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Quantum many-boson systems

The first step to build a theory: how to label states?
One particle states
e How to label states of one boson in 1D space? — |x). The most

general state [¢) = [ dxi(x)|x

e Energy eigenstates (momentum eigenstates) k) = [ dxe!*|x), where

wave vector k = int. x 2. (The space is a 1D ring of size L)
- Momentum = p = hk
- Energy = ¢ = (Or ¢k = h|k|c for massless photons)
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Many-particle states

e Label all zero-, one-, two-, three-, ... boson states:
|0)
k1)
|k1, k2>, ki < ko (’kl, k2> = ’kz, k1> for identical particles)
|ki, ko, k3), ki < ko < k3

e Label all zero-, one-, two-, three-, ... boson states
(The second quantization — quantum field theory of bosons):
ni = the number of bosons with wave vector k.
|{nk = 0}) is the ground state. |{n, # 0}) is an excitated state.

[{nx = 0}) = |0). No boson

|{nk, = 1,others = 0}) = |k1). One boson

{nk, =1, nk, = 1,0thers = 0}) = |ki, ko) = | ko, ki1).

{nk, = 1,nk, =1, nk, = 1,0thers = 0}) = |ki, ko, k3) = |ko, ks, k1) = - - -.
{nk, =2, nk, = 1,0thers =0}) = |ku, k1, ko) = |k1, ko, k1) = -+ -.
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A many-boson system with no interaction

= a collection of decoupled harmonic oscillators

nix — the occupation number of the bosons on orbital-k.
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e If we ignore the interaction between bosons |{n,}) is an energy
eigenstate with energy E = ), nie

e The above energy can be viewed as the total energy of a collection of
decoupled harmonic oscillators. The oscillators are labeled by
k =int. x 2T’T The oscillator labeled by k has a frequency wy = €, /h.

e A collection of decoupled harmonic oscillators = vibration modes of a
vibrating string. The two polarizations of bosons — two directions of
string vibrations
— quantum field theory of 1D boson gas.
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Many-body Hamiltonian for non-interacting bosons

View 1D non-interacting bosons (with 0,1,2,3,- - bosons) as a
collection of oscillators with frequencies wy:

A A ]_ h2k2 ] 27T
H:zk:(azakJFz)hwk; mkzekzﬂ, k = int. x T

raising-lowering operator

A k (A i A A At
N ot + 1 =06
dk 2h (Xk kpk), [ak,ak] k,k

alalnk) = milnk),  aLlng) = |m + 1), Aklnk) = |ng — 1).

e All the energy eigenstates are labeled by |{n.}) = @, |nk).
The total energy Eiot = >, (nk + %)ek.
The total particle number N =", ny.

é;r(, 4y are also creation-annihilation operator of bosons.
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Many-body Hamiltonian for bosons on lattice

photodiodes.

e Infinite problem on quantum field theory:
The vaccum energy Eg =0or Eg =), %ek?
The right answer Eg = ), %ﬁk = 00

e Non-interacting bosons on a lattice

For 1D non-interacting bosons
(with 0,1,2,3,--- bosons)

A 1
= Z (éj{ék + E)Ek’ €k = 2t[1 — cos(ka)],
keBZ
k =int. x — [—— f]

© Source unknown. All rights reserved. This
o content is excluded from our Creative

[ ) The vacuum energy now iS fl nite Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use.

1 5 dk 2t
o= Y Se= L/ S<atl1 — cos(ka)] = L2 = 21N,
keBZ *’;

e The vacuum energy can be measured via Casimir effect.

Xiao-Gang Wen Modern quantum many-body physics — Interacting bosons


https://ocw.mit.edu/help/faq-fair-use

Many-body Hamiltonian for interacting bosons on lattice

e The total particle number operator

N = Z a4 = 299 b, [95/7@;] = 0.

keBZ
ak_§ N~Y2etkig,  xi=ai, i=1,- N

-hg=a
- Aj = ¢;P; is the number operator for bosons on site /. gB,T, ©; are
creation-annihilation operator of bosons at site-/.

ay is the number operator for bosons on orbital k.

~ =X

e Many-body Hamiltonian for interacting bosons

H= (§}: 6k - Z;m, + Z i i i

= ~(8)ak + dkd])ex — Z/w pit+ Y Vipleiple;
k i i<j

= 3 [e(@10s + 2i]) — t(ela 01 + Bl0i)| - bl + Lig; Viel @il s
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Hard-core bosons and spin-1/2 systems

e Assume on-site interaction Vj; = Ud;;, p=U+2B+t —
Uhih; — pnj = U(ﬁ, — 1)ﬁ, — (28 + t)ﬁ,‘, U— +o0
The low energy sector for interaction — n; = 0,1 (], 1) or

of —1 R 00 B affiof/

Hamiltonian for interacting bosons = a spin-1/2 system
Hxy-model = Z [— t( ?_UI-_Jrl -+ O',-_O';il) — BO’,Z}
I
:Z {—J(Ufaﬁrl—i-a,}-/aﬁl)—Ba,-z}, J= %t
e U(1) symmetry gen’erated by Uy = [[; e'%7/2: UyHU, = H.

>.;07 ~ N + const. conservation.
e Phase diagram: Treat operators o as classical unit-vector (spin) n.

B<0:|}--y) B~0:|—--—=) B>0:|1---1)

0-boson/site Superfluid 1-boson/site (Mott insulator
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Hard-core bosons and spin-1 systems

e Assume on-site interaction to have a form U[(n; — 1)* — (n; — 1)?].
The low energy sector for the interaction: n; =0,1,2 (/,0,7) or

n,-:S,-Z—l, 95,':51-_.

Hamiltonian for interacting bosons = a spin-1 system (U(1) symm.)

H = Z [ t(57 S0+ 57 S15) — BS? + V(S7)?]

- Z | = J(SISKa + SS) - BST + V(STP.
i
e B-V phase diagrame Treat operators o as classical unit-vector (spin) n.

e Two different critical points:
- The black-line represents a z = 2 critical point.
(ie excitations have dispertion relation wy ~ k)

- The filled dot represents a different ¢ -
z =1 critical point with emergent Lorentz symmetry B
(/e excitations have dispertion relation wy ~ k) J=1
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Many-body Hamiltonian

e Consider a system formed by two spin-1/2 spins. The spin-spin
interaction: H = J(o50% + o]0y + 0%03).

where o7”% are the Pauli matrices acting on the i spin.

J < 0 — ferromagnetic, J > 0 — antiferromagnetic.

Is H a two-by-two matrix? In fact

H=—-J[(c*®!)-(l®c)+(c?@!)-(I®cY)+(c7® 1) (| ®c7)]

H is a four-by-four matrix:

1 0 0 0 0 0 0 1 0 0 1 0
0 -1 0 0 00 1 0 0 0 0 -1

Z ~Z X X X z
91%2 =10 0 -1 0 91%2 = o 1 0 0 1%2= 11 0 0 o0
0 0 0 1 1 0 0 0 0 -1 0 0

00/ =1 - QI®cFI®---®lisa 2Nsite_dimensional matrix
Example: An 1D ring formed by L spin-1/2 spins:

L L
— X X z
H=-> olofy1—h> o
P i—1

— transverse Ising model. H is a 2& x 2& matrix.
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Condensed matter: A local many-body quantum system

e A many-body quantum system
= Hilbert space Vo + Hamiltonian H

- The locality of the Hilbert space:
Viot = ®,’-V:1Vi

- The i also label the vertices of a graph
e A local Hamiltonian H = ZX Hy and Hy are local hermitian operators
acting on a few neighboring V;'s.

e A quantum state, a vector in Vi
W) = 5 W, ) m) © - ® ),

|m,-> eV
e A gapped Hamiltonian has f—
the following spectrum as N — oo e | A=>finite gap
round-state
(eg H = — Z(JUIZU/'ZJr(S + hO'f)) gubspLi £—>0
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Many-body spectrum using Octave (Matlab or Julia)

Transverse Ising model on a ring of L site:
L

L
H = —JZU?U?H — hZaiz

H is an 2L-by-2L matrix, whose eigenvalues can be computed via the
following Octave code 7
(the code also run in Matlab or Julia

with minor modifications):

X=sparse([0,1;1 0]) Z=sparse([1,0;0,-1]); XX=kron(X,X); NS
L=13; h=1.0; J=1. LL]
H=-kron(kron(X, speye(2 (L-2)) ).X); 4
for i=1:L-1 |

H=H - kron( speye(27(i-1)), kron(J*XX, speye(2°(L-1-i)))) ; =
end LL] 3
for i=1:L

H=H - kron( speye(27(i-1)), kron(h*Z, speye(2"(L-i)))) ; 2
end

eigs( H , 10, 'sa’) # compute the lowest 10 eigenvalues

The 100 lowest energy eigenvalues 5 ‘ ‘
for L = 16, as functions of h/J € [0, 2]. ' “h/J
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Quantum phases and quantum phase transitions

e Phases are defined through phase transitions. &

What are phase transitions?

As we change a parameter g in Hamilto- A
nian H(g), the ground state energy density

— gl
€g = Eg/V or the.averag.e of a local operator E— E1 of trans. lsing
(O) may have a singularity at g.: the system for L=3,---,13
has a phase transition at g.. ‘ ‘ ‘ ‘
The Hamiltonian H(g) is a smooth function of
g. How can the ground state energy density st
€g be singular at a certain g.?

B

1k

0.5

e There is no singularity for finite systems.
Singularity appears only for infinite systems. of, ‘ ‘ ‘ ‘

0 0.5 1 15 2

e Spontaneous symmetry breaking is a mechanism to cause a singularity
in ground state energy density ¢,.

— Spontaneous symmetry breaking causes phase transition.
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Symmetry breaking theory of phase transition

It is easier to see a phase transition in the semi classical approximation
of a quantum theory.

e Variational ground state |W) for H, is obtained by minimizing energy
eg(P) = M\flww against the variational parameter ¢.
€g(®) is a smooth function of ¢ and g. How can its minimal value
€g = €g(Pmin) have singularity as a function of g7

e Minimum splitting — singularity in % at g.. Second order trans.
State-B has less symmetry than state-A.
State-A — State-B: spontaneous symmetry breaking.
- For a long time, we believe that
phase transition = change of symmetry
the different phases = different symmetry.

\J/tp@gi\i (pd> ¢ g\<\§4 0 gsg Y0

‘ ‘\o/
8>8¢ 8<gc
.« . . . . . . 0C .
e Minimum switching — singularity in ngg at g.. First order trans.

€

>\ |/

Xiao-Gang Wen Modern quantum many-body physics — Interacting bosons



Example: meanfield symmetry breaking transition

Consider a transverse field Ising model H =, —Joo7,; — hof

Use trial wave function [W,) = @;[1);), |1;) = cos £| 1) + sin §| 1) to
estimate the ground state energy

(Vo HIVg) = = > (ilof i) (Pirlofy g [vive) — h 2 (ilof |i).

= (2J cos % sin 2)2 — h(cos? £ — sin? g) =sin?¢ — hcos ¢

Phase transition at h/J = 2. (h/J = 1.5,2.0,2.5)

Order parameter and symmetry-breaking phase transition
¢ or o are order parameters for the Z> symm.-breaking transition:
- Under Z, (180° S* rotation), ¢ — —¢ or o — —o
- In symmetry breaking phase ¢ = +¢o, (0F) = +.
In symmetric phase ¢ = 0, (¢) = 0. (Classical picture)
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Ginzberg-Landau theory of continuous phase transition

e Quantum Z»-Symmetry: generator U = HJ- o7, U? =1.
Symmetry trans.: UJ,-ZUT = 0%, UU;(UT = —0o7, UO’%/UT = —o?.
— UHUT = H. If H|tb) = Egend|1), then UH[Y) = EgnaU|)) —
UHUTUY) = Egna U|)) — HU|Y) = EgnaU|)

Both [¢)) and U|¢)) are ground states of H:
Either |¢)) oc U|v) (symmetric) or [¢)) o¢ Uly)) (symm.-breaking).

e Trial wave function |V;) = ), (cos %\ 1)i + sin %] i) UlVy) = |V_y)
= (Vg H|Wy) = (W | UTUHUTU W) = (W_g|H|V_g) —
e(h,8) = e(h, —9)

o If [W,—g) is the ground state — symmetric phase.

If [W40) is the ground state — symmetry breaking phase.

e Near the phase transition ¢ is small —
1 1
e(h,0) = co(h) + Sa(h)¢” + 2 b(h)d" + -

Transition happen at a(h.) = 0.
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Properties near the T = 0 (quantum) phase transition

e Ground state energy density:
¢ =0, egmd(h) =¢o(h) if a(h) >0
¢ = i¢:]%mwpqdm_lﬂ>w4)<o
€grnd (1) is non-analytic at the transition point: a(h) = ag(h — hc):

(h) 60(h)7 h > hc
€grnd = 2
¢ cgma(h) = eo(h) — 23S h < b
e Magnetization in z-direction: M, = de%";’](h).
M, =290 s X
MZ _ fkggh) 1 ao(hl;hc)’ h < hc 8 X
grnd
— AM, iAh| M:
e Magnetization in x-dir.: M, = (¢*) =sin¢ M
¢ =41/ s AM, ~ |Ah[1/2
e Magnetic susceptibility in x-direction: hc h
From e(h, ¢, hy) = a(h)<b2 —hp+--- J

_>Mx—¢—(i_>Xx:ﬁ_>AXXNiAhi_l
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Quantum picture of continuous phase transition

No symmetry breaking in quantum theory according: If [H, U] = 0, then
H and U share a commom set of eigenstates. The ground state
|Wgrng) of H, is an eigenstate of U: U|Vyng) = eie\\llgmd>.

No symmetry breaking.

|Wy) and |W_4) in semi classical approximation are not true ground
states. The true ground state is |Wgng) = [Wy) + [W_y4) which do not
break the symmetry.

e Quantum picture: Symmetry-breaking order parameter is zero,
(Vgrnd|o|Wgrmd) = 0, for the true ground state. But the ground
states, (Vgna) = V) + V) and [V, ;) = [W,) — [W_,), have an
exponentially small energy separation A ~ ¢ L/¢,
Symmetry-breaking order parameter is non-zero only for approximate

ground states, |W,) and [V_g4).

e Detect symmetry breaking from correlation function:
Iim‘,-,jHOC<\|fgmd|afaj<]\llgmd> = const..
Symmetric phase: lim ;oo (Vgrnd |07 0f [Wgrna) = 0
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Collective mode of order parameter ¢: guess

e From the energy €(h, ¢) = eo(h) + 3a(h)¢? + 7 b(h)o* +
— Restoring force f = —agzb — bg® — EOM p¢ = —ap — b>.
o k # 0 mode: ¢(h,¢) = 2g(0x¢)? + Sa(h)¢? + Lb(h)¢* +
Restoring force f = 82</5 —ap — b(b
— EOM p¢ = gd2¢ — a¢ — bg3. Where does p come from?

2
e Collective mode: wy = \/ﬁ

E a(h) ao(h hc — 30 2 |2 3

nergy gap: A = o =/ 5 y,

- At the critical point h = h.: A IR, A
Gapless = diverging susceptibility 1 ~1/L v

wi ~ k%, z=1. z is the dynamical critical exponent.
z =1 — Emergence of Lorentz symmetry.

Continuous quantum phase transition between gapped phases =
gap closing phase transition. Continuous quantum phase
transition between gapless phases : more low energy modes at
the critical point.
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Collective mode of order parameter ¢: calculate

Consider a transverse field Ising model H = — 5 (Jo¥o¥, | + hay).
Trial wave function |W,) Z $i¢¢:i>, )= % ’(2 ey: ¢; complex)
(o) = (o) =
1+ gif? T+
e Average energy (¢i + ¢ (i1 + ¢,+1) 1— |¢i|2
Z[ L+[6iP)A+16ial?) 1+ el

Geometric phase term

Ot i

— i . 1/2d 1/2
(61l '¢>—1+|¢,\2*(”‘¢") =+ oiP)
1d
=10 f’@iz — 5 gz e +1eif?)

Phase space Lagrangian (quadratic approximation: ¢; = g; + %p; small)
L= <¢¢;‘i% - H|®¢;> - Zi 197 ¢i + J(¢i + ¢7)(¢i+1 + ¢T+1) - 2h|¢i\2

= > [Pigi + 4Jqiqis1 — 2h(q? + 1P7)]

Xiao-Gang Wen Modern quantum many-body physics — Interacting bosons



Collective mode of order parameter ¢: calculate

EOM:
qi = g: = gpm pi = —g: = 4J(qi+1 + qi—1) — 4hq;
in k-space (qi = 0, N-12cikiag,  p — 3, N-L/2eikiap,).
Gk = gpkv, pr = 4(Je' + Jem 1 — h)q,

k label harmonic oscillators with EOM

Gk = 2h[2cos(ka) — hlgx — —wi = 2h[2J cos(ka) — h]

The dispersion of the collective mode

wik = \/2h[h — 2J cos(ka)]

e For h > 2J, gap = /2h(h — 2J).
For h = 2J, gapless mode with velocity v = 2aJ and wy = v|k|.
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Many-body spectrum at the critical point

e At the critical point, the gapless excitation is described by a real scaler
field ¢ (or g;) with EOM:

6= v20%e.

: _2
= an oscillator for every k = n A
= a wave mode with wy = v|k|
= a boson with ¢(p) = v|p|

e Many-body spectrum for right movers:

— -

& - _
_ e -
& — - — — () - —
- ) — o 00 — e — oo eeee
0 1 2 1+1 3 241 1+1+1 4 36l 242 24141 T+I+1+l

Do not count for the k = 0 orbital.

e Total energy and total momentum for right movers E = vK.
Magic at critical point: Emergence of Lorentz invariance ¢ = vk.
Emergence of independent right-moving and left-moving sectors (extra

degeneracy in mony-body spectrum): conformal invariance
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z =1 and z = 2 critical points

The transverse Ising model, H = — 3 .(Jo o7 | + ho?),
has z = 1 critical points at h = +J

The spin-1 XY model,

H = 32i(—JSy Sty — JS] Sty + V(SF)? — BSP),
has z = 1 and z = 2 critical points.

e The z =1 criticial point appears when B = 0 and
the spin-1 XY model has the 5% — —5% symmetry.

- The phase space Lagrangian of has a form £ = A¢*¢ + Bo* ¢ — C|og|?
for the collective mode at the criticial point. When B =0, A =0,
which leads to the z = 1 critical point. When B # 0, A # 0, which
leads to the z = 2 critical point.
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The minimal value of dynamical exponent z is 1

e The z = 2 critical point can appear if we have U(1) spin rotation
symmetry in the S*-SY plane. In this case, the critical point describe
the transition from a gapped Mott insulator (spin polarized) phase to a
gapless superfluid (XY spin order) phase (U(1) symmetry breaking
phase) with z = 1 (ie w ~ k).

- The gapless is the Goldstone mode. Spontaneous breaking of a
continuous symmetry always give rise to a gapless model.

- The critical point always has more low energy excitations then the two
phases it connects.

e The z = 1 critical point can appear if we have Z, spin rotation
symmetry in the S — —5%. In this case, the critical point describe the
transition from a gapped symmetric phase to a gapped spontaneous
Z>-symmetry breaking phase.

e z <1, w~ |k|” is not allowed for short range interaction, since the
velocity for any excitations has an upper bound v < al|H; ii.||/h
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The property of k = 0 mode (quadratic approx. valid?)

e Now consider transverse Ising model in d dimensions (g ~ J, h)

. 1
L=>"Y" [pidi +4Jqiqisu] — > [2h(q] + 4 P7) — &aj]

i p=xy.- i
The transition point now is at h = 2dJ

e At the critical point h = 2dJ,
the k = 0 mode is described by the Lagrangian

. N
L = Npg — §hp2 — Nggq*
. ho, g4 o o
=pg—5p" -G, P=VNp, g=vVNg
e The zero-point energy from the k = 0 mode p§ ~ 1 — § ~ N/°
ho 8.4 h.o 8.4 ~1/3
. —_ _ ~ — _ ~ N /
mininizing: 5 p + N K + Kl J

The non-linear term is important for k = 0 mode.

- The zero-point energy from the kK mode (ignoring the non-linear term)
Jk ~ INTYE|,
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The non-linear effect for k mode

e At the critical point h = 2dJ, the k mode is described by the Lagrangian
N
L = Npg — JNk?q? — Ehpz — Ngq*

. . h, . - .
= pG— IKG — B - 25, p=VNp, §=Nq.

2 N
e The zero-point energy from the kK mode G~ 1 — p~1/§ ~ Vk
o h 8 ; h g
k2 2 w2 =2 ~ Jk k
Jk°g° + P + N Jk + —k + N2
The non-linear term is important if
g 1
Nk2 > Jk or k< e

- Since the smallest k is 1/d For d > 3 there is no k satisfying the
above condition (except k = 0). We can ignore the non-linear term.
Our critical theory from quadratic approximation is correct.

- For d < 3, we cannot ignore the non-linear term.

Our critical theory from quadratic approximation is incorrect.
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Quantum fluctuations: relevant/irrelevant perturbations

EOM of Z, order parameter for the d + 1D-transverse Ising model
po = g36 + ad + bg?
Is the b¢3 term importent at the transition point a = 07

o The action S = [ dtdx [3p(d)? — Lg(0x¢)? — Fag? — 1bg*]

- Treating the above as a quantum system with quatum fluctuations, the
term %b(b“ is irrelevant if dropping it does not affect the low energy
properties at critical point a = 0. Otherwise, it is revelvent.

- Rescale t to make p = g and rescale ¢ to make p =g = 1.

e Consider the fluctuation at length scale £. The action for such
fluctuation is S¢ = [ dt [2¢9(d)? — L9202 — Lped ¥
— Oscillator with mass M = ¢9 and spring constant K = £972.

Oscillator frequency w = /K/M = 1/¢.
Potential energy for quantum fluctuation £ = Jw = $£972¢2.
Fluctuation ¢? = ¢179,
Compare £972¢2 and b¢ (;54 be* ¢’4 = be3~9 for £ — oo, we conclude
the b¢* term is irrelevant for d > 3. Relevant for d < 3
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Simple rules to test relevant/irrelevant perturbations

e After rescaling t to make p = g and rescaling ¢ to make p = g = 1, the
action becomes S = [ dtdx [3(¢)? — 3(0x0)? — 2a¢? — 1bo?]

e Estimate from dimensional analysis:

[5] = [L]0 (from ™). [t] = [L] (from 5(¢)* — 5(0x¢)?)
[¢] = [L]°%°, [a] = L2, [b] = [1]2
- Counting dlmenS|ons.
[t] = -1, [S] =0.
[¢] = 452, [a] = 2, [b] =3 — d.

e From the scaling dimensions, we can see that the quantum fluctuations
of ¢? are given by ¢* ~ 179, and the dimensionless ratio of Ldéq?
and L9b¢* terms is given by 2 Ld 2¢2 ~ bL3~d
The bo* term is irrelevant if [b] < 0. Relevant if [b] > 0.

The a¢? term is always relevant since [a] =2 > 0.
e More precise definition of scaling dimension:
The correlation of ¢ at the critical point a=b=0
(p(x)b(y)) = . hy is the scaling dimension of ¢: h, = 951,

1
2h
|x—y|™'¢
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Specific heat at the critical point

e Thermal energy density

o edk vk kET? /+°° G X _ kT
oo 2m evIKI/keT — 1 2v Jo eX—1 v 6
where f0+°° dx 25 = %2

e Specific heat

Czaﬂzkﬂz:(zkﬂ) (Ekﬂ)
r oT B7y 3 6 5 v Jr 62 v /)L

e The above result is incorrect. The correct one is
17w, kgT 17w kT
- (350T), (35007
T <26Bv R T\26 ),
e 5 = c is called the central charge = number of modes.

1

2
e Many-body spectrum for one right-moving mode (¢ = 1):
1,1,2,3,5,7,11,--- = partition number
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Specific heat away from the critical point

Away from the critical point, the
boson dispersion becomes

ex = Vv2k? + A? where A is the
many-body spectrum gap on a ring
(the energy to create a single boson).

Inr-~pu I

Many-body spectrum for a ring

many-body spectrum = spectrum of the set of the oscillators
(x2 in the symmetry breaking phases)
Specific heat

_ A
c~ T% kBT

The above result is correct in the symmetric phase, but incorrect in the

symmetry breaking phase. The correct one is
_4/
c~ T% kT

Remark: The gap in many-body spectrum for an open line is A/2.
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What really is a quasiparticle? — factor 1/2

The answer is very different for gapped system and gapless systems.
Here, we only consider the definition of quasiparticle for gapped
systems.

Consider a many-body system Hy = > H,, with ground state |W,.q).

e a point-like excitation above the ground state is a many-body wave
function |W¢) that has an energy bump at location &:
energy density = (V¢ |H,[W¢) excitation

engergy densityy & ER0L S ensty

More precisely, point-like excitations at locations &; are something that
can be trapped by local
traps 0He,: |W¢,) is the gapped
ground state of Hy + >, dH, eroundostate A—>finite gap
— the Hamiltonian with traps. subspace e—>0

!
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Local and topological excitations

Consider a many-body state |W¢, ¢, ...) with several point-like excitations
at locations &;.

Can the first point-like excitation at ¢; be created by a local
operator O, from the ground state: (V¢ ¢, ..) = O [V, )7
|We, ¢,...) = the ground state of Hy + 0Hg, + 0He + -

Ve, ...) = the ground state of Ho + dHg, + - -+

If yes: the point-like excitation at &7 is a local excitation
If no: the point-like excitation at &; is a topological excitation
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Local and topological excitations

Consider a many-body state |W¢, ¢, ...) with several point-like excitations
at locations &;.

Can the first point-like excitation at ¢; be created by a local
operator O, from the ground state: (V¢ ¢, ..) = O [V, )7
|We, ¢,...) = the ground state of Hy + 0Hg, + 0He + -

Ve, ...) = the ground state of Ho + dHg, + - -+

If yes: the point-like excitation at &7 is a local excitation
If no: the point-like excitation at &; is a topological excitation

Example: Consider an 1D Ising model Hy = —J ), 0707, | with
one of the degenerate ground states Wo) = | M)
a state w/ three point-like excitations Ve eoe,) = | T

& & & - The point-like excitation at &7 is a spin flip created by s
— a local excitation.

- The point-like excitations at &», {3 are topological excitations that
cannot be created by any local operators.
The pair can be created by a string operator W,¢, = fi& o

X
i
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Experimental consequence of topological excitations

e The topological topological excitations are fractionalized local
excitations: a spin-flip can be viewed as a bound state of two wall

excitations spin-flip = wall ® wall. | M)
e Energy cost of spin-flip A, = 4J
Energy cost of domain wall A, = 2J.

e The many-body spectrum gap on a ring Asfinit
A = Agip = 2. This gap can be ground.suate E‘Z o
measured by neutron scattering. P

_ Atherm

e The thermal activation gap measured by specific heat c ~ T%¢ k&7
is Atherm - AWaII-

The difference of the neutron gap A and the thermal activation
gap Aiherm — fractionalization.
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Another example: 1D spin-dimmer state

Consider a SO(3) spin rotation symmetric Hamiltonian Hy whose
ground states are spin-dimmer state formed by spin-singlets, which
break the translation symmetry but not spin rotation symmetry:

tHEHEHEHEDED D)
HHEHEHEHEHEHEHE

e Local excitation = spin-1 excitation
(tHEHEDTTEDEH DY)

o Topo. excitation (domain wall) = spin-1/2 excitation (spinon)
O EH DTN

e Neutron scattering only creates the spin-1 excitation = two spinons. It
measures the two-spinon gap (spin-1 gap).
Thermal activation sees single spinon gap.
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Neutron scattering spectrum

Neutron dump energy- Neutron putse

(white beam) ~ Monochromator Monitor Beam Stop

momentum into the sample ‘ . D % I

creating a few excitations. b
- Without fractionalization, nor trans. symm. breaking \ s e
espin-1(K) = 2.6 + 2 cos(k)
- With fractionalization and trans. sym. breaking r<\
6spin—l/Z(k) - %G(Qk)Spin—l s
one spin-1 + two spin-1 two spin-1/2 + four spih-1/2
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2D Spin liquid without symmetry breaking (topo. order)

The spin-1 fractionalization into spin-1/2 spinon can happen in 2D spin
liquid without translation and SO(3) spin-rotation symmetry breaking:

- On square lattice:
chiral spin liquid ) W(RVB)|RVB) — topological order
Kalmeyer-Laughlin PRL 59 2095 (87); Wen-Wilczek-Zee PRB 39 11413 (89)

Z, spin liquid > |RVB) (emergent low energy Z, gauge theory)
Read-Sachdev PRL 66 1773 (91); Wen PRB 44 2664 (91)

Z»-charge (spin-1/2) = Spinon. Z»-vortex (spin-0) = Vison. Bound
state = fermion (spin-1/2).

s D
B duy S

Xiao-Gang Wen
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2D Spin liquid without symmetry breaking (topo. order)

- On Kagome lattice:

.

a4

© American Physical Society. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

J1—J2—J3 model Gong-Zhu-Balents-Sheng arXiv:1412.1571

e Uniform spin susceptibilty comes from spin excitations:
y ~ e Bsinen/keT | 3 strong magnetic field, the .‘
activation gap Agpinon is reduced to Agpinon — Bgs. e

Feng etal arXiv:1702.01658 CuzZn(OH)eFBr

a) b)®

units}

Intensity (arb.

e 12 ]
f (MHz) B(T)

© IOP Publishing. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

Knowing the g-factor, we can measure the spin s of the spinons.

Xiao-Gang Wen
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Duality between 1D boson/spin and 1D fermion systems

To obtain the correct critical theory for the transverse Ising model, we
need to use the duality between 1D boson/spin systems and 1D fermion
systems.

Duality: Two different theories that describe the same thing.

Two different looking theories that are equivalent.

e If we view down-spin as vacuum and up-spin as a boson, we can view a
hard-core boson system as a spin-1/2 system. Now we view a system of
hard-core bosons hopping on a line/ring of L sites as a spin-1/2 system.
How to write down the spin Hamiltonian to describe such a
boson-hopping system?

o* = (06X £10”)/2: o; annihilates (c;" creates) a boson at site-/,

[ 1) =10),1 1) = |1). Hboson-hc = >_;(—to; 07,4 + h.c.) describes a
hard-core bosons hopping model.

e Similarly, we can also view a system of spin-less fermions on a line/ring
of L sites as a spin-1/2 system. How to write down the spin
Hamiltonian for such a fermion-hopping system?
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Jordan-Wigner transformation on a 1D line of L sites

oec =0 <O o = (06X £ i0”)/2. One can check that
{c,gy=1{c.c/y =0, {a,c}=6;. {AB}=AB-BA
C;f, ¢; create/annihilate a fermion at site-/, | [) = (0),| 1) = |1)

e Mapping between spin/boson chain and fermion chain:

C;fc,- =o; 0 = (—0% +1)/2 = n;, fermion number operator
T =gt 572 — 5=t P P JU
CiCitl =0; 0i410;7 =0 Oiqys CiCit1 = 0; 0j10; = —0; Tjyq

e XY model = fermion model on an open chain
Heermion = E,‘(_tcij{ci-i-l + h.C.) — /ﬁn,' > )
Hxy = Zi(*tajraiiq—l + h.c.)+ M% =2 *%(C’fgﬁl + U,}'/U?/H) + M%
e A phase transition in XY model: as we tune p through po = £2t, the
ground state energy density ¢, has a singularity
— a phase transition.
How to solve the model exactly to obtain the above result?
The model Hiermion of Hxy looks not solvable since H's are not a sum
of commuting terms.
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Make the Hamiltonian into a sum of commuting terms

e The anti-commutation relation
{ang) ={c. 1 =0, {c.df} =6
is invariant under the unitary transformation of the fermion operators:

& = Uyg (g, ={e e =o, {&.el} =0

I’j

e Assume the fermions live on a ring. see the homework
Let ¢y = \% Soiethic (k= 2F x integer)

Htermion = Z(—tC}LCi+1 + hC) + gc;rc,- = Z é(k)l/)}iébk

i k
e(k) = —2tcosk — i, [lw, ¥l ] =0, e = lg = £1.

e From the one-body dispersion, we obtain many-body energy spectrum
E =%, e(k)ng, K=, knx mod 2, n; =0,1.
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Majorana fermions and critical point of Ising model

e N =0X[[,.;0%, XN =0 One can check that

j<i9j> j<i 9j -

ADT =25, N =X DN = {0 N =20, (AL M) =0.

1777 1977
e Ising model = Majorana-fermion on a open chain of L sites:
xX\Y _ iz y Yy _x zZ s X _X
)\,‘)\- =10y, A )\l+1 O'iO-i+10'i —10i0i+1
} : fE : : y
Hlsmg U U U,-Z < Heermion = iy )\,+1 -+ lh)\;-()\i

i
Critical point (gapless point) is at h = 1 (not h = 2 from meanfield
theory): HZM2 = 5" immiy1,  1oig1 = XY, moi = AL

ik
1 2 k 2 . €
© In k-space, Y = 75 opn 3 = 0 € [ @

%JL =Y_k, {Q/J;ta 7l’k/} = Op_x (assume on a rmg) 0 k e
critica . il . k
Hitwian = D 21’28 =Y e(k)jtby,  e(k) = 4|sin 5]

ke[—2m,27) kel0,27]
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1D Ising critical point: 1/2 mode of right (left) movers

e The Majorana fermion contain €
a right-moving mode ¢ = vk and
a left-moving modes. ¢ = —vk 0 k 2nm

e Thermal energy density (for a right moving mode):
B /*OO dk vk _ kET? /*OC x  kiT?m
T o 2mevk/keT 11 2mv J, o r1 v 24

_

“+o00
where [77 dx ST = 1

e Specific heat

der 1 kT
T=oT ~2M T, 6
Central charge ¢ = 1/2 for right (left) movers.
e On a ring of size L and at critical point: the ground state energy has a
form £ = el + 27%(—4£;), where c in the “Casimir term” (the 1/L

term) is also the central charge.
Do we have a similar result for an open Line?
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A story about central charge ¢ (conformal field theory)

e Central charge is a property of 1D gapless system with a finite and
unique velocity. ¢ = ¢; + cg = 0 for gapped systems.
e It has an additive property: A Xgiacking B = C — ca+ cg = cc

e |t measures how many low energy excitation are there.

Specific heat (heat capacity per unit length) C = c%%

Xiao-Gang Wen Modern quantum many-body physics — Interacting bosons



A story about central charge ¢ (conformal field theory)

e Central charge is a property of 1D gapless system with a finite and
unique velocity. ¢ = ¢; + cg = 0 for gapped systems.

e It has an additive property: A Xgiacking B = C — ca+ cg = cc

e |t measures how many low energy excitation are there.
Specific heat (heat capacity per unit length) C = c%%

- Why ground state energy E = p.L — i%’r sees central charge (v = 1)7
Partition function: Z(3, L) = Tr(e ") = e Ble—22 5 | 500

e A magic: emergence of O(2) symmetry in space-(imaginary-)time

Z(B,L)=Z(L,p), have used v = 1.

2wl ¢
This allows us to find Z(5,L) = efﬁLpE*Tﬂ]LﬁoO

Free energy density f = p. — é%i
= pc— 27 Tzi
i 9%F T
Specific heat C = _TW =T%c

Belavin-Polyakov-Zamolodchikov NPB 241,333(84); Ginsparg hep-th/9108028
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The neutron scattering and spectral function (Ising model)

Assume the neutron spin couples to Ising spin via 57 ~ o7 (no S*-spin
flip, but scattering flips S*). After scattering, the neutron dump
something to the system |W) — o#|W). What is the scattering
spectrum? The spectra function of o7:

I(E,K) = (V|o?6(H — E)é(K — K)o?|W)
2i

i ikii iko(i+1
of = iminiv1 = T elkii gike( +2)1/)k1¢k2
ki,k2
4 ikyi iko(i+1
I(E/ K) = p<w‘ Z e k1 e ka( +2)1/)k17/)k2(5(6k{ + Eké — E)
ki,k2
Ok + k= K) Y e Hilem 4Dy ol v)
K| K 2 K
4 L (g
T2 > (e + e, — E)S(ki + kp — K)(1 — efallamko))
k1,ko€[0,27]
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The neutron scattering and spectral function (Ising model)
I(E,K) = 4f27r dkldk25(fk1 + €k, — E)o(ki + ko — K)(1 — cos k12k2)

l(E, K) = 4[5 G450k, + ex, — E)o(ka + ko — K)

where ¢, = 4/ sin §|.

I(E, K) Ib(E, K): two-fermion density of states

N

—T K s —T K T
e What is the spectral function for o7 for UI-XUJ-X? Why o7 is hard?
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A general picture of specture function

We can understand the spectral function of an operator O, by writing it
in terms of quasiparticle creating/annihilation operators

O; = Cla,T + CzalTa,TH + -
_ C]_/dk a];( ++C2/dk1dk2 azla‘lf(zefi[kli+k2(f+1)] + ..

Assume one-particle spectrum to be €(k) = 2.6 + 2 cos(k) —
Two-particle spectrum will be E = e(ky) + €(ka), K = ki + ko

E ) |-particle
peak 2—particle
continuum
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Specture function and time-ordered correlation functions

e Consider a 0d system with ground state |0) with energy Ey = 0.
An operator O creates excitations, and have a spectral function
I(w) = (0]OT6(H — w)0|0).

e Time-ordered correlation function of O(t) = eifitQe—ifit.
. (0]0(1)0(0)[0), t>0
6(t) = 101710(:)0(0)]0) = {<oro o) £ <o

)
*dwe ¥t (w), t>0
* dw

el “t(w), t<0

(0
_[(0j0e~ift0l0), t>0
=1 A =1

(0]0etftOl0), t<0O o

G(w)= /dt G(t elwt — / / *i(w’fwfio‘)t,(w/) B efi(w’erin’)t/(w/)
o () ) oo 1))
= dw’ _ _ dow’
/0 W(o.;’—w—iOJr w’ —|—w—10+) ,[ww w' —w — 10T sgnw’

0o
l(w) = sgn(w)I 1G(w). Adding i07" to regulate the integral / dt

e In higher d|men5|ons. G(t,x) = G(w, k) = l(w, k) = Sgn(“’)ImG(w k)
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The neutron scattering and spectral function (XY model)

1D XY model (superfuild of bosons) = 1D non-interacting fermions
Hxy = 35 =5(070%y + 0] o)1) = n% & He= Yi(tc] cia + hc) — pn;
Let us assume the neutron coupling is S7 ~ o7 (ie neutrons see the

boson density) — Spectral function of operator o7 = c,.Tc,- (adding a

particle-hole pair)
I(E,K) = (W|c|ci6(A — E)S(K — K)cl ;| W)

1 ikii ikoi
= 2Vl D etkiethiy! gy 5(—ey + ey — E)

k1,k2
O(—Kj + ks — K) D e~ Ml iy gy )
KLk,
dky dk:
:/ ! 225(f€klJrEszE)(S(*klekg*K)
€ky <0 €k2>0 (27T)

where € = 2tcos k — 1 and ¢ = ﬁ Zk eikiwk
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The neutron scattering and spectral function (XY model)

Spectral function of n; ~ o7 for the superfluid/XY-model
For p =0, (07) =0 For pn=—1, (07) #0

1

—Tr K T —T K T

Particle-hole spactral function. In additional to the low energy

excitations near k = 0, why are there low energy excitations at large

K+ = +2mn? K4 only depend on boson density n! What is the single
; ; +2 o+ — te

particle spectral function of 0,77 o ¢ [j<i(2¢/ ¢ —1)

P =
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The neutron scattering and spectral function (XY model)

+ +
/+1

I(E,K) = (Wleipacio(A — E)S(K — K)cl ],y W)
1 ) e
_ ?<W’ Z elkl(H—l)elkywklwkgé(ek{ + €k2/ o E)
ki, k2
O(k + ks — K) D e KTV TRy ]yl |w)

ki,k;
dki dky
= oo (27)? O(eky + €k, — E)0(k1 + ko — K)[1 — cos(ki — ko)]

Particle-particle spectral function of o; (adding two bosons)

€k2>0
w =0 and
p=-1
2-particle

spectral function
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XY model for superfluid: dynamical variational approach

Compute single-particle spectral function using an approximation

We are going to use the approximated variational approach for XY
model (not bad for superfluid phase. See also prob. 4.2):
H= =32 J(ofof 1 +0f0f,y) + hof).
Trial wave function |W,,) = @;[¢;),
N D+l +\y ¢
where |¢;) = iR (o) = EarEn
bi¢j,th-c. 1—|¢il?

* Average energy H = =37, | 2Jipyis o + i

Geometric phase term (¢,~\%|¢i> — 1%5)’/}"2 4 %#
Phase space Lagrangian in symmetry breaking phase (up to gp,z)
(pj =0+ for J>00r¢;=o(—) +¢; for J<0)
L= (4] — H®g) =317 i +2J(¢id} 1 + h.c.) — 2h|¢i|> — g|¢i|*

=3 it + 2J(pipt, + h.c.) — 2hpipt — gd*[Apiet + ©F + (0])°]
—_——

symm breaking

with g? = 2|J| — h.
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Quantum XY model

Quantization:

i, e]] = 8. pi = J Ly e™Mar, [ak, ab] = big

H =3 —2J(¢ipl1 + h.c.) + 2holi + (21J] — h)(4plpi + wivi + ¢l
- Zk(74JCOSk + 8|J’ - 2/’7)313,( + (2‘J| - h)(aka_k + aj{aik)

—4Jcos k +8|J| —2h 2(21J| — h) ak
_ T
— Zke[oﬂf] (ak a—k) < 2(2|J| = h) —4Jcosk +8|J| —2h aT_k

5 (aT . ) e A ak ek = —4Jcos k + 8|J| — 2h,
kelom] \Fk 2=k \ A o) \af, )" A =2(2|J] — h).

To diagonalize the above Hamiltonian, let

dy B bk - Uy — Vi 1 0 o 1 0
()=o) o= (0 v 5 o= )

2 _ 2 _
where up —vp =1
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Quantum XY model

U (€ A U— (u? 4+ v)ex —2uvA  (1? + v2)A — 2uvey
A e T (P HvA)A = 2uve, (U + vE)ex — 2uvA
Ex O 5 5
<0 Ek) , E.=1/¢ A
2 2 _ Ck
uc vt = —, 2uy = —,
Ex k
y=y B2 B
B 2 2

H=" bl \/(~4J cos k + 8J] — 2h)2 — (4lJ] — 2h)? by
k

\/€2—NA2=E;—0|,_0, spin-wave dispersion
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The spectral function — XY model (only for {(cF) = ¢)

e Spectral function for o ~ ¢ + 59:[
and ()2 ~ 32 4 28] + ()2

1 .
T —iki _t
99,-——5 e M3

VL4 .

1 o .
= — Cilkl(ukbl — ka,k)
VL
k

€k

& +1
I(E,K) ~ ul5(Ex — E) = EkTé(EK — E) — 00lksso
e Spectral function for n; = U’; ~OoF~ it \,9:[

1 .

T —iki il

oty =—F4 E e "(a_k +ay)
VL B

1 . . 4
= \ﬁ Z eflkl(ukb,k — ka)( + ukbl — ka,k)
k

E
I(E,K) ~ (uk — vi)?6(Ex — E) = - fA(s(EK — E) = Olks0

Xiao-Gang Wen Modern quantum many-body physics — Interacting bosons



The spectral function — XY model (only for (cF) = ¢)

The following picture work in higher dimension since <U,-+> = ¢

(symmetry breaking) <(f,-+(r;> ~ const. for large |i — j|

of E A 1-particle
1 peak 2—particle
continuum
I K K

But does not quite work in 1 dimension (or 141 dimensions) since
(o") = 0 (no symmetry breaking).

1
We only have a nearly symmetry breaking

(070 for large |i — j|

1
i —j°
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Neutron scattering spectrum for 2-dimensional a-RuCl;

Banerjee etal arXiv:1706.07003
e Spin-1/2 on
honeycomb
lattice
with strong
spin-orbital
coupling.
e Spin ordered
phase below
8T, spin liquid
above 8T
e Magpnetic field:
(a-e) B:0,2,4,6,8T
(a-e) T =2K
(f) T=2K,B=0T

Intensity (ard. units)
Intensity (arb. units)

Intensity (arb. units)

Intensity (arb, units)
Intensity (ard, units)

05 0s

0
(M.0,0;

© Springer Nature Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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1d field theory to study no U(1) symmetry breaking in 1D

Phase space Lagrangian in “symmetry breaking phase” of 1D XY
model: &; = (¢ + gj)e ¥, 32 = %, near the transition ¢ ~ 0

L= "i¢i¢i +2J(¢i¢}y1 + h.c.) — 2h|i* — gley*

_ . 1
~> (6+ )0 + 50:(0 + ai)’
+ 24|62 (e!0=%+1) 4 h.c) — 4(2J — h)q?,

where we kept up to q,-2 terms. The total derivative term %&(c/_ﬁ +qgi)?
can be dropped. The total “derivative”’ term ¢26; cannot be dropped
since it is not a total derivative ¢20; = i¢?e'?0re 17,
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1d field theory to study no U(1) symmetry breaking in 1D

After dropping ¢70; term, we obtain

L= (" +26a)0; — 2J|6[*(0; — 0i11)> — 4(2J — h)q?

i

= [ ax 18 + Za0it) - 2213 alo00or - 2=
——
Oxp/2m -

B 1 1 » 1 2, ¢°
= [ ax 50000 — (OO~ Valone P + 2000

where Vj = W’ V, = &
- Momentum of uniform 60(x = % = int. — ¢ also live on S*:

p~ 42T

Both ¢ and ¢ are compact angular fields living on S*.
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1d field theory with two angular fields

e Let ;1 =0 and vy = ¢, we can rewrite that above as phase space
Lagrangian as

' 2 1 1 °
L= [ dx —0yp20rp1 — — V4 (Oxp1)? — — Vo(Ox2)? + =0
/ X 4 x©20: 01 py 1(0x¢1) 4r 2(0xp2)” + ; t 1,
which has the following general form

' K V 01
L= / dx M5 010005 — 00100, @1 ~ 1+ 21, K =
v i 10

e A very generic 141D bosonic model: Compact fields ¢; ~ ¢; + 27.
V' is symmetric and positive definite. K is a symmetric integer matrix.

- Positive eigenvalues of K — left movers.
Negative eigenvalues of K — right movers. (See next page)

- The model is chiral if the right and left movers are not symmetric.

- For bosonic system, the diagonal of K are all even. For fermionic
system, some diagonal of K are odd even. 01

- The field theory is not realizable by lattice model if K 2* (1 O)’
ie has gravitational anomalies.
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1d field theory: right movers and left movers

e Introduce <Z> =U <2l> we can diagonaliz K, V' simultaneously:
2

K — UTKU, V — U"VU. Let U= U, Us.
- We first use U; to transform V — UlT VU =id. K — UlTKUl.
- We then use orthorgonal U, to transform

UlTKUl — U2TU1TKU1U2 = Diagonal(m./ —K2, " ) and

U VUL = id — Uj U] VUL U, = id.

(01 o (V)2 (2vy) L2
e For our case of K = <1 O>' we find U = ((2\/2)_1/2 —(2V5)"Y2 )

K — <g 0ﬁ>, k= (ViVh)"Y2, V - id, and

L/dx18 ae—iV(ae)2—iV(a )%ﬁae
o 27TXSDt 4 IAX 47T2X(P a t

——
dropped

= / dx %(fﬂ?xﬁﬁl@t% — 0x¢10x¢1) + %(_Hax¢28t¢2 — Ox$20xh2)

- ¢1 and ¢, are not really decoupled, since their compactness are mixed.
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1d field theory — chiral boson model

L= / Ax 120610161 — vO61) — 1-0sb2(Or2 + vOs02)
T i

EOM: 0;¢1 — vOxd1 = 0 and Orpp + vOxpo =0 (v = 1/k)
— ¢1(x + vt) is left-mover. ¢o(x — vt) is right-mover.

e Consider only right-movers (¢(x) = >_, e *¢,, k= kon, ko = )

L=— / dx if)xgb(atgi) + vOx¢p)  (consider only n # 0 terms)
47

—Zf— (—iK)¢n(d—n+ ivkp_n) = inkda(d_n + ivke_,)

n#0 n>0
Quantize [x, p| = i: [¢p_pn,inkgn] =i, H =) o vknkond_p
Let aL = \/NKkp, — an, =+\/NEP_p

T T
[ap,al]=1, H= ka@ = Z vk(ala, + =

n>0 n>0
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Time-ordered correlation function

e Equal time correlation (0|O(x)O(y)|0) = (O(x)O(y))
e Time dependent operator O(t) = et Oe~ 1" 5o that

(@|O(t)|®) = (¢'(t)|O[®(t)),
where [®(t)) = e~ 1Ht|d), |®/(£)) = e~ 1[0}, We find

ajv(t) - wktaT ¢n(t) - eintgbm
2
o(x. 1) =D e g, k=""n.

n

e Time-ordered correlation

—iG(x =y, ) = (TIo(x, )0y, 0)]) = {22&; g))jf(i ’ ‘3; o

For anti-commuting operators (to make G(x,t) a continuous function
of x, t away from (x,t) = (0,0))

—iG(x—y,t) = (T[v(x, t)q/;(y,O)D = {iig{;)r)(g(j)ib Z z 8

Xiao-Gang Wen Modern quantum many-body physics — Interacting bosons



Time ordered correlation function of chiral field ¢(x, t)

e For t >0 (k = nkg, ko = 2F)

— —iki(x—vt) _ iko(x—vt)
(B(x, )$(0,0)) = > e (mém) =Y _ e (6 —ny Dy

ny,n2 ny>0 i
anp  m
o0 VR /MR
-3 pizmptnl 1 log(1 — 27 T)
—1 nK K
since )70 "L = —Jog(1 — e®), Re(a) < 0.
eFort<0
<(Z)(O O)¢ Z eflkl(x vt) ¢n2¢n1 Z e*lkl X— vt) n1¢n1>
ni,m n;>0

oo
3 x—vt 1 1 s x—vt
zg e TN — _Zlog(l—e L)
nKk K
n=1
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Correlation function of vertex operator e'

: A_B 1[A,B] LA+B _ 1
o Normal ordering (e”ef = e2lABlATE) [6n, ¢—n] = =,, n>0

. eia¢(x,t) — eiazn>0 elkx—vt)g eiO‘Zn<0 eikx=vt)g

creation annihilation
2 . . . o2 .
_ ef%[2n>0 elk(X7Vt)¢mz,,<o elk(vat)¢n]e1¢(x7t) — e2r Zn% el¢(X7t)
~——

e Correlation function (e”ef = clABleB eA) ~(L)3e

<: Oiozd)(x,t) . C—ioz(z)(O,O) :> _ <Ci(1(b>(x,t)eia(b<(x,t) C—ia¢>>(0,0) C—ia¢><(0.,0)>

— <eia¢<(X,t) e_ia¢>(070)> — e[Q¢<(X7t)7O‘¢>(O7O)] <e—ia¢>(0,0)eia¢»<(x,t)>

— 002 (p(x,1)$(0,0)) =1
. x—vt+i O+

(1 ei2 . >0
(1-— e*iz’r#)—“/ﬁ, t<0

)7042//$

(L/2ﬂ.)(12/n (L/zﬂ.)l/nei%%sgn((vat)t)

" [=i(x — vt)sgn(t) + 0*+]e?/n |x — vt|a?/r

The value of the mutivalued function is in the branch of 07 — +oc.
Xiao-Gang Wen
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Correlation function of e’ and no symmtery breaking

<7-[ eiQ(x,t) . 6719(0,0) ]> ei@ _ i(a¢1+a¢2)7a _ (2\/1)71/2
_ <7~[ e%’i(bl(x,t) . 51¢1(0,0) ]><7—[ e§1¢2(x t) . ef%iqbg(0,0) ]>

(1 o ei2wW) (12/414(1 — el i2m ) (12/41-{7 t>0

x—vt—i0 x—vt—i0

(1 _ e7i27r¥)fa/4/{(1 _ 67127r%+)7a/4/@7 t<0

B (L/2ﬂ.)o¢2/2n
[—i(x — vt)sgn(t) 4+ 0F]o?/46[—i(—x — vt)sgn(t) + 0F]o/4x
(L/27)> (L/27)>Y
T (x2 = v2e2 1 i2vtsgn(£)0t + (01)2)  (x2 — v2£2 + 0t )
v = \2/4r = \/V1V5/2V; (choose the positive branch for x — o).
(L/2m)*
(z

zZ)Y

x—vt+i0ot
L

- Imaginary-time (7 = it) correlation is simplified , Z=X+1ivT
e 1d supperfluid (boson condensation or U(1) symm. breaking) only has
an algebraic long range order, not real long range order (since
(: 10060) o o=10000) )| /s const.) Conitinous symmetry cannot
spontaneously broken in 1D. It can only “nearly broken”
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Correlation function and spectral function of e'?

G(X, t) — 1<T[ i0(x,t) . —i0(070) ]>
— 1(1 ) ( - i27r7X[
= Z Cm aiel mT”x ,727Lrv )sgn(t Z Cm Jie i(kmx—Ent)sgn(t)

W) =Y Cmnld(k — £m)3(w — En) + 3(k + Kim)d(w + Ey)]

n
Fourier transformation of G(x, t):

L 00
/ dX/ dt e*i(kX*Wt)iei(HmX*Ent)sgn(t)

/ dx/ dt e (@O pllmma=Ent) 4 (¢ < )

“sgn(t) )~

i -1 .
= (k —Iﬁm)i,( TE 0+)_5(k_’€m)[w—E,,+m6(w_En)]
Lok o Lok

I(k,w) =ImG(k,w)/n
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Correlation function and spectral function of el ~ ¢

Correlation function of e¢'? ~ T
Glt) i(L/2m)%Y i(L/2m)%
Xx.t) = =
(X2 —v2t2 i0t)y (y1y2 +101)

where y; = x + vt, y» = x — vt. We find
o . 27
_ —i(kx—wt) I(L/27T)
G(k,w) / dxdt e (2= 22+ 107)
. 2n
— / dxdt e~ 1alkbaty2)—vwlyi—y2)] i(L/2m)™
(yiy2 +i01)7
e e 13l(k= )y +(k+2)ys)]
N/ 2T s 107y

up to a positive factor.

When taking the fractional power «, choose the possitive brach for
yiyo > 0. For y1y» > 0, choose branch that connect to the possitive
brach for y1y> > 0. Now the term i0" becomes important.

Modern quantum many-body physics — Interacting bosons
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Correlation function and spectral function of e'?

-y1>0, y» > 0: Using [;° dx< =T(1—a)a® !, Re(a) >0 and
inserting 0 to make sure Re(a) > 0, we find

3 (k=2 =107 )y1 o—15(k+%—107)y
Gl = 1/ dyl/ 2 - (yiyz + 107 )7
(k= )+ 07y (k+2)+0% -1
- < ) r(l—v)(f) r(1—7)
— jelz(r-1 )[bgn(vk w)-+sgn(vk+w)]
Vk*w’ =1/ |vk +w|\71
( ) (T) (-7
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Correlation function and spectral function of e'?

-y1 >0, y» <0: Using [;° =T(1-a)a® !, Re(a) >0 and
inserting 0 to make sure Re(a) > 0, we find

Ood 0 | e 15(k=2—i0%)y1 o~ i3 (k+2+i0")y,
_(k,w) =1 .
(k,w) / 7 /0O y2 (y1y2 +1i0T)7

. o i3 (k=2—10%)y1 i3 (k+2+i0%)y,
d
/ . / & (—y1y2 +i0%)7

(M Oy D ROy i )

_ ie—iﬂ’vei %('y—1)[sgn(vk—w)—sgn(vk+w)]

(M) (et o

Xiao-Gang Wen
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Correlation function and spectral function of e'?

-y1 <0, y» > 0: Using [;* =T(1-a)a® !, Re(a) >0 and
inserting 0 to make sure Re( ) > 0, we find
LHi0T)y1 o—i5(k+2—i07)y2

712(k
G+ k = d d
w 1/ y1/ Y2 (y1y2+10+)

%k77+10+)y1 —i(k+2-10%)y,
d d
/ : / . (—=yiy2 +1i07)7
—i(k—9)+ 0" \1-1 i(k+9)+0T\»-1 _;
_ v —imyr2¢1 _
=i 2 ) 2 ) e )

— jeim el 2 (y—1)[—sgn(vk—w)+sgn(vk+w)]

(52l) ()
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Correlation function and spectral function of e'?

-y1 <0, y» <0: Using [;° =T(1-a)a® !, Re(a) >0 and
inserting 0 to make sure Re(a) > 0, we find

k7£+10+)y1 —i2(k+2+10%)y2
G__(k, = d d
w 1/ y1/ Y2 (y1y2+10+)

. d d eiz(k=£+i10%)y1 oi 3 (k+5+i0%)y
+0+>7- (—i(k+

“)+ 0\t
( 5 ) r?(1-+7)
— iei30- )[— sgn(vk—w)—sgn(vk+w)]

|vk — w\>“/— (]vk2—\tw]>“/—1r2(1 )
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Correlation function and spectral function of el ~ ¢

(P 1) (P )

<ei 5 (v—1)[sgn(vk—w)+sgn(vk+w)] + e imy ei 5 (v—1)[sgn(vk—w)—sgn(vk+w)]

+ efiﬂﬁ/eig(wfl)[7sgn(vk7w)+sgn(vk+w)] + ei%(771)[7sgn(kaw)fsgn(vk%»w)])
. (|vk — w|>7*1<|vk + w|)771 9
= (1 -
1( 2v 2v ( 7)x
—el™ 4 o7 4 e7I™ — e7I™ = 2isin(my), vk —w>0,vk+w>0
—e 1™ 4 7™ 4 o7 ™ — o™ = 2isin(my), vk—w<0,vk+w<0

1-1—e 2™ 41=1-—e 12, vk —w >0,vk+w <0
1—e 2™ 1 41=1—¢e 12, vk —w <0,vk+w>0
k — =1/ |vk -1
Spectral function: /(k,w) _<|V2VW|> <|v24‘:w|) (1 —)x
0, (w—vk)(w+vk) <0

1 —cos(277), (w— vk)(w+ vk)>0
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k = 0 modes, and large momentum sectors

- Our theory so far contain only exications desbribed
by oscilators a,, k = 2{ X int..
- Our theory so far can produce exication near k = 0,
but not near k = k, = 27r%.
- The correlation (T[: e!?(xt) . ¢10(0.0) ]
~ (x? — v2t?)~ /4 1 0ekX contains nothing near kp.
e To inlcude the low energy sectors with large momentum, we need to
include kK = 0 modes:
Low energy excitations = (k # 0 modes) ® (k = 0 modes)

e Consider 6, © non-linear o-model:
3 1 _2

L= / dx (Lo + 20,0 —

2 a

L (0:0)% — - (xp)’

v
iy v

e The k = 0 sectors are labeled by wy, w,, € Z (Only g = J¢ is physical):
0(x) = wo2Ex + 0 + (k # 0 modes),  ¢(x) = w,2Ex + (k # 0 modes).

2 .
L= (w,+ %)90 — %%’rv(wgz—l— Wg) — E = %%rv(wg—l— Wg)
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The physical meanings of winding numbers wy, w,

from the connection to the lattice model

e What is the mjaaning of w, (angular momentum of 0;)?
We note that 2¢a~* q= KOxp/m = Oxp/2m = wy /L.
So w, = [ dx 2¢a~tq =13, 26q; Spectral function of n;
But what is ) . 26q;? Remember that ¢; = ¢ + g;
_ ID4eill) _ [0)+4il1)
and |¢) > \/1_’_‘@ B \/1+\®,\2.
So (m) = L85 ~ [0y ~ 3 + 264;
'[hus the canonlcial momentum of g,
£L w, = > (0> +2¢q;) = 3. nj = N, is the total
number of the bosons. This should be an exact result, since
0o ~ 6y + 27 and its anluar momenta are quantized as integers.

e What is the meaning of wy?
. . 7 Liwgx2E .
A non Zero wy gives rise ¢; = gbelW"X . Each boson carries momentum
wp X - The total momentum is wy N° = wykp.
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Obtain the meanings of wy, w,, within the field theory

/dx( ! up + ¢ )8t0— —(8 0)% — 47T(8x99)

e The U(1) symmetry transformatlon is given by 6 — 0 + 6y. The
angular momentum of 0 is the total number of the U(1) charges
(ie the number of bosons) From the corrsponding Lagrangian
L= (wy+ & L)Ho + -+, we see the U(1) charge is Q = wy — %L

e The translation symmetry transformation is given by
0(x) — 0(x — x0), ©(x) — ¢(x — xp). The cannonical momentum of
Xp is the total momentum.

- We consider the field of form 6(x — xp), ¢(x — xo) and only xp is
dynamical, je time denpendent (the k # 0 mode can be dropped):

0(x, t) = W92T”(x + x0(£)) + o + (k # 0 modes),

o(x,t) = Wspz%r(x + xo(t)) + (k # 0 modes).

2

From the corresponding Lagrangian L = (w; + 52 )T wexo + -, we

see the total momentum is K = N2T7r wy = kpwy.

Xiao-Gang Wen Modern quantum many-body physics — Interacting bosons



Winding-number changing operators

(/52L v v

1
L= / ax (g-thp + L0N00 — (000 — (o)
4 i

e The local operator e‘9 = e”x(@*@?) changes
the particle number N by —1, jie change the
winding number of ¢, w,, by —1.

e To see this explicitly
[6(x), 2:0y0(y)] = 16(x — y)
We find [6(x), Ap] = 127 where Ay = p(+00) — p(—00).
Thus 0(x) = i27Tde¢ + commutants of Ay, and e!?() = o 2" A
is an operator that changes Ay by —27, or w, by —1, or particle
number by —1

e Similarly, we have [0(x), p(y)] = —1270(x — y)
— [0x0(x), p(y)] = —i276(x — y)
We find [AG, p(y)] = —i2m where Af = (9(+oo) — 6(—00).
Thus p(y) = i2ﬂﬁ, and ¢i¥() = 27447 is an operator that
changes A0 by —27, or change wy by —1 (Jje total momentum by —kj).

+ .
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Local operators in 1D XY-model (superfluid)

e Lattice operators
07 = (#0x0 + #0, ) + #e X leld ..
O'I-Jr _ (#+#8X9+#8X¢)C_10(X) +:/'%/:C—ikbxe—i(-)(x)Cigp(x) 4.

e Set of local operators: 0x0, Oxp, el (mef+myp)
~——

change sectors

or (from 0 = (1 + ¢2), ¢ = B(d1 — ¢2))
Oxd1, Oxba, el(mid1+mago)

change sectors
where m; = amg + Bm,, my = amg — Fm,.

e Fractionalization in XY-model (superfluid)
A boson creation operator ot ~ el? (spin flip operator AS* = 1)
el? = eia(¢1+¢2)7 ¢1 left-mover,  ¢o right-mover

e!992 creats half boson (spin-1/2) in right-moving sector
e!@91 creats half boson (spin-1/2) in left-moving sector
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Lattice translation and U(1) symm. are not independent

e For a 1d superfluid of per-site-density n, the ground state is described
by a field ¢(x) = ¢e 1?() §(x) = 0. The total momentum of the
ground state is K = 0.

e We do a U(1) symmetry twist: §(L) = 6(0) — 0(L) = 6(0) + Ab. The
twisted state is described by a field 0(x) = %x. The total momentum
of the twisted state is K = kb% =N+ Ak = N%.

- U(1) symmetry twist = momentum bost k; — k; + 5.

Doing a symmetry twist operation in a symmetry can change the
quantum number of another symmetry — mixed anomaly

- A 27 U(1) symmetry twist can change the total crystal momentum by
kp = 2mwnp. Since 2m-crystal-momentum = 0-crystal-momentum, our
bosonic system have an mixed translation-U(1) anomaly when boson
number per site n, ¢ Z. — There is no translation and U(1)
symmetric product state.

e We do a translation symmetry twist operation by adding AL sites —
change the total boson numbers (the U(1) charges) of system by n,AL.
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1d field theory — non-linear o-model

“Coordinate space” Lagrangian (rotor model): subsitute one of the
EOM 8t9 = Vz(?xcp into the phase space Lagranglan /h

_ ¢2
T a
—— ../ Z
/\Y_/
a topo. term © CPH Theory. All rights reserved. This content is
o) excluded from our Creative Commons license. For more
\/ . information, see https://ocw.mit.edu/help/fag-fair-use.
o f (1X 2 1u*0tu) Vi (1u*0 u) - l%u*atumormamn see https://ocw.mit.edu/help/faq-fair-use

- The field |s really u = e‘e, not 0. The above is the so called non-linear

o-model, where the field is a map from space-time manifold to the
target space S': Mg;:cle ime — U(1).

- In general, the target space is the symmetric space Gsymm/Gunbroken (the
minima of the symmetry breaking potential).

- The topological term i%u*(‘)tu cannot be dropped (since it is not a
total derivative). When ¢ = n ¢ Z, the topological term makes it
impossible for the non-linear o-model to have a gapped phase (an effect
of mixed anomaly between U(1) symmetry and tranlation symmetry).

e The above is a low energy effective theory for U(1) symm breaking
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Symmetry, gauging, and conservation

e Consider a system described by a complex field u
S/dtdx./l(u)

with U(1) symmetry: £(e'*u) = £(u). We like to show that the
system has an conserved current j, = t,x: Oyj" + Oyj* = Jpj" = 0.
e Gauge the U(1) symmetry:
- u(x) — M y(x) gives rise to ufd,u — (0, + 10N Uy, p =t x.
- Replacing 0,,\; by a vector potential AL: uf (0, + iAL)u/ gives rise to a
gauged theory £ — L(u,A,). Here A, is viewed as non-dynamical
background field. We have

L(u,Ay) = L(ePu, Ay — DN)

e The U(1) current of the gauged theory (setting A, = 0 gives rise to the
U(1) current of the original theory)

%_/MwﬂMij_
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Symmetry, gauging, and conservation

e The current conservation:

0S = / d2x" L(ePu, AL) — L(u, A)

= /dzx“ L(u, A, + 0,0 — L(u,A,) = /d%ﬂ@ﬂ = — /d2x“ 2O, j*

If u(x,t) satisfies the equation of motion, then the cooresponding
0S5 = 0. This allows us to show the existance of a conserved current

Ot (u) = 0.
e Example: 0,0 = —iu*0,u — 0,0 + A, = —iu* (0, + 1A,)u
Vy 72
L= 4W(ae)—ﬁ(ae) ¢ _
— L= \2_ (0:60 + A ) — %(&ﬁ + Ax)2 =+ Qf(ate + At)
- ] 1(at9+A) =~ D00+ A,
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Another example of gauging symmetry

Consider the following effective theory for 1d bosonic superfluid

V
/ dx 7ax(platgpj — 2001005+ Q0

4T
' K V
= / dx “a uyOruy — M 6 uyOxuy — iqpuyOruy

1,J=1,2 +2 N (3
= 1,4, @ P T, up= ) - 1 0)° q= 0 .

e The effective field theory has two U(1) symmetries:

- 1 — @1 + A1 for boson number conservation
Conjuate of A; is [ dx %ax(pz =w, = N.

- 2 — @2 + Ao for momentum conservation.
Conjuate of A is [ dx 5=0xp1 = wy = K/ kp.
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Another example of gauging symmetry

e Gauging the two U(1) symmetries:
- uy(x) — ey (x) gives rise to uFd,up — Ul (9, + 10\ )uy, p = t, x.
- Replacing 0, \; by a vector potential A“ gives rise to a gauged theory
K Vi
L= 720 — 1A (0 + 1A s — 32 (0 — 1A U] (D + 1ALy
A7 U
—iqui (0 + 1Ay
Ky

%,
= 2o (Ot + A) Oy + A)) + a1(Depr + AY)

(aXSOI + Al )(8t~PJ + AJ) 4
T

e Conserved current

+ Ky

~x K Vi
Jt = G Oeps+ A +ar Jf = 4 (Oeps + AY) = 5 (Oxps + AY)

47

e Equaton of motion — conservation

V

K
ALY "y J
- L (Orp s + A7) i O0(Oxpy + Ax) + o

— —0gf — 0 =0
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Symmetry twist, pumping, and anomaly

e But for certain background field AL(X, t), the equation of motion
cannot be satisfied — non-conservation. Symmetry twist — Pumping
Background field AL(X, t) = symmetry twist.

Non-conservation = pumping

- Consider Al =0, Al independent of x, but dependent on t. Equation of
motion becomes

K
- #a L Dep g + —02 Jat

It has no solution since, on a ring of size L,

L K V, LK
0:/ dx[—laxatgpﬁ a2, }—/ dx JatAJ;Ao
0 27 0

e The non-zero pumped U(1) charge — U(1) anomaly

: L 4 L Kiy J K 4
Q = dx Ojf = dx@t[—(&((pj + A+ ql} = d Gt—
0 0 47T

0
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Anomaly and mixed anomaly

Consider chiral boson theory

K V
L= / dx TgaXWIatSOJ - iﬁx@lax‘er + q100,

: t K/J
Q = / dx d,jf = / dxat—
Jo Jo 4m

e K = (1), the theory is actually fermionic and describes a chiral fermion.

- The U(1) symmetry twist pumps the U(1) charge — U(1) amonaly

o K= <(1) é) the theory is non-chiral describing 1d bosonic superfluid.

- The first U(1) symmetry twist does not pump the first U(1) charge.
The first U(1) is not anomalous.

- The second U(1) symmetry twist does not pump the second U(1)
charge. The second U(1) is not anomalous.

- The first U(1) symmetry twist pumps the second U(1) charge. The
U(1) x U(1) symmetry has a mixed anomaly.
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Anomaly and mixed anomaly

o K = (1) _01> the theory is non-chiral describing 1d Fermi liquid.
- The first U(1) symmetry twist pumps the first U(1) charge. The first
U(1) is anomalous.

- The second U(1) symmetry twist pumps the second U(1) charge. The

second U(1) is anomalous.
The “+" U(1): ¢1 — 1+ Ay, @2 — @2 + Ay — the fermion number
The “=" U(1): o1 — w1+ A_, 2 — @2 — A_ — the total momentum
provided that the fermion density is not zero.

- The “+" U(1) symmetry twist does not pump the “+" U(1) charge.
The “+" U(1) is not anomalous.

- The “=" U(1) symmetry twist does not pump the “—" U(1) charge.
The “—=" U(1) is not anomalous.

- The “+" U(1) symmetry twist does not pump the “—" U(1) charge.
There is a mixed anomaly between “+" U(1) and “—" U(1)
symmetries. The U?(1) symmetric state must be gapless.
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Why K = (1) chiral boson theory describes chiral fermions

K = (1) chiral boson field theory:

1 74
[ = / dx —8X<p8t<p - 7&(906%0
41 A
+o0o . oo 1kx
i vV e'
= Z —kp_kpk — — k2o ok,  p(x) = Z Pk
k=—00 4 A k=—o0 ﬂ
Vv
— Z—kg@ KPk — fk O—kPk
k>0

The canonical conjugate of ¢ is %8},@()/) or %8},90()/)

—ik!
[k, =—— 2 Y] = ik—w,

_ -1 1k(x y) — ik(x—y)
9. 5020 =13 [ e

[(x), %awp(y)] =10(x —y), [p(x),(y)] = imsgn(x — y).
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Why K = (1) chiral boson theory describes chiral fermions

e ©(x) is a compcat field p(x) ~ p(x) + 27. Thus ¢(x) is not an allowed
operator. e*1¢(*) are allowed operators, all other allowed operators are
generated by e 1¥(¥),

e The allowed operators are non-local and should be forbiden:
eie(x) ole(y) — oliv(x),ip()] oiv(y) oie(x)

— olmsBn(x—y) oip(y) olv(x) — _ oie(y) glv(x)

e Or we regard the non-local operators eF19(3) as local fermion operator,
and regard the chiral boson theory as a theroy for fermions.

- The imaginary-time (time-ordered) correlation function for e*1#(¥):

1 1

(e 19(x7) oi¢(0)y =

X+ 1ivr z
which is identical to the correlation function of free chiral fermion
c(x, t), and allows us to identify c(x, t) ~ el#(0),
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e Bosonization:

' 1 VFE 1 VFE
L= / dx —O0xpRrOtprR — —OxPROxPR — —OxpLOrpL — ——Oxp1 OxpL
4 4 4 41

+ q0:(¢r + #L)
describes 1d non-interacting fermions with Fermi velocity kr.

- The fermion number U(1) symmetry: vr — vr + 0, o1 — @1 + 0.
The canonical conjugate of 0 is the fermion number — Fermion number
density is given by np = %(&(@R — OxpL)-

e Interacting 1d fermions via bosonization:

1 v 1 v
L= / Ax —OxpRO PR — ~——OxpRONPR — —OxpLOrpL — —— Dy o101
47 47 4 47

K = (1 _01) boson theory describes 1d Fermi liquid

%
+ =5 (0xpr — OupL)” + q0:(pr + 1)
(27)

describes 1d interacting fermions, which allow us to compute fermion
correlation (c(x, t)c'(0)), etc.
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Fractionalization in general 1d chiral boson theory

L= / dx %&wﬁtw - %&wlaxw, @1~ @y + 2,
with Kj; even. The canonical conjugate of ¢, is % oy —
[01(x), 0u(y)] = im(K™)usgn(x — y)
o All the allowed operators have the form ¢!/#/(*) where /; € Z. The

commutation of allowed operators

eilivpi(x) ei/NJw(Y) — eiﬂinl/eistﬁJ(Y) eiliei(x)

. i T . o TK—1
- Moving operator ellhe1x) around e%sY) induce a phase e!27/K/

mutual statistics. The imaginary-time correlation between eller(x)
and ¢'72s0) has a form

1 ~

(21 — 2)(21 — 22)7

<. . ei//@/(ZI)GiTJ@J(Z2) .. > ~
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Fractionalization in general 1d chiral boson theory

Most of the allowed operators e!/#/(X) are not local (ie far away
operators do not commute)

s Jloc .
e Local operators: the operators e!”"?/(*) that commute with all
allowed operator that are far way:

K=l =evenint. YIeZ —  1°°=Kyn,.

s tloc .
el”7?1(3) corresponds to lattice boson operators.

e The allowed non-local operator e!#/(*) create quasi particle with
. . . R H —1
fractional statistics given by e!™/< "/,

e In fact, the chiral boson model for most K is anomalous, je can not be
realized by 1d lattice boson model. But it can be realized by the
boundary of 2d FQH Hall state. So the chiral boson model is a edge
theory of 2d 2d FQH Hall state.
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