follow the exposition of Landau.

Consider a state of the first system described by a wave function (|ψn〉 is a basis)

|ψ〉 =
∑
n

an|ψn〉,

and a state of the second system

|ψ′〉 =
∑
r

br|ψ′r〉.

The joint wave function for the two systems together is then

|Ψ〉 = |ψ〉 ⊗ |ψ′〉 =
∑
n

∑
r

anbr|ψn〉 ⊗ |ψ′r〉 =
∑
n

∑
r

cnr|ψn〉 ⊗ |ψ′r〉,

where
cnr = anbr.

The coefficients cnr depends on time via the Schrödinger equation and if there is a non-
trivial coupling between the systems then they can no longer be written in the above
dyadic product form.

For an observable X ⊗ 1 on the first system alone we have

< X ⊗ 1 > = 〈Ψ|X ⊗ 1|Ψ〉 (1)

=
∑
n

∑
m

∑
r

c̄nrcmr〈ψn|X|ψm〉 = tr(ρX), (2)

where
ρ :=

∑
m

∑
n

∑
r

c̄nrcmr|ψm〉〈ψn|. (3)

Thus the “state” of the system can be described by the quantity ρ. The idea being that
a ”state” is an information how to prescribe measurement results of a given observable.
The quantity ρ is called density matrix. Landau finishes his discussion by pointing out
that for the first system alone the corresponding density matrix is

ρ = |ψ〉〈ψ|.

Basic properties of the density matrix that follow from Eq. (3) are

1. ρ = ρ∗;

2. tr ρ = 1;

3. 〈ψ|ρ|ψ〉 ≥ 0 for all vectors |ψ〉, such an operator is called positive.
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Let us show just the last claim

〈ψ|ρ|ψ〉 =
∑
m

∑
n

∑
r

c̄nrcmr〈ψ|ψm〉〈ψn|ψ〉 =
∑
r

∣∣∣∣∣∑
m

cmr〈ψ|ψm〉

∣∣∣∣∣
2

≥ 0.

From now on we use the word state of a system for a density matrix.

Definition 1 (State) A state of a system S is a positive operator ρ on HS, normalized
by tr ρ = 1. For a given observable X its expected value is given by

< X >= tr(ρX).

A pure state corresponding to |ψ〉 is a projection P = |ψ〉〈ψ|.

The equality between (1) and (2) implicitly define the other important object called
partial trace. Notice that (1) refers to quantities in the join Hilbert space of the two
systems, while (2) refers only to quantities associated to the Hilbert space of the first
system.

Definition 2 (Partial trace) Given a joint state ρ of S ∨E a partial trace ρS = trE(ρ)
is a unique operator on S for which

trS∨E(ρX ⊗ 1) = trS(ρSX).

Here trS∨E is the trace in the joint space and trS is the trace in the system S alone. The
name partial trace is self-explanatory.

A way how to compute the partial trace is following. Write ρ =
∑

αAα ⊗Bα. Then

trE(ρ) =
∑
α

Aα tr(Bα).

It can be easily checked that this satisfies the definition. Indeed for any observable X⊗1
we have (we do not anymore write in which space traces are defined it should be clear
from their argument)

tr(ρX ⊗ 1) = tr(
∑
α

AαX ⊗Bα) = tr(
∑
α

AαX) tr(Bα)

= tr(trE(ρ)X).

Remark 3 (Notation) Partial trace is a map from B(HS)⊗B(HE)→ B(HS). In fact
trE = 1 ⊗ tr, where 1 is the identity map on HS and tr is a trace on HE. In physics
literature you can often find a notation

trE ρ =
∑
n

〈n|ρ|n〉,

where {|n〉} is a basis of HE.
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It is often inconvenient to have a map between two different spaces. To avoid that we
fix a reference state G = |G〉〈G| in the environment and we define

E[ρ] := trE(ρ)⊗G.

If we expand the trace in a basis {|n〉} of HE we have

E[ρ] =
∑
n

EnρE
∗
n, En = 1⊗ |G〉〈n|.

We defined states as density matrices, motivated by an argument of Landau that
partial trace of a pure state can be a mixed (non pure) state. The following lemma shows
that we were not too generous in the definition of state and that indeed all states can be
obtained as partial trace of a pure state.

Lemma 4 (Purification) Let ρ be a state on a finite dimensional Hilbert space H. Then
there exists a Hilbert space HE and a pure state |ψ〉 ∈ H ⊗HE such that

ρ = trE |ψ〉〈ψ|.

Proof: We write ρ in a diagonal form as ρ =
∑

α ρα|α〉〈α|, where {|α〉} is the eigenbasis
of ρ and the eigenvalues ρα are non-negative because ρ is a positive operator. Now choose
dimension of HE equal to the dimension of H, and (with little abuse of notation) denote
{|α〉} a basis in HE. Then

|ψ〉 =
∑
α

ρ1/2
α |α〉 ⊗ |α〉

has the desired property. Indeed,

trE(|ψ〉〈ψ|) = trE

(∑
α,β

ρ1/2
α ρ

1/2
β |α〉〈β| ⊗ |α〉〈β|

)
=
∑
α

ρα|α〉〈α| = ρ.

�

Time evolution

The evolution of the full system S ∨E is generated by a Hamiltonian and for a fixed time
t the evolution from time zero to t is given by a map

|ψ〉 → U |ψ〉,

or as an operation on states
ρ→ UρU∗,
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where U is a unitary operator. What kind of evolution this generates on S alone? This
question is well defined only if we specify an initial state, the most natural choice is ρ⊗G.
We compute,

E[Uρ⊗GU∗] =
∑
n

EnUρ⊗GU∗E∗n

=
∑
n

K̃nρ⊗GK̃∗n, K̃n := EnU.

Now define an operator on HS alone by

(Kn|ψ〉)⊗ |G〉 = K̃n(|ψ〉 ⊗ |G〉),

then we have
trE(Uρ⊗GU∗) =

∑
n

KnρK
∗
n. (4)

We shall see later that operators Kn that can be obtained from this construction can be
arbitrary apart from a normalization condition∑

n

K̃∗nK̃n =
∑
n

U∗E∗nEnU

=
∑
n

U∗1⊗ |n〉〈G|1⊗ |G〉〈n|U = 1.

The type of map encountered on the RHS of the Eq. (4) is called Kraus map and we
will see that in some sense (to be defined precisely soon) it is the most general operation
allowed in quantum mechanics. We will also see that any operation of this type can be
expressed as a partial trace of a unitary evolution on a system S ∨ E.

Remark 5 Above we chose ρ⊗G as an initial state. A general choice of an initial state
can be encoded in a map ρ→ ρS̄ such that trE ρS̄ = ρ. If this map is linear the conclusions
remain valid. In explicit there are are operators Kα such that

trE(UρS̄U
∗) =

∑
α

KαρK
∗
α.

If the map is non-linear “anything can happen”. This kind of non-linearity may occur for
example in a control theory or the Hartree-Fock approximation.

2 Statistical structure of quantum theory

A full description of a measurement refers to an open system consisting (at least1) out of
the system itself and the measuring apparatus. Hence it is of no surprise that mathemat-
ical structures encountered in the theory of measurements play a central role also in the

1Some insist in including the experimentalists, others even many copies of her in many different worlds.
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theory of open systems. Historically these mathematical structures were first developed
into a fully consistent theory in the theory of measurements.

Statistics of measurement outcomes in any physical theory is described by a state of
the system and a set of observables. An observable corresponds to a quantity that can
be potentially measured on the system. A state attaches to each observable a statistics
of its measurement outcomes. Both states and observables are mathematical constructs
that aim to describe the reality, and often there are several equivalent descriptions of the
same system.

Definition 6 (Algebraic data specifying a quantum system S) We associate the
system to a Hilbert space HS;

1. Set of observables is a subset AS ⊂ B(HS) of self-adjoint operators

2. Convex set of states SS is formed by positive, normalized operators

SS = {ρ ∈ B(HS)|ρ ≥ 0, tr ρ = 1}

3. Time evolution is specified by a map

Φt : SS → SS

Much more careful and precise discussion can be found in [9], this paper is also an
excellent exposition of fundamental problems of measurement in quantum mechanics.

Description of time evolution

We start by discussing the time evolution. More precisely we fix time t, write Φ ≡ Φt and
discuss general requirements imposed on Φ by principles of QM and probability. This is
often called operational approach. We shall require the following

(R1) Linearity, Φ(αρ+ σ) = αΦ(ρ) + Φ(σ)

(R2) Trace preserving, tr Φ(ρ) = tr ρ

(R3) Complete positivity (CP-map)

The last point is explained in the following definition,

Definition 7 (Complete Positivity) Let Φ be a map on B(H) then we say that,

• Φ is positive if for all ρ ≥ 0, Φρ ≥ 0,

• Φ is n-positive if Φ⊗ 1n acting on B(H)⊗ B(Cn) is positive,

• Φ is completely positive if it is n-positive for all n ∈ N.

Sometimes requirements are justified by a theorem. This is not completely the case,
but anyway let us postpone their discussion after we prove that the map satisfying this
requirements is always of the form Eq. (4). This is one of the most important structural
theorems in the theory of open systems.
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Theorem 8 (Kraus ’71) Suppose that Φ is a map on B(HS) that satisfies (R1)-(R3).
Then there exists a Hilbert space HE a reference state G and a unitary U acting on
HS ⊗HE such that

Φρ = trE(Uρ⊗GU∗). (5)

In particular there exists operators Kα with
∑

αK
∗
αKα = 1 such that

Φρ =
∑
α

KαρK
∗
α. (6)

Proof: We know that (5) =⇒ (6). We are going to prove the converse (6) =⇒ (5)
and then (R1)-(R3) =⇒ (6).
• (6) =⇒ (5): Consider an operator U on HS ⊗ HE (dimension of HE is defined

implicitly) that acts as

Uψ ⊗ |G〉 =
∑
α

Kα|ψ〉 ⊗ |α〉,

where {|α〉} is a basis of HE. Note that U is not defined on the whole space, but only on
the reference subspace. On this subspace it satisfies ||U |ψ〉 ⊗ |G〉|| = |||ψ〉 ⊗ |G〉|| and so
it can be extended to a unitary on the whole space. Furthermore,

trE(Uρ⊗GU∗) = trE(KαρK
∗
β ⊗ |α〉〈β|)

=
∑
α

KαρK
∗
α ⊗G,

which is the desired property.
• (R1)-(R3) =⇒ (6): Take dimHE = dimHS. We shall use an observation of Choi

that all information about Φ is encoded in a state

σ := (Φ⊗ 1)(|ϕ〉〈ϕ|), where |ϕ〉 =
∑
α

|α〉 ⊗ |α〉,

for some basis {|α〉} of HS and {|α〉} of HE. In fact σ =
∑

α,β Φ(|α〉〈β|)⊗ |α〉〈β| and

(1⊗ |G〉〈ψ̃|)σ (1⊗ |ψ̃〉〈G|) =
∑
α,β

Φ(|α〉〈β|)〈ψ̃|α〉〈β|ψ̃〉 ⊗G.

If we now pick |ψ̃〉 in such a way that 〈ψ̃|α〉 = 〈α|ψ〉 we get

(1⊗ |G〉〈ψ̃|)σ (1⊗ |ψ̃〉〈G|) = Φ(|ψ〉〈ψ|)⊗G,

which is the announced encoding.
The state σ is positive due to the assumption of complete positivity of Φ and we can

write it as σ =
∑

i |si〉〈si|. Define a linear map

K̃i|ψ〉 ⊗ |G〉 = (1⊗ |G〉〈ψ̃|)|si〉.

Then

K̃i|ψ〉〈ψ| ⊗GK̃∗i =
∑
i

(1⊗ |G〉〈ψ̃|)|si〉〈si|(1⊗ |ψ̃〉〈G|)

= (1⊗ |G〉〈ψ̃|)σ (1⊗ |ψ̃〉〈G|) = Φ(|ψ〉〈ψ|)⊗G.
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As usual we can ”erase” G from above equations and redefine Ki accordingly to finish the
proof. �

Let me end the section with a small discussion of (R1)-(R3). Property (R2) represents
conservation of probability. Quantum mechanics is fundamentally linear (R1), however
you can encounter non-linear evolutions in certain approximative many body methods
like the Hartree-Fock theory. Complete positivity (R3) is connected to the existence of
entangled states, if the system under consideration might be entangled with an auxiliary
system then (R3) is required. I am not aware of any evolution used in QM theory for
which (R3) would not be true. To sum up the discussion (R1)-(R3) should be expected
if the evolution describes an experiment in which general initial state is transformed by
the apparatus to some final state.

Description of measurement

We follow a book of Holevo [12]. There are three levels of description of a measurement,

1. Probability of measurement outcomes (only),

2. Law of transformation; Posterior state,

3. Full Dynamics

Statistical structure of quantum mechanics gives framework of the first two points,
point 3 belongs to the realm of fully Hamiltonian descriptions of the system and the
environment.

Let us first consider the case of an operator with a discrete spectrum, A =
∑
ajPj,

where Pj are finite dimensional orthogonal projections that decompose the identity, i.e.

P 2
j = Pj, PjPk = 0 for (j 6= k),

∑
Pj = 1.

We have <A>ψ=
∑
aj〈ψ|Pj|ψ〉, and we see that a probability of a measurement outcome

ai is 〈ψ|Pi|ψ〉. More generally a probability that an outcome is in certain subset of possible
results is given by

Prob(A ∈ E ⊂ R) =
∑
j:aj∈E

〈ψ|Pj|ψ〉

= 〈ψ|PE|ψ〉, PE =
∑
j:aj∈E

Pj.

A map E → PE maps a subset of R into a projection, which in turn determines a
probability (measure) by the above rule. The map is an example of a projection operator
valued measure, a name often shortened as POVM. We will see that in general POVM is
an appropriate framework for description of the item 1.

The statistics of measurement outcomes was described in terms of the wave function
|ψ〉. If only the statistics of outcomes is required one does not need to use the notion of
a state in order to have a self-contained theory. For the full theory of measurement the
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notion of state is essential. For a state ρ the probability of a measurement outcome being
in the set E is given by

Prob(A ∈ E ⊂ R) = tr(PEρ),

where PE has the same meaning as in the paragraph above. In particular for an average
of an observable A we have

<A>ρ= tr(Aρ).

Notice that these formulas coincide with the corresponding formulas in the preceding
paragraph if ρ = |ψ〉〈ψ|.

As of item 2., for a discrete observable A, the posterior state given outcome aj is

ρj =
PjρPj

Prob(xj)
.

And the posterior state given x ∈ E is

ρE =

∑
xj∈E PjρPj

Prob(x ∈ E)
=
EE(ρ)

p(E)
,

where EE is a CP map that can be red of from the equality. The map E → EE is called
an instrument and it is an appropriate framework for description of the item 2.

The formula for posterior state is usually derived in QM classes using repeatability
hypothesis: “If the physical quantity is measured twice in succession in a system S we get
the same value each time”. In explicit, the probability that the measurement outcome is
in the set E given state ρE is equal to 1. This is indeed so,

tr(EE(ρ)PE) = tr(
∑
xj∈E

PjρPjPE) = tr(ρPE) = p(E),

and hence tr(ρEPE) = 1. We will see that this hypothesis fails in the case of a general
observable.

The general case. In infinite dimensions there is no analog for the probability of a
single outcome, however probability of outcome being in a certain region is well defined.
To each self adjoint operator A there correspond a unique orthogonal POVM PE such
that the probability of the measurement outcome being in a set E is given by 〈ψ|PE|ψ〉.
The projection PE is related to A by means of a spectral calculus PE = χE(A), χE being
a characteristic function of a region E. The spectral decomposition of A is often written
in a form

A =

∫
R
aP (da)

and PE is then given by PE =
∫
E
P (da).

This accomplishes description of item 1. for a general observable. There is no analog
to item 2. The obstruction is the uncertainty principle. Upon measuring position the
“posterior state” is a delta function, which is a non-normalizable state with an infinite
energy. In what follows we describe the general framework for items 1 and 2.
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Statistics of measurement outcomes

The statistics of measurement outcomes is described by a POVM (projection operator
valued measure). Suppose M is the space of measurement outcomes then a map

E ⊂M → Π(E) ∈ B(H)

is called POVM if

i) Π(E) ≥ 0,

ii) Π(E1

⋃
E2) = Π(E1) + Π(E2) provided E1

⋂
E2 = 0,

iii) Π(M) = 1.

The probability of a measurement outcome a given state ρ is then associated to a POVM
by a relation

Prob(a ∈ E) = tr(Π(E)ρ).

Conditions i) to iii) guarantees that this is indeed a probability distribution.

Law of transformation

The law of transformation is described by an instrument. This is a map

E ⊂M → EE
such that

i) EE is a CP map on B(H),

ii) EE1
⋃
E2 = EE1 + EE2 provided E1

⋂
E2 = 0,

iii) EM = 1.

Given a measurement outcome a ∈ E the state of the system is transformed according
to ρ → EE(ρ)/p(E). The normalization gives p(E) = tr EE(ρ) = tr(ρE∗E(1)). For each
instrument there is a unique POVM Π(E) = E∗E(1) that gives statistics consistent with
the law of transformation. The converse is not true, for each POVM there are infinitely
many instruments that gives that particular statistics.

More physical discussion of the latter statement might be helpful at this place. Imag-
ine you want to measure the z-component of a spin. For this purpose you set up a
Stern-Gerlach type experiment in which the spin traverse through a region of an in ho-
mogenous magnetic field pointing in the z-direction and measure proportion of spins
seeking low/high magnetic field. It is completely plausible that the spin traverse through
further magnetic field in general directions before leaving your measuring apparatus. The
posterior state will depend on this additional magnetic fields, however the proportion of
low/high field seekers will be independent of it.

Historically people tried to assign to each POVM a unique “minimal” instrument with
the help of the repeatability hypothesis. It turned out that for continuous observables such
instruments simply does not exist and the general theory does not refer to this hypoth-
esis anymore. In the case of the above Stern-Gerlach type experiment the repeatability
hypothesis would single out an apparatus without any additional magnetic fields.
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Figure 1: Sketch of the repeated interaction model. The environment E3 interacts with
the system S only for times 3T ≤ t ≤ 4T .

3 Hamiltonian Approach

This is the most fundamental approach to open quantum systems. We solve Schrödinger
equation on the joint system S ∨ E and obtain the state on S by taking the partial
trace. An explicit solution of the joint Schrödinger equation is known only for a very few
systems, and we shall study a particular example called repeated interaction model. On
one hand this provides us with a case study of an open quantum system, on the other
hand it describes recent experiments of Haroche. To go a step beyond explicit solutions, in
Section 5 we will study dynamics of large class of models in a well control approximation
of a small coupling between the system and the bath.

Repeated interaction model

In repeated interaction model the environment is composed of independent subsystems
called probes, E = ∨∞j=0Ej, which successively interact with the system S (see figure
3.). The probe En interacts with the system only for a time T during the time interval
(nT, (n+ 1)T ). This assumption simplifies the notation, generalization to the case when
there is a dead time between interaction of En and En+1 with S is straightforward.

Instead of describing the free evolution of the n-th probe for 0 ≤ t ≤ nT we assume
that at the onset of the interaction the probe is in the state Gn and that it is uncorrelated
with the system and the remaining probes. The free dynamics of the system and the
probe is described by a Hamiltonian H0, the interaction between the system and the
n − th probe by a (in general time dependent) Hamiltonian Hn. If ρ(nT ) is the state of
S at time nT then the time evolution of S ∨ En is given by

ρS∨En(nT + τ) = Un(τ)ρ(nT )⊗GnU
∗
n(τ), , 0 ≤ τ ≤ T,

Un(τ) := Texp(−i(
∫ τ

0

H0 +Hn(s))).

It follows in particular that the state of the system at the time when the (n+ 1)-th probe
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begins to interact is

ρ((n+ 1)T ) = trEn Un(T )ρ(nT )⊗GnU
∗
n(T ) =: Φn(ρ(nT )),

where Φn is the associated Kraus map obtained by taking the partial trace. For the
dynamics of the system from time 0 until time t = nT + τ , 0 ≤ τ ≤ T with an initial
condition ρ(0) we then have,

ρ(t) = trEn Un(τ)(Φn−1 . . .Φ0ρ(0))U∗n(τ).

The formula further simplifies if we assume that all probes are (distinguishable) copies,
i.e. Ej ' Ek and given this identification Gj ' Gk, Uj ' Uk. It then follows that Φj = Φk

(Notice that no identification is needed here as Φk operates only on S) and dropping
indices in Φ, G etc we get

ρ(t) = trE U(τ)(Φnρ(0))U∗(τ),

or at the multiples of the interaction time T , ρ(nT ) = Φnρ(0).
Long time properties of the evolution are determined by the map Φ. For example if

Φ has a unique stationary state and σ(Φ) \ {0} ∈ B1−ε then ρ(nT )→ σ. In the following
we shall work out Φ for two special cases.

Dephasing case

For concreteness we assume that probes are two level systems and that the spectrum of the
free Hamiltonian is non degenerate with eigenbasis |n〉⊗|±〉. Suppose that the interaction
Hamiltonian is time independent and that it commutes with the free Hamiltonian. Then
we have

(H0 +H1)|n〉 ⊗ |±〉 = En,±|n〉 ⊗ |±〉.

We can also define an effective Hamiltonian of the system given that probe is in the + or
− state,

H+ =
∑

En,+|n〉〈n|, H− =
∑

En,−|n〉〈n|.

The time evolution in terms of these two Hamilotnians is

e−i(H0+H1)τ |ψS〉 ⊗ (c−|−〉+ c+|+〉) = c−e
−iτH− |ψS〉 ⊗ |−〉+ c+e

−iτH+ |ψS〉 ⊗ |+〉.

From this expression we can read the associated Kraus map,

Φ(ρ) = |c−|2U−ρU∗− + |c+|2U+ρU
∗
+, U± = e−iTH± .

By construction this is a dephasing Kraus map, all spectral projections |n〉〈n| are
stationary. We want to find conditions under which an initial coherent superposition of
|n〉 and |m〉 approaches an incoherent mixture of these states. In other words when |n〉,
|m〉 is distinguishable by the apparatus. We have

Φ(|n〉〈m|) = λnm|n〉〈m|, λnm = |c−|2e−i(En,−−Em,−)T + |c+|2e−i(En,+−Em,+)T .
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It is now easy to give conditions under which |λnm| < 1. A trivial condition is that both
c+ and c− need to be nonzero. If, for example, c− = 0 then |λmn| = 1 for any choice of
interaction Hamiltonian.

There is further condition on the interaction energy. To describe this condition we
write En,± = E

(0)
n,±+Eint

n,±, where E(0), Eint is the contribution fromH0 andH1 respectively.

The free energy E(0) is a sum of the energy of the system and the probe and hence
E

(0)
n,+ − E

(0)
n,− is independent of n. The condition is then expressed in terms of ∆Eint

n =
Eint
n,+ − Eint

n,−,

(∆(Eint
n )−∆(Eint

m ))T = 0 mod 2π. (7)

Experiment of Haroche

If you want to read some original articles about these Nobel winning experiments you can
take a look for example at [6, 11].

S: Cavity with an electro magnetic field; High Q cavity with the life time of photon
around 100µs.

E: Rubidium atom in a circular Rydberg state with a principal quantum number n =
50, 51.

Rydberg atoms are used thanks to their strong dipole interaction and long radiative
lifetime, around 30ms. Rubidium has a simple electron structure and can be easily ionized
because it has a 1 electron in its shell (it is an alkali metal).

We consider a subspace of zero angular momentum and denote by |g〉 the state with
principle number n = 50 and by |e〉 the state with the principal number n = 51. The
atoms are prepared in such a way that they enter the cavity in certain superposition of
ground and excited state. For simplicity we shall consider an equal superposition

|G〉 ≡ 1√
2

(|e〉+ |g〉).

Interaction of a mode a of the electro magnetic field in the cavity with the atom is
described by the Jaynes-Cummings Hamiltonian

H = ωc(a
∗a+

1

2
) + ω0

σz
2

+
Ω

2
f(x)(a∗σ− + aσ+),

where ωc is the frequency of the cavity mode, ω0 is the frequency of the transition e to g and
Ω is the dipole interaction. σ± are raising operators, e.g. σ−|e〉 = |g〉. Space dependent
function f represents varying strength of the interaction inside the cavity, it vanishes in
the boundary and attains its maximum in the center of the cavity. The parameter x
represents the position of the Rubidium atom, for an atom flying at a constant speed v
we can write x = vt. This substitution makes the Hamiltonian time dependent.

An important parameter of the model is the detuning δ = ωc − ω0. If δ/Ω ' 0 the
atom and the field are in resonance, when |δ/Ω| >> 0 then the atom and the field are
off-resonant. The experiments of Haroche are in the off-resonant regime, δ = 300kHz and
Ω = 50kHz. Note that ωc is tunable by changing the cavity geometry.
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We want to solve the time-dependent Schrödinger equation describing the atom-cavity
interaction. The solution can be derived using the adiabatic theory, which is described in
some details below.

Before entering the cavity t < 0 and after leaving the cavity t > T we have f = 0
(which is the same as Ω = 0) and δ 6= 0 the eigenstates of the Hamiltonian are |n, g〉 and
|n, e〉 with energies

H|n, g〉 = (ωc(n+ 1/2)− 1/2ω0)|n, g〉, H|n, e〉 = (ωc(n+ 1/2) + 1/2ω0)|n, e〉.

Inside the cavity the eigenstates and eigen-energies depend continuously on time if we
stay in a off-resonant case. We denote the eigen-energies by E(n,g)(t) and E(n,e)(t). By
the adiabatic theorem we know that

|ψ(T )〉 =
1√
2

(e−i
∫ T
0 E(n,g)(t)dt|n, g〉+ e−i

∫ T
0 E(n,e)(t)dt|n, e〉)

is the solution of the Schrödinger equation with the initial condition |ψ(0)〉 = |G〉 ⊗ |n〉
up to an small error that we address in the next paragraph. This is exactly of the same
type as the dephasing case. In the experiment of Haroche the accumulated phase was
equal to nπ

8
. In particular the experiment can distinguish number of photons modulo 8.

A dimensionless small parameter that characterize error in the adiabatic approxima-
tion is

ε ∼ ||Ḣ||/g2 ∼ Ω

δ2T
.

It is of order 10−1 in the experiment of Haroche. If the error is of order ε as suggested
by the adiabatic theorem then this is a bad sign. On the other hand if we believe that
the error is of order exp(−ε−1) as suggested by the Landau-Zener formula then is a good
sign. The theory does not give any comprehensive answer but experience suggest that
Landau-Zener type scaling is more appropriate. In other words adiabatic approximation
is very good already for the adiabatic parameter of order 0.1. In this case it is not hard
to do computer simulations and they showed that the error is indeed negligible.

Let us summarize, Haroche realized a repeated interaction model in which

|n〉 ⊗ |±〉 → eΦ±(n)|n〉 ⊗ |±〉, Φ±(n) = ±nπ
8
.

We shall se in Section ?? how this can be used to measure the number of photons in the
cavity modulo 8.

Adiabatic evolution in quantum mechanics

We will derive solutions to a slowly driven Schrödinger equation

i|ψ̇(t)〉 = H(εt)|ψ(t)〉. (8)

The equation represents separation of scales in the system with a ratio of the slow scale
to the fast scale equal to ε. The physical origin of the splitting slow/fast vary. In quan-
tum control or quantum adiabatic computation it is an externally applied slow driving,
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the small parameter ε being tuned by the experimentalists. In Born-Oppenheimer ap-
proximation (8) is a Hamiltonian of electrons for a slow motion of heavy nuclei, ε being
determined by electron to proton mass ratio. In the experiment of Haroche that we are
going to discuss it is a description of a particle slowly flying through an inhomogeneous
external field.

Solutions of (8) can be expanded as an asymptotic series in ε provided the energy
levels of the Hamiltonian do not cross. The latter requirement is traditionally rephrased
as the gap condition. In terms of the Hamiltonian eigendecomposition

H(ϕ) =
∑

Ej(ϕ)|ψj(ϕ)〉〈ψj(ϕ)|,

we say that H(ϕ) satisfies a gap condition if

|Ej(ϕ)− Ek(ϕ)| > 0 ∀ϕ and j 6= k.

Theorem 9 (Adiabatic theorem) Suppose that H(ϕ) satisfies the gap condition. Then
the solution of the Schrödinger equation (8) with an initial condition |ψ(0)〉 = |ψj(0)〉 is

|ψ(t)〉 = e−i
1
ε
ϕd(t)+iϕb(t)|ψj(εt)〉+ o(ε),

where the dynamical phase

ϕd(t) =

∫ εt

0

Ej(ϕ)dϕ,

and the Berry phase

ϕb(t) = i

∫ εt

0

〈ψj(ϕ)|ψ̇j(ϕ)〉dϕ.

The theorem provides no quantitative information about the error o(ε). Even though
a bound on the error of the form ε||Ḣ||/g2 where g is the gap in the spectrum can be
derived, it is typically very pessimistic. For a smooth compactly supported change the
Landau-Zener formula (discussed below) tends to be more precise.

Two level crossing

When two eigenenergies of a system collide at certain time we speak about a (energy)
level crossing. Without loss of generality we can assume that it occurs at time s = 0 at
energy E = 0. Zooming into this point and keeping only the linear terms, the energy
difference between the levels is linear with a slope ε,

E0(t)− E1(t) = εt

and the Hamiltonian in an appropriate basis is a two by two matrix

H(t) =
1

2

(
εt 0
0 −εt

)
.

A generic interaction between these two energy levels would lift the degeneracy at
t = 0. The Hamoltonian with a real interaction is

H(t) =
1

2

(
εt g
g −εt

)
. (9)
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t t

Interaction

Figure 2: Energy of two levels depending on time. A generic Interaction lifts an energy
level crossing into an avoided crossing

and the energy difference is

E0(t)− E1(t) =
√
ε2t2 + g2.

The minimum energy difference, called gap, is at t = 0 and equal to g. This is called an
avoided crossing (see figure 3).

As a rule of thumb all crossings that are not protected by a symmetry are avoided
crossings.

Landau-Zener formula

Consider the Hamiltonian (9) and its two eigenstates

H(t)|ψ0(t)〉 = E0(t)|ψ0(t)〉, H(t)|ψ1(t)〉 = E1(t)|ψ1(t)〉.

Let |ψ(t)〉 be a solution of the Schrödinger equation i|ψ̇(t)〉 = H(t)|ψ(t)〉 with an initial
condition |ψ(−∞)〉 = |ψ0(−∞)〉. Then the probability to find the state in the excited
state at t =∞ is given by the Landau-Zener formula

|〈ψ(∞)|ψ1(∞)〉|2 = e−πg
2/2ε.

For the Hamiltonian (9) this is an exact formula. For adiabatic crossing only the shape
of the crossing matters and the formula holds in the leading order as ε→ 0 irrespectively
of how exactly the Hamiltonian looks like for |t| >> 0 (provided there are no other energy
crossings).

Note that ε in the Hamiltonian (9) is not dimensionless. To compare it with the
adiabatic theorem you might want to introduce a dimensionless units. This is left as an
exercise.

4 Markovian master equation

The term master equation refers to a large class of physical models that effectively, and
often probabilisticly, describe evolution of some degrees of freedom in a closed form. In
classical mechanics the prime example is the Fokker-Planck equation describing evolution
of a Brownian particle under influence of drag forces.

17



In connection to open quantum systems master equations describe evolution of the
system alone. This is of major importance in basically all realistic situations when solving
for the join system-environment evolution is intractable, or when the join Hamiltonian is
not even known.

Markovian master equations describe systems coupled to memoryless environments.
The theory of such equations was developed by Davies, Lindblad and Kossakowski et. al.
In particular the general form of the generator of the evolution was derived. This form is
referred to as Lindblad equation, the main part of this section is a proof of this result.

A master equation of a Lindblad form for the state of the system ρ(t) has a form

ρ̇(t) = Lρ(t)

with a Lindblad generator

Lρ = −i[H, ρ] +
∑
α

2ΓαρΓ∗α − Γ∗αΓαρ− ρΓ∗αΓα, (10)

where H = H∗ and Γα are arbitrary operators. Using a completely positive map Φ(ρ) =
2
∑

ΓαρΓ∗α this can be equivalently written as

Lρ = −i[H, ρ] + Φ(ρ)− 1

2
(Φ∗(1)ρ+ ρΦ∗(1)).

Lindblad equation in its general form was first derived by Davies in a study of contin-
uous measurements. We give the basic idea and describe a process in which the system
is measured in random times with frequency γ. Let Φ(·) be a Kraus map with Φ∗(1) = 1

that describes a transformation of the state upon a measurement. Suppose that in the
time interval dt the state is measured with a probability γdt and with probability (1−γdt)
the state evolves by a Hamiltonian evolution,

ρ(t+ dt) = (1− γdt)e−iHdtρ(t)eiHdt + γdtΦ(ρ(t)).

Expanding this to the first order in dt we get

ρ̇(t) = −i[H, ρ(t)] + γΦ(ρ(t))− γρ(t),

which is of the Lindblad form because we have assumed that Φ∗(1) = 1.
In general, without the latter assumption, let Φ(ρ) be a completely positive map. Let

the “probability” of applying this map be 0 ≤ Φ∗(1) ≤ 1, then a map

ρ→
√

1− Φ∗(1)ρ
√

1− Φ∗(1) + Φ(ρ),

is a Kraus map that represents in the minimal way that we did nothing on the complement.
It is then straightforward to generalize the argument of the previous paragraph. We
consider a process in which we evolve the state by dtΦ(ρ) with probability dtΦ∗(1) and
evolve by a Hamiltonian evolution otherwise,

ρ(t+ dt) =
√

1− dtΦ∗(1)e−iHdtρ(t)eiHdt
√

1− dtΦ∗(1) + dtΦ(ρ(t)).

Expanding to the first order in dt then gives the Lindblad equation in its general form,

ρ̇(t) = −i[H, ρ(t)] + Φ(ρ(t))− 1

2
(Φ∗(1)ρ(t) + ρ(t)Φ∗(1)).
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The general form of markovian master equation

The following theorem that classifies all Markovian master equations was proved inde-
pendently by Lindblad [13] and Gorini, Kossakowski, Sudarshan [10]. This is the most
important structural theorem of the theory of open quantum systems.

Theorem 10 Suppose that Φt(·) is a family of Kraus maps such that

(i) Φt(·) is a trace preserving CP map,

(ii) Φt is a semigroup, i.e. Φt+s(·) = ΦtΦs(·) holds for all s, t > 0,

(iii) Φt(·) is continuous.

then the state ρ(t) := Φtρ satisfies a Lindblad Eq.(10), i.e. Φt = eLt for some Lindbladian
L.

Proof: I have followed the proof given in [15] and you can find all details there.

Example 11 (Example of Lindblad operator) Notation: Ejk = |j〉〈k|, Pj = |j〉〈j|, H =∑
λjPj. Let

Lρ = −i[H, ρ] +
∑
jk

γjk(2EjkρE
∗
jk − E∗jkEjkρ− ρE∗jkEjk)

= −i[H, ρ] + 2
∑
jk

γjkEjkρE
∗
jk −

∑
jk

γjk(Pkρ+ ρPk).

Define

Ljk = 2γkj, j 6= k,

Ljj = 2γjj − 2
∑
k

γkj = −2
∑
k 6=j

γkj ≤ 0

Then

L(|j〉〈k|) =

[
−i(λj − λk)− γjj − γkk +

1

2
Ljj +

1

2
Lkk

]
|j〉〈k|, j 6= k (11)

L(Pj) =
∑
k

LjkPk.

In particular for populations nj = tr(Pjρ) we get an equation ṅj =
∑

k nkLkj.
Proof: Computation left as an exercise �
Remarks:

• Conservation of probability is equivalent to
∑

j Lkj = 0 for all k.

• Lkj is a rate of k → j transition.

• The off-diagonal terms of the density matrix in |j〉 basis decay, cf. Eq. (11). γjj+γkk
is a dephasing contribution, 1/2(Ljj + Lkk) is an emission-absorption contribution.
Note that an emission-absorption implies decoherence of off diagonal elements.
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Detail balance condition: We say that L satisfies a detail balance condition with
respect to σ if

σkLkj = Ljkσj holds for all j, k.

It implies that σj is a stationary state and that there are no probability currents in the
system. The most typical case is that of thermal equilibrium σj = e−βEj and

Lkj
Ljk

= e−β(Ej−Ek).

5 Weak coupling limit

I have followed an article of Davies [7] and took examples from a book of Rivas, Huelga
[16].

6 Soft Properties

-
We will discuss two notions of distance that are non-increasing under quantum oper-

ations:

1. Relative entropy

2. Bures metric

These are just two examples of a large set of such distances, it should provide you
with a flavor of the subject.

Very good introduction to the notion of entropy is given in Nielsen-Chuang Chapter.
In particular monotonocity of relative entropy is proven in [].

Bures Metric

In this section we study the set of states from the perspective of differential geometry.
Quantum mechanics does not equip states with any geometric structures like connection or
metric. Such structures arise only from particular applications, and different applications
lead to different structures. Geometric view on the set of states appears for example in
quantum statistics, the linear response theory or the adiabatic theory.

We consider a Hilbert space of a finite complex dimension N , so that states ρ are
Hermitian, positive N ×N matrices. The states of full rank form a manifold,

M = {ρ > 0, tr ρ = 1}.

M is homomorphic (corresponding coordinates are discussed in details in problem ??)
to an open, convex subset of RN2−1. Hence topologically M is a very simple manifold.
Being full rank is important because closed subsets are not manifolds, the boundary does
not locally look like RN2−1.
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It will be convenient to think of ρ as a matrix without specifying particular coordinates.
The tangent space TρM at the point ρ can be represented by Hermitian matrices of zero
trace. In this representation vectors are global objects in the sense that for any T ∈ TρM
and small enough h, ρ + hT ∈ M. This is a direct consequence of being a single chart
manifold.

A natural object is a matrix valued one form dρ, representing infinitesimal change of
the state ρ. When vectors are represented by Hermitian matrices of zero trace then dρ is
an identity mapping,

dρ(T ) = T, T ∈ TρM.

This might seem to be an unnecessary complicated and incomprehensible notation, but
see the box below. Anyway, if tangent spaces and forms cause you a headache, think of
dρ as a small change à la the standard line element ds.

The idea that change is a form can be demonstrated on a taylor expansion of a
multivariable function,

f(x+ h) = f(x) + h · ∇f(x) + o(h2) = f(x) + df(x)(h) + o(h2),

where we defined a one form df(x) by df(x)(h) := h·∇f(x). The change of f depends
on the direction, hence the first order term in the Taylor expansion gives the change
as a function of the vector h.

Now we equip M with a metric relevant to quantum statistics. The Bures metric g
at a point ρ is given by

g = tr(ρ(A−1
ρ dρ)2),

where Aρ· = {ρ, ·} is an anticommutator. For a curve ρ(ϕ) the square of the length
element associated to this metric is called Fisher information,

F (ϕ) := g(ρ̇(ϕ), ρ̇(ϕ)) = tr(ρ(ϕ)(A−1
ρ(ϕ)ρ̇(ϕ))2).

In connection to the quantum estimation theory, the Fisher information is interpreted
as distinguishability of neighboring states. One concrete demonstration is the following.
Imagine that ρ(ϕ) is an output state of an interferometric device and our aim is to
determine the angle ϕ by a measurement. Let ϕ̂ be an estimate of the value of φ based on
the measurement outcome. Since the measurement outcome is random, ϕ̂ is random and
its precision can be measured by its variance. Cramer-Rao bound [4] gives a universal
bound (that can also be achieved) on this variance,

E[(ϕ− ϕ̂)2] ≥ 1

F (ϕ)
.

The bigger Fisher information the better you can estimate the value of ϕ.
It is a natural property of information that you cannot increase it by post process-

ing. This is reflected by monotonicity of the Bures metric and Fisher information under
quantum operations.
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Theorem 12 Consider a positive, trace preserving map (Kraus map) Φ and let F (ϕ)(resp.
FΦ(ϕ)) be the Fisher information associated to the family of states ρ(ϕ) (resp. Φρ(ϕ)).
Then it holds

F (ϕ) ≥ FΦ(ϕ).

Proof: Fisher information can be expressed as a maximum of the following quadratic
functional,

F (ϕ) = supX tr
(
−X2ρ(ϕ) + 2Xρ′(ϕ)

)
, X = X∗.

We then have

F (ϕ) ≥ supX tr
(
−Φ∗(X)2ρ(ϕ) + 2Φ∗(X)ρ′(ϕ)

)
≥ supX tr

(
−Φ∗(X2)ρ(ϕ) + 2Φ∗(X)ρ′(ϕ)

)
= supX tr

(
−X2Φρ(ϕ) + 2XΦρ′(ϕ)

)
= FΦ(ϕ),

where in the second step we used an inequality Φ∗(X2) ≥ Φ∗(X)2. �.

Example 13 (Bures metric for Qbit) In the standard Bloch parameterization of states
ρ = (1 + n · σ)/2 with |n| < 1, the Bures metric is

g =
dn2

4
+

1

4

(n · dn)2

1− n2
.

In the spherical coordinates n = r(sin θ cosϕ, sin θ sinϕ, cos θ) it is given by

g =
1

4

(
1

1− r2
dr2 + r2dΩ2

)
,

where Ω is the spherical surface element.
Proof: To find the metric we need to solve an anti-commutator equation{

1 + n · σ
2

, dX

}
=

dn · σ
2

and the metric is then given by gρ = tr(ρdX2). Writing dX = dx0 + dx · σ we have
g = dx2

0 + dx2 + 2dx0dx · dn and the equation is equivalent to equations

dx0 + n · dx = 0, 2dx+ 2dx0n = dn.

If you express dn2 from the second equation and then solve for dx0 from the first equation
you obtain the first form of the metric.

Changing to spherical coordinates is standard. �.
Note that the metric becomes singular when you approach pure states, i.e. |n| → 1. If

we, however, restrict ourselves to spherical directions the metric approaches the standard
Euclidean metric on the sphere up to the factor 1/4.
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7 Stochastic quantum equations

External classical parameters that determine the time evolution of a quantum system
often change in time in a non-deterministic2 way. Here we describe the situation when
the unknown parameter b(t) can be described as a realization of a stationary random
process. This is the case when long time averages match statistical averages e.g.

1

T

∫ T

0

b(t+ h)b(t)dt = E[b(h)b(0)],

an assumption known as the ergodic hypothesis.
Physical examples of such a parameter are voltage in the socket, field of a laser,

magnetic field or more or less any other external potential. To be specific we consider the
most simple example of a spin in an external field with the Hamiltonian

H = ωσz(1 + b(t)).

Solutions of the corresponding Schrödinger equations are random objects and we aim to
determine their statistics.

The random parameter b(t) appears in the Hamiltonian only as a multiplicative factor.
This is a tremendous simplification and the equation is exactly solvable. We write |ψ〉 =
c+|+〉+ c−|−〉, the Schrödinger equation i|ψ̇(t)〉 = H|ψ(t)〉 then implies

iċ+ =
ω

2
(1 + b(t))c+(t)

with a solution
c+(t) = e−i

ω
2
te−i

ω
2

∫ t
0 b(s)dsc+(0).

We obtained a solution |ψ(t)〉 of the Schrödinger equation and now we aim to study
its statistics. The basic quantity of interest is an average state, E[|ψ(t)〉〈ψ(t)|]. Note
that we are averaging the state not the wave function. The average wave function have
no physical meaning because the statistics of measurement outcomes is not linear in the
wave function, i.e. for an observable X

E[tr(ρX)] = tr(EX), but E[〈ψ|X|ψ〉] 6= E[〈ψ|]XE[|ψ〉],

in particular E[|ψ〉] is not even normalized.
The wave function ρ(t) = |ψ(t)〉〈ψ(t)| can be written in the basis |±〉 as

ρ(t) =

(
ρ+ ρ+−
ρ∗+− ρ−

)
.

Because of the special form of our Hamiltonian the diagonal elements are constant and in
particular deterministic. For the off-diagonal elements we have

E[ρ+−(t)] = e−iωtE[e−iω
∫ t
0 b(s)ds]ρ+−(0).

2From a fundamental perspective this represents lack of our knowledge
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The integral can be computed if b(s) is a Gaussian random process. Recall that
X1, X2, . . . , Xn is jointly Gaussian if and only if (in many textbooks this is actually taken
as a definition)

E[exp

(
i
∑
n

Xnϕn

)
] = exp

(
−1

2
E[(
∑
n

Xnϕn)2]

)
.

For the average state we write E[(
∫ t

0
b(s)ds)2] =

∫ t
−t(t − |u|)J(u)du with J(s − s′) =

E[b(s)b(s′)] and we have

E[ρ+−(t)] = e−iωte−
1
2
ω2

∫ t
−t(t−|u|)J(u)duρ+−(0).

The correlation function J typically has a bell shape centered at zero and decaying at
infinity. If τ is the width of the bell then for t >> τ we have∫ t

−t
(t− |u|)J(u)du ∼ t

∫ ∞
−∞

J(u)du

and we see that the averaged off-diagonal element decays exponentially.
We do not pursue the theory beyond this example. We only note that in most experi-

ments external random parameters provide the main contribution to decoherence. Many
techniques how to fight this decoherence were invented, the most famous being probably
spin echo.

8 Non-demolition measurements

In this section we continue study of experiments of Haroche in which he showed full
dynamics of the wave function collapsed in a measurement. In order to prove the collapse
we will need a relatively involved results from the theory of stochastic processes. We will
recall these results in the following section . The reader not interested in proofs can skip
the section, the phenomena captured by Haroche can be understood without it.

Martingales

A pedestrian approach to random variables is to consider them as a quantity with some
given probability distribution. Two random variables X, Y are then specified by a join
probability distribution p(x, y). A probability distribution of X alone is given by p(x) =∫
p(x, y)dy. The conditional probability distribution of X given a value of Y is

p(x|y) = p(x, y)/p(x).

An important notion in the theory of random variables is a conditional expectation of
X given Y ,

E[X|Y ] =

∫
xp(x|y)dx.
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Note that this is a function of y and it is random since Y is random. This is a classical
equivalent of the partial trace (or rather partial trace is a quantum equivalent of con-
ditional expectation) with the most important property that it recovers expectation of
observables that depend only on Y ,

E[f(Y )E[X|Y ]] = E[f(Y )X].

Example 14 Let X be a height of a population sample and Y the sex. Then conditional
expectation E[X|Y ] is a random variable with two possible values, average height of men
in the sample occurring with a probability that random person in the sample is a man and
average height of women in the sample occurring with the probability that random person
in the sample is a woman.

A stochastic process X1, X2, . . . , Xn is a collection of random variables. In the pedes-
trian way of thinking it is specified by join probability distributions of any finite subset
of these variables. A stochastic process is more often specified by a recurrence relation of
the form Xn+1 = f(X1, X2, . . . Xn).

Example 15 1. The most simple example are identical independent random variables

S1, S2, . . .

whose all join probability distribution are products of a single probability distribu-
tions, e.g P (S1, S2) = P (S1)P (S2).

2. A random walk is process defined recurrently by

Xn+1 = Xn + Sn, X0 = 0

where Sn is the process from the previous example. It is called random walk it can
be interpreted as tossing a coin S at every step and moving according to the result,
X being the position.

Finally a stochastic process is called martingale if

E[Xn+1|Xn] = Xn.

Martingales play a central role in many areas of probability. A basic result is the Doob’s
martingale convergence theorem.

Theorem 16 Suppose that Xn is a bounded martingale then Xn → X∞ with a probability
1.

Example 17 The notion of martingale (as well as the name) originated from the study
of gambling. Let Xn denotes the player capital after nth-round of some gambling game.
The capital is a stochastic process with a recurrence relation

Xn+1 = Xn + fn(Xn)Sn,
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where fn(Xn) represents the quantity the player decided to bet and Sn are independent
random variables representing the outcome of the game. The function fn represents players
strategy, how much she is betting depending on time and his current credit. If the player
cannot borrow money then 0 ≤ f(x) ≤ x. On the other hand we can assume that the
function is compactly supported, meaning that the player quits the game if she wins certain
amount of money.

This process is a martingale E[Xn+1|Xn] = Xn and the martingale convergence theorem
tells us that whatever the betting strategy either the player bankrupts or quits the game
with the desired amount of money. A claim not hard to believe.

Non-demolition measurements

The standard projective measurement of a system S in a state |ψ〉 with respect to a
basis {|1〉, |2〉, . . . } reports outcome j with a probability pj = |〈j|ψ〉|2 and evolves the
system into the posterior state |j〉 upon such event. We aim to see detail dynamics of the
transformation (collapse) of the wave function |ψ〉 into |j〉. To this end we let the system
interact with a series of probes, which are subsequently measured. This picture does not
solve the philosophical problem of collapse of the wave function – we still do projective
measurements on probes – but it illuminates the process of an interaction of the system
with a measurement device.

The theory to be described was motivated by experiments of Haroche. It was derived
by Bernard and Breuer [3], I closely follow their article which you may read instead of
this section as it is well written and covers the material in the more or less same extent.

For concreteness the probes will be two level systems measured in a |±〉 basis.

Interaction with a single probe

The probe is prepared in a pure state |G〉 uncorrelated with the system. The interaction
of the probe with the system is represented by a unitary U . The join initial state |ψ〉⊗|G〉
is transformed by the interaction according to

|ψ〉 ⊗ |G〉 → U(|ψ〉 ⊗ |G〉).

Non-demolition measurement (interaction) corresponds to a special choice of U for
which the basis vectors |j〉 are not altered by the evolution. The evolution still acts non-
trivially on the probe, |j〉 ⊗ |G〉 → |j〉 ⊗ Uj|G〉 for some unitary Uj. By linearity this
defines the transformation for all initial states,∑

j

√
pj|j〉 ⊗G →

∑
j

√
pj|j〉 ⊗ Uj|G〉.

The probability of measuring + or − on the probe after the interaction is

p(±) =
∑
j

pj|〈±|Uj|G〉|2
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and upon measurement result + respectively − the state is transformed into∑
j

√
pj〈±|Uj|G〉√

p(±)
|j〉 ⊗ |±〉. (12)

In particular the population of the jth-level in the posterior state given measurement
result ± is

pj|〈±|Uj|G〉|2

p(±)
. (13)

Remark 18 If we do not measure the probe or discard the measurement result, the trans-
formation acts on the system as a certain Kraus map K. From the Eq. (12) we can read
how this map acts, K(|j〉〈k|) = 〈G|U∗kUj|G〉|j〉〈k|. This is a dephasing map and if the
non-degeneracy condition |〈G|U∗kUj|G〉| 6= 1 is satisfied the states |j〉 and |k〉 are distin-
guishable.

Sequence of probes

We consider a sequence of probes successively interact with the system. Although it is not
essential when we measure the probes, it is easier to think that n-th probe was measured
before the n+ 1-th probe begin to interact with the system.

Let p
(n)
j be the population of j-th level of the system after measurement of the n-

th probe. p
(n))
j depends on the sequence of measurement results, e.g. + − − + . . . , on

preceding probes. These measurement results are random and p
(n)
j is a stochastic process

with recurrence relation given by Eq. (13),

p
(n+1)
j =


p
(n)
j |〈+|Uj |G〉|2

p(n)(+)
with prob. p(n)(+)

p
(n)
j |〈−|Uj |G〉|2

p(n)(−)
with prob. p(n)(−),

where p(n)(±) is a probability to measure outcome ± on the n-th probe given populations

p
(
jn), i.e.

p(n)(±) =
∑
j

p
(n)
j |〈±|Uj|G〉|2.

The following theorem describes the behavior of this stochastic process and connects
non-demolition measurement with the standard projection measurement. To easy the
comparison, recall that such a measurement transforms the state into |j〉 with a probability

p
(0)
j .

Theorem 19 Stochastic process of populations p
(n)
j has a limit p∞j .

Suppose furthermore that the measurement satisfies a non-degeneracy condition

|〈+|Uj|G〉|2 6= |〈+|Uk|G〉|2 for all k 6= j,
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then p∞j is either zero or one with a probability of a corresponding projection measurement.

p∞j =

 1 with prob. p
(0)
j

0 with prob. p
(0)
j .

Proof: The key observation is that the stochastic process p
(n)
j is a martingale. The first

statement, on the existence of limiting populations, then follows from Doob’s convergence
theorem. That p

(n)
j is martingale is a simple computation,

E[p
(n+1)
j |p(n)

j ] =
p

(n)
j |〈+|Uj|G〉|2

p(n)(+)
p(n)(+) +

p
(n)
j |〈−|Uj|G〉|2

p(n)(−)
p(n)(−)

= p
(n)
j (|〈+|Uj|G〉|2 + |〈−|Uj|G〉|2) = p

(n)
j .

We now assume the non-degeneracy condition and we want to prove the zero-one
law for the limiting distribution of populations. Suppose for contradiction that p∞j and
p∞k are non-zero for j 6= k. The non-degeneracy condition implies that |〈+|Uj|G〉|2 and
|〈+|Uk|G〉|2 cannot be simultaneously zero and in particular the limit probability to mea-
sure +, p∞(+) =

∑
j p
∞
j |〈+|Uj|G〉|2, is positive. The limiting probability will not change

upon measuring +,

p∞j =
p∞j |〈+|Uj|G〉|2

p∞(+)
, p∞k =

p∞k |〈+|Uk|G〉|2

p∞(+)
.

It follows form the equations that |〈+|Uj|G〉|2 = |〈+|Uk|G〉|2, which is a contradiction.
If p∞j is not zero for only one level then it has to be equal to 1 due to the conservation

of probability.
Since the process is a martingale, E[p

(n)
j ] = p

(0)
j . In particular

p
(0)
j = E[p∞j ] = Prob(p∞j = 0)0 + Prob(p∞j = 1)1,

which proves the final claim. �.

Remark 20 1. You might have noticed that the non-degeneracy condition for the
Kraus map (see Remark 18) and the non-degeneracy condition of the Theorem are
different. The reason is that even though the interaction might distinguish between j
and k the measurement with respect to some basis might not. However if the Kraus
map is not degenerate you can always find a “good” measurement that will distin-
guish the states. Formally, if |〈G|U∗kUj|G〉| 6= 1 then there exist a basis |±〉 on the
probe such that |〈+|Uj|G〉|2 6= |〈+|Uk|G〉|2.

2. In wider perspective the theorem belongs to a family of zero-one laws describing (in
various settings) the emergence of a fact. The statement “quantum state is in the
level j” becomes asymptotically true or false with certain probability, a fact emerged.
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The last question I want to address is how do you distinguish which level becomes
asymptotically occupied from the sequence of measurement results. This is a random
sequence and the information is encoded in the frequencies of ±. In particular given
that only level j is populated, i.e. pj = 1, we have p(+) = |〈+|Uj|G〉|2. Given the non-
degeneracy condition this means that a sign of approaching level j is that frequencies of
+ results approach |〈+|Uj|G〉|2.

If you are not familiar with stochastic processes it might be hard for you to imagine
how all this works, how random sequence of pluses and minuses changes occupation levels,
how they approach some (random) final outcome, etc. If that is the case and you want
to invest energy into understanding the topic, I suggest that you write a small computer
program to simulate the stochastic process, for some chosen |G〉 and Uj and |±〉.
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