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I. SHORT HISTORICAL INTRODUCTION

I.1 Atoms and Molecules as a Concept

‘Is matter infinitely divisible?’ Atomism: matter is made of stable objects which ‘can not be
cut into smaller pieces’.

Problem: concept of ‘cutting’ !

I.1.1 Greek Philosophy

Democritus (400 BC): matter consists of different arrangements of atoms and void. Different
packings and scattering of the atoms lead to different properties of matter, such as hot/cold
etc. Introduces a mechanical picture of the universe (no gods). Difference between atoms and
molecules not made.

Plato: four-element theory with atoms of corresponding shape: Fire-Tetrahedron, Air-
Octahedron, Earth-Cube, Water-Icosahedron. Motivates Heisenberg in 20th century to think
about group theory, symmetry and atoms.

Have a look at http://en.wikipedia.org/wiki/Atomism.

I.1.2 Chemistry

Lavoisier: element as a substance that can not be analyzed into something simpler.
John Dalton (1766-1844): chemical analysis and synthesis is governed by separation and

combination of particles in fixed proportions ‘law of combination in multiple proportions’.
Different atom species have different weights, ‘a different atom for each element’. Have a look
at http://web.lemoyne.edu/ giunta/dalton.html.

I.1.3 Thermodynamics, Statistical Mechanics

Boltzmann. Einstein: Brownian Motion.

I.1.4 Opponents to Atoms and Molecules

Mach.

I.2 Discovery of Atoms

I.2.1 ‘Splitting of the Atom’

Rutherford.
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Fig. I.1: Democritus Laughing, Hendrick ter Brugghen, 1628; in Rijksmuseum, Amsterdam

Fig. I.2: Example: ‘Positioning of single atoms with sub-atomic level precision on a surface’, S.-W.
Hla, K.-F. Braun and K.-H. Rieder, PHYSICAL REVIEW B 67, 201402 (2003).

I.3 Theory of Atoms: Quantum Mechanics

I.3.1 ‘Old Quantum Mechanics’

Niels Bohr. Arnold Sommerfeld. ‘Bohr-Sommerfeld-quantization’.

I.3.2 Modern Quantum Mechanics



II. SOME REVISION, FINE-STRUCTURE OF
ATOMIC SPECTRA

II.1 Hydrogen Atom (non-relativistic)

This is the simplest model for a three-dimensional atom: a single electron and a single proton
interacting via the Coulomb potential.

II.1.1 Non-relativistic Single Particle Quantum Mechanics

The Hamiltonian for two particles of mass m1 and m2 interacting via a potential V (r), r =
|r1 − r2|, is given by

Ĥ2 = − ~
2

2m1
∆1 −

~
2

2m2
∆2 + V (r), (II.1.1)

where r is the distance between the two particles with positions r1 and r2, and ∆iis the
Laplace operator with respect to coordinate ri, cf. the textbook Landau-Lifshitz III [1]. This
is reduced to a single particle problem by introducing center-of-mass and relative coordinates,

r ≡ r1 − r2, R ≡ m1r1 +m2r2

m1 +m2
, (II.1.2)

which as in Classical Mechanics leads to a separation

Ĥ2 = − ~
2

2(m1 +m2)
∆R −

~
2

2m
∆ + V (r) ≡ ĤR + Ĥ, (II.1.3)

where

m ≡ m1m2

m1 +m2
(II.1.4)

is called reduced mass and ∆R and ∆ are the Laplacians with respect to R and r. If we
write r = (x, y, z) we have

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (II.1.5)

The Hamiltonian Ĥ2 is now a sum of two independent Hamiltonians.

Exercise: Check Eq. (II.1.3).
Exercise: Prove that the stationary solutions of Ĥ2 can be written in product form Ψ(r1, r2) =
φ(R)Ψ(r).
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II.1.2 Coulomb Potential

The hydrogen atom therefore leads to a special case Z = 1 of the solution of a stationary
Schrödinger equation in the central potential

V (r) = − Ze2

4πε0r
. (II.1.6)

Here, Ze is introduced in order to be able to later generalise from proton charge +e to arbitrary
charge Ze. We use Dirac kets and write the stationary Schrödinger equation for Ĥ

Ĥ|Ψ〉 = E|Ψ〉 ↔
[

− ~
2

2m
∆ + V (r)

]

Ψ(r) = EΨ(r) (II.1.7)

with the Hamiltonian

Ĥ = − ~
2

2m
∆− Ze2

4πε0r
. (II.1.8)

II.1.3 Orbital Angular Momentum

The central potential has rotational symmetry and therefore a conserved quantity, the angular
momentum (Nöther’s theorem 1). Here, we introduce polar coordinates and realise that the
Laplacian can be written as

∆ =
∂2

∂r2
+

2

r

∂

∂r
− L2

~2r2
, (II.1.9)

where the angular momentum is

L̂x = −i~
(

− sinϕ
∂

∂θ
− cosϕ cot θ

∂

∂ϕ

)

L̂y = −i~
(

cosϕ
∂

∂θ
− sinϕ cot θ

∂

∂ϕ

)

L̂z = −i~ ∂

∂ϕ
. (II.1.10)

and its square is given by

L̂2 = −~
2

[
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2

]

. (II.1.11)

The eigenvalue equations for L̂2 and L̂z are

L̂2Ylm(θ, ϕ) = ~
2l(l + 1)Ylm(θ, ϕ), l = 0, 1, 2, 3, ... (II.1.12)

L̂zYlm(θ, ϕ) = ~mYlm(θ, ϕ), (II.1.13)

where the spherical harmonics have quantum numbers l and m and the explicit form

Ylm(θ, ϕ) = (−1)(m+|m|)/2il
[
2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2

P
|m|
l (cos θ)eimϕ

P
|m|
l (x) :=

1

2ll!
(1− x2)|m|/2 d

l+|m|

dxl+|m| (x
2 − 1)l

l = 0, 1, 2, 3, ...; m = −l,−l + 1,−l + 2, ..., l − 1, l. (II.1.14)

1 Emmy Nöther (1882 - 1935)



II. Some Revision, Fine-Structure of Atomic Spectra 5

Fig. II.1: Absolute squares of various spherical harmonics. From
http://mathworld.wolfram.com/SphericalHarmonic.html

The P
|m|
l are called associated Legendre polynomials. The spherical harmonics are an

orthonormal function system on the surface of the unit sphere |x| = 1. We write the orthonor-
mality relation both in our abstract bra –ket and in explicit form:

|lm〉 ←→ Ylm(θ, ϕ) (II.1.15)

〈l′m′|lm〉 = δll′δmm′ ←→
∫ 2π

0

∫ π

0

Y ∗
l′m′(θ, ϕ)Ylm(θ, ϕ) sin θdθdϕ = δll′δmm′ .

The spherical harmonics with l = 0, 1, 2, 3, 4, ... are denoted as s-, p-, d-, f -, g–,... functions
which you might know already from chemistry (‘orbitals’). The explicit forms for some of the
first sphericals are

Y00 =
1√
4π
, Y10 = i

√

3

4π
cos θ, Y1±1 = ∓i

√

3

8π
sin θ · e±iϕ. (II.1.16)

Further information on spherical harmonics in various books and under
http://mathworld.wolfram.com/SphericalHarmonic.html.
The Spherical harmonics are used in many areas of science, ranging from nuclear physics

up to computer vision tasks. If you like online physics teaching, have a look at
http://scienceworld.wolfram.com/physics/HydrogenAtom.html .

II.1.4 Radial Solutions

The solutions of Eq. (II.1.7) are now seperated into radial part Rnl(r) and spherical part
Ylm(θ, ϕ),

Ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ), (II.1.17)
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where radial eigenfunctions for the bound states are characterised by the two integer quantum
numbers n ≥ l + 1 and l,

Rnl(r) = − 2

n2

√

(n− l − 1)!

[(n + l)!]3
e−Zr/na0

(
2Zr

na0

)l

L2l+1
n+l

(
2Zr

na0

)

, l = 0, 1, ..., n− 1 (II.1.18)

Lm
n (x) = (−1)m n!

(n−m)!
exx−m dn−m

dxn−m
e−xxn generalized Laguerre polynomials.

The radial wave functions Rnl(r) have n− l nodes. For these states, the possible eigenvalues
only depend on n, E = En with

En = −1

2

Z2e2

4πε0a0

1

n2
, n = 1, 2, 3, ... Lyman Formula

a0 ≡
4πε0~

2

me2
Bohr Radius. (II.1.19)

In Dirac notation, we write the stationary states as |nlm〉 with the correspondence

|nlm〉 ↔ 〈r|nlm〉 ≡ Ψnlm(r). (II.1.20)

The ground state is |GS〉 = |100〉 with energy E0 = −13.6 eV. The degree of degeneracy of
the energy level En, i.e. the number of linearly independent stationary states with quantum
number n, is

n−1∑

l=0

(2l + 1) = n2 (II.1.21)

Backup literature: lecture notes QM 1
http://brandes.phy.umist.ac.uk/QM/, textbooks Merzbacher [2], Landau-Lifshitz III [1],

Gasiorowisz [3].

II.2 A ‘Mini-Molecule’: Perturbation Theory vs Non-Perturbative
Bonding

At this stage, one usually discusses relativistic corrections to the Hydrogen spectrum which
are calculated with perturbation theory. The degeneracy of a spectrum of a given Hamilto-
nian Ĥ0 can be lifted by additional perturbations Ĥ1 such that the spectrum of the perturbed
Hamiltonian,

Ĥ = Ĥ0 + Ĥ1, (II.2.1)

or at least parts of it, are no longer degenerate. This is all fine, but before doing so we have a
critical look at perturbation theory and its limitations, using the simplest quantum mechanical
system:

II.2.1 Example: Two-Level System

The two-level system describes a particle in an ‘abstract’ double well with just two states. We
associate a Hamiltonian Ĥ0 with the two isolated wells: the unperturbated Hamiltonian is a
two-by-two matrix,

Ĥ0 =

(
εL 0
0 εR

)

, Ĥ0|L〉 = εL|L〉, Ĥ0|R〉 = εR|R〉, (II.2.2)
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L







=

0

1
L

R







=

1

0
R

Fig. II.2: Vector representation of left and right lowest states of double well potential.

i.e., |L〉 is eigenvector of Ĥ0 with eigenvalue EL and |R〉 is eigenvector with eigenvalue ER.
The tunnel effect is considered as a perturbation Ĥ1 to Ĥ0,

Ĥ1 =

(
0 Tc

Tc 0

)

 HTLS ≡ Ĥ0 + Ĥ1 =

(
ε
2

Tc

Tc − ε
2

)

, (II.2.3)

with a tunnel coupling Tc (real parameter). We furthermore set εL ≡ ε/2 and εR = −ε/2.

II.2.1.1 Exact solution

We find the exact eigenvectors |i〉 and eigenvalues εi of HTLS, that is the solutions of

HTLS|i〉 = εi|i〉, i = ±, (II.2.4)

by diagonalisation of the two-by-two matrix Eq. (II.2.3). The eigenstates |±〉 and eigenvalues
ε± of HTLS are

|±〉 =
1

N±
[±2Tc|L〉+ (∆∓ ε)|R〉] , N± ≡

√

4T 2
c + (∆∓ ε)2

ε± = ±1

2
∆, ∆ ≡

√

ε2 + 4T 2
c , (II.2.5)

corresponding to hybridized wave functions, i.e. bonding and anti-bonding superpositions of
the two, originally localized states |L〉 and |R〉. The corresponding eigenvalues ε± = ±1

2
∆

of the double well represent two energy surfaces over the Tc-ε plane, with an avoided level
crossing of splitting ∆. For ε = 0, one has |±〉 = (1/

√
2)(±sign(Tc)|L〉 + |R〉) such that for

the choice Tc < 0 the ground state |−〉 = (1/
√

2)(|L〉 + |R〉) with energy ε− = −1
2
∆ is the

symmetric superposition of |L〉 and |R〉.

Exercise: Check these results by doing the diagonalisation! Hint: this leads to a quadratic
equation.

II.2.1.2 Second Order Perturbation Theory

If Ei is a (non-degenerate) eigenvalue of Ĥ0 with (normalised) eigenvector |i〉, the second order

approximation E
(2)
i of the corresponding new eigenvalue of Ĥ0 + Ĥ1 is given by

E
(2)
i = Ei + 〈i|Ĥ1|i〉+

∑

i6=j

|〈i|Ĥ1|j〉|2
Ei − Ej

(II.2.6)
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1







=

1

1

2

1
1

2






−
=

1

1

2

1
2

Fig. II.3: New hybridized basis states of the double well potential.

Note that in our case here the unperturbed states are |i = 1〉 = |L〉 and |i = 2〉 = |R〉, and the
energies are E1 = ε/2 and E2 = −ε/2. We have 〈i|Ĥ1|i〉 = 0 whence the first order correction
vanishes. We furthermore have

〈L|Ĥ1|R〉 = 〈R|Ĥ1|L〉 = Tc, (II.2.7)

which leads to

E
(2)
1 =

ε

2
+

T 2
c

E1 − E2
=
ε

2
+
T 2

c

ε
(II.2.8)

E
(2)
2 = −ε

2
+

T 2
c

E2 − E1
= −ε

2
− T 2

c

ε
. (II.2.9)

We compare this to a Taylor expansion of the exact result, Eq. (II.2.4), for the eigenvalues
ε±:

ε± = ±1

2

√

ε2 + 4T 2
c = ±1

2
ε

√

1 + 4
T 2

c

ε2
= ±1

2
ε

[

1 + 2
T 2

c

ε2
+O

(
Tc

ε

)4
]

, (II.2.10)

which means that

ε+ =
1

2
ε+

T 2
c

ε
+O

(
Tc

ε

)4

, ε− = −1

2
ε− T 2

c

ε
+O

(
Tc

ε

)4

, (II.2.11)

which co-incides with our perturbation theory, i.e. the expressions Eq. (II.2.8) for E
(2)
1 and

E
(2)
2 ! At the same time, we make the following observations:

• the perturbative result is good for a ‘small’ perturbation: in our case here, this means

that the parameter Tc/ε has to be small in order to justify neglecting the O
(

Tc

ε

)4
terms.

• If Tc/ε becomes too large, the perturbation expansion breaks down: the Taylor series
for
√

1 + x converges only for |x| < 1. Here, x = 4Tc/ε such that 4Tc/ε < 1 must be
fulfilled.

• Large Tc means strong coupling between the left and right ‘mini-atom’ and therefore
strong bonding between these two atoms into a new, quantum mechanical unit: a
molecule. This molecule bonding can therefore, stricly speaking, not be calculated from
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perturbation theory in Tc (fortunately, we have the exact solution). In many ‘real-world’
cases, however, an exact solution is not available and one has to approach the prob-
lem from a different angle in order to avoid simple-minded perturbation theory. This is
what P. W. Anderson probably meant in a popular science article some years ago, with
the (intentionally) slightly provocative title ‘Brain-washed by Feynman ?’ (Feynman
diagrams represent perturbation theory).

Backup literature for this section: textbook Gasiorowisz [3] cp. 11 for time-independent
perturbation theory (revise if necessary). Lecture notes QM 1 chapter 3

http://brandes.phy.umist.ac.uk/QM/ for two-level system.

II.3 Hydrogen Atom: Fine Structure

The fine structure is a result of relativistic corrections to the Schrödinger equation, derived
from the relativistic Dirac equation for an electron of mass m and charge −e < 0 in an external
electrical field −∇Φ(r). Performing an expansion in v/c, where v is the velocity of the electron
and c is the speed of light, the result for the Hamiltonian Ĥ can be written as Ĥ = Ĥ0 + Ĥ1,
where

Ĥ0 = − ~
2

2m
∆− Ze2

4πε0r
(II.3.1)

is the non-relativistic Hydrogen atom, (Z = 1), cf. Eq. (II.1.7), and Ĥ1 is treated as a
perturbation to Ĥ0, using perturbation theory. Ĥ1 consists of three terms: the kinetic energy
correction, the Darwin term, and the Spin-Orbit coupling,

Ĥ1 = ĤKE + ĤDarwin + ĤSO. (II.3.2)

Literature: Gasiorowicz [3] cp. 12 (Kinetic Energy Correction, Spin-Orbit coupling);
Weissbluth [4] (Dirac equation, Darwin term); Landau Lifshitz Vol IV chapter. 33,34.

II.3.1 Kinetic Energy and Darwin Term

II.3.1.1 Kinetic Energy Correction

ĤKE = − 1

2mc2

(
p2

2m

)2

. (II.3.3)

Exercise: Derive this term.

II.3.1.2 Darwin term

This follows from the Dirac equation and is given by

ĤDarwin =
−e~2

8m2c2
∆Φ(r), (II.3.4)

where ∆ is the Laplacian. For the Coulomb potential Φ(r) = Ze/4πε0r one needs

∆
1

r
= −4πδ(r) (II.3.5)

with the Dirac Delta function δ(r) in three dimensions.
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II.3.2 Spin-Orbit Coupling

This is the most interesting term as it involves the electron spin. Furthermore, this type of
interaction has found a wide-ranging interest in other areas of physics, for example in the
context of spin-electronics (‘spin-transistor’) in condensed matter systems.

The general derivation of spin-orbit coupling from the Dirac equation for an electron of
mass m and charge −e < 0 in an external electrical field E(r) = −∇Φ(r) yields

ĤSO =
e~

4m2c2
σ[E(r)× p], (II.3.6)

where p = mv is the momentum operator and σ is the vector of the Pauli spin matrices,

σ̂x ≡
(

0 1
1 0

)

, σ̂y ≡
(

0 −i
i 0

)

, σ̂z ≡
(

1 0
0 −1

)

. (II.3.7)

II.3.2.1 Spin-Orbit Coupling in Atoms

In the hydrogen atom, the magnetic moment µ̂ of the electron interacts with the magnetic
field B which the moving electron experiences in the electric field E of the nucleus,

B = −v ×E

c2
. (II.3.8)

One has

µ̂ = − e

2m
gŜ, g = 2, (II.3.9)

where g is the g-factor of the electron and

Ŝ =
1

2
~σ (II.3.10)

is the electron spin operator. Therefore,

− v × E = v ×∇ Ze

4πε0r
= v× r

r

d

dr

Ze

4πε0r
=

1

m
L̂

Ze

4πε0r3
, (II.3.11)

where L̂ is the orbital angular momentum operator. This is reduced by an additional factor
of 2 (relativistic effects) such that

ĤSO = −µ̂B =
Ze2

4πε0

1

2m2c2
ŜL̂

r3
, (II.3.12)

which introduces a coupling term between spin and orbital angular momentum. Note that
Eq. (II.3.12) can directly been derived by inserting Eq. (II.3.11) as E × v = −v × E into
Eq. (II.3.6).

II.3.2.2 Spin-Orbit Coupling in Solids

In solids, the spin-orbit coupling effect has shot to prominence recently in the context of spin-
electronics and the attempts to build a spin-transistor. The spin-orbit coupling Eq. (II.3.6),

ĤSO =
e~

4m2c2
σ[E(r)× p], (II.3.13)
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leads to a spin-splitting for electrons moving in solids (e.g., semiconductors) even in absence
of any magnetic field. Symmetries of the crystal lattice then play a role (Dresselhaus effect),
and in artificial heterostructures or quantum wells, an internal electric field E(r) can give rise
to a coupling to the electron spin. This latter case is called Rashba effect.

For a two-dimensional sheet of electrons in the x-y-plane (two-dimensional electron gas,
DEG), the simplest case is a Hamiltonian

ĤSO = −α
~

[p× σ]z , (II.3.14)

where the index z denotes the z component of the operator in the vector product p × σ and
α is the Rashba parameter. In the case of the hydrogen atom, this factor was determined by
the Coulomb potential. In semiconductor structures, it is determined by many factors such
as the geometry.

The Rashba parameter α can be changed externally by, e.g., applying additional ‘back-
gate’ voltages to the structure. This change in α then induces a change of the spin-orbit
coupling which eventually can be used to manipulate electron spins.

II.3.3 Perturbation Theory for Fine Structure

The calculation of the fine structure of the energies for hydrogen now involves two steps:
1. as one has degenerate states of Ĥ0, one needs degenerate perturbation theory. 2. This is
however simplified by the fact that the corresponding matrix in the subspace of the degenerate
eigenstates can be made diagonal in a suitable basis, using the total angular moment

Ĵ = L̂ + Ŝ. (II.3.15)

II.3.3.1 Degenerate Perturbation Theory

Assume a d-fold degenerate energy level E with d degenerate eigenstates of Ĥ0

|1〉, |2〉, . . . , |d〉, Ĥ0|i〉 = E|i〉. (II.3.16)

The perturbation Ĥ1 leads to new eigenfunctions

x1|1〉+ x2|2〉+ ... + xd|d〉 ≡ x · dT , dT ≡= (|1〉, |2〉, . . . , |d〉) (II.3.17)

where the notation x · dT is just an abbreviation using the coefficient vector x and the vector
of the degenerate states dT . The coefficient vectors x are then determined from the matrix
eigenvalue equation

Hx = E ′x, H
ij
≡ 〈i|Ĥ1|j〉 (II.3.18)

with the Hermitian d times d matrix H of the matrix elements of the perturbation Ĥ1 in the

sub-space of the degenerate eigenstates |i〉 of Ĥ0.
The solutions for E ′ are determined from det

(
H − E ′1

)
= 0 or

∣
∣
∣
∣
∣
∣

〈1|Ĥ1|1〉 − E ′ 〈1|Ĥ1|2〉 ... 〈1|Ĥ1|d〉
...

〈d|Ĥ1|1〉 〈d|Ĥ1|2〉 ... 〈d|Ĥ1|d〉 − E ′

∣
∣
∣
∣
∣
∣

= 0, (II.3.19)
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which is an algebraic equation with d real solutions E ′
i, i = 1, ..., d. Correspondingly, one

obtains d coefficient vectors xi leading to d new linear combinations xi · dT , i = 1, ..., d, of
states within the d-dimensional subspace spanned by |1〉, |2〉, . . . , |d〉.

Exercise 1: Revise if necessary Gasiorowicz [3] cp. 11.2, plus the corresponding math back-
ground: eigenvalues, eigenvalue equations, vector spaces, matrices etc. !

Exercise 2: Revise degenerate perturbation theory by applying it to the 2-level system
HTLS from section II.2 for the case ε = εL − εR = 0. How good is first order perturbation
theory in this case?

II.3.3.2 Degenerate Perturbation Theory for Spin-Orbit Coupling

Including spin, the level En of hydrogen belongs to the states

|nlsmlms〉, s = 1/2, ms = ±1/2, (II.3.20)

which are eigenstates of L̂2, Ŝ2, L̂z, and Ŝz (‘uncoupled representation’). With L̂ and Ŝ
adding up to the total angular momentum Ĵ = L̂ + Ŝ, an alternative basis is the ‘coupled
representation’

|nlsjm〉, j = l + s, l + s− 1, ..., |l − s|, m = ml +ms. (II.3.21)

of eigenfunctions of Ĵ2, L̂2, Ŝ2, and Ĵz. Here, s = 1/2 is the total electron spin which of course
is fixed and gives the two possibilities j = l + 1/2 and j = l − 1/2 for l ≥ 1 and j = 1/2 for
l = 0 (l runs from 0 to n− 1).

The perturbation ĤSO, Eq. (II.3.12), can be diagonalised in the |nlsjm〉 basis, using

ŜL̂ =
1

2

(

Ĵ2 − L̂2 − Ŝ2
)

(II.3.22)

 〈nl′sj ′m′|ŜL̂|nlsjm〉 =
1

2
~

2 (j(j + 1)− l(l + 1)− s(s+ 1)) δjj′δll′δmm′ .

For fixed n, l, and m, (s = 1/2 is fixed anyway and therefore a dummy index), the basis of
degenerate states from the previous subsection therefore for l ≥ 1 has two states, |nlsj =
l ± 1/2m〉, and the two-by-two matrix H is diagonal,

H ↔ 〈nlsj ′m|ĤSO|nlsjm〉 =
Ze2

4πε0

1

2m2c2

〈
1

r3

〉

nl

1

2
~

2

(
l 0
0 −(l + 1)

)

, (II.3.23)

where
〈

1
r3

〉

nl
indicates that this matrix elements has to be calculated with the radial parts of

the wave functions 〈r|nlsj = l ± 1/2m〉, with the result

〈
1

r3

〉

nl

=
Z3

a3
0

2

n3l(l + 1)(2l + 1)
, l 6= 0. (II.3.24)

The resulting energy shifts E ′
SO corresponding to the two states with j = l ± 1/2 are

E ′
SO =

Z4e2~2

2m2c2a3
04πε0

1

n3l(l + 1)(2l + 1)

{
l, j = l + 1

2

−(l + 1), j = l − 1
2

(II.3.25)
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Fig. II.4: Fine-Splitting of the hydrogen level En=2, from Gasiorowicz[3]

II.3.3.3 Putting everything together

Apart from the corrections E ′
SO, one also has to take into account the relativistic corrections

dur to ĤKE and ĤDarwin from section II.3.1. It turns out that the final result for the energy
eigenvalue in first order perturbation theory with respect to Ĥ1 = ĤKE + ĤDarwin + ĤSO,
Eq. (II.3.1), is given by the very simple expression

Enlsjm = E(0)
n +

(E
(0)
n )2

2mc2

[

3− 4n

j + 1
2

]

, j = l ± 1

2
. (II.3.26)

For a detailed derivation of this final result (though I haven’t checked all details), cf. James
Branson’s page,

http://hep.ucsd.edu/ branson/
or Weissbluth [4], cf. 16.4. Gasiorowicz [3] 12-16 seems to be incorrect.
Final remark: we do not discuss the effects of a magnetic field (anamalous Zeeman effect)

or the spin of the nucleus (hyperfine interaction) here. These lead to further splittings in the
level scheme.



III. INTRODUCTION INTO MANY-PARTICLE
SYSTEMS

III.1 Indistinguishable Particles

In Quantum Mechanics, a system of N particles with internal spin degrees of freedom σi is
described by a wave function which in the position representation reads

Ψ(r1, σ1; r2, σ2; ...; rN , σN). (III.1.1)

Here, |Ψ(...)|2 is the probability density for finding particle 1 at r1 with spin quantum num-
ber(s) σ1, particle 2 at r2 with spin quantum number(s) σ2,... etc. Note that for spin 1/2, one

would choose for σi one of the spin projections, e.g. σi = σ
(z)
i = ±1

2
.

Remark: Usually, many-particle wave functions and the issue of indistinguishability are dis-
cussed in the position representation.

III.1.1 Permutations

Two particles are called indistinguishable when they have the same ‘elementary’ parameters
such as mass, charge, total spin. As an example, it is believed that all electrons are the same
in the sense that they all have the same mass, the same charge, and the same spin 1/2. The
evidence for this comes from experiments.

If some of the N particles described by the wave function Ψ, Eq. (III.1.1), are indis-
tinguishable, this restricts the form of Ψ. Let us assume that all N particles are pairwise
indistinguishable. We define the abbreviations ξi ≡ (ri, σi). Since particle j is indistinguish-
able from particle k, the N -particle wave functions with ξj and ξk swapped should describe
the same physics: they may only differ by a phase factor,

Ψ(ξ1, ..., ξj, ..., ξk, ..., ξN) = eiφjkΨ(ξ1, ..., ξk, ..., ξj, ..., ξN). (III.1.2)

Swapping j and k a second time must yield the original wave function and therefore

e2iφjk = 1 φjk = 0,±π,±2π,±3π, (III.1.3)

In fact, the phases 0,±2π etc. are all equivalent: they lead to symmetrical wave functions.
The phases ±π,±3π etc. are also all equivalent: they lead to antisymmentrical wave functions.

It turns out that this argument (swapping the coordinates) depends on the dimension of
the space in which the particles live, and that there is a connection to the spin of the particles.
For d ≥ 3, indistinguishable particles with half-integer spin are called Fermions which are
described by antisymmentrical wave functions. For d ≥ 3, indistinguishable particles with
integer spin are called Bosons which are described by symmentrical wave functions. For
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d = 3, this connection between spin and statistics can be proved in relativistic quantum field
theory (Spin-Statistics-Theorem, W. Pauli 1940).

Ψ(ξ1, .., ξj, ..., ξk, .., ξN) = −Ψ(ξ1, .., ξk, ..., ξj, .., ξN), Fermions

Ψ(ξ1, .., ξj, ..., ξk, .., ξN) = Ψ(ξ1, .., ξk, ..., ξj, .., ξN), Bosons. (III.1.4)

In two dimensions, things become more complicated. First of all, the connection with spin
(integer, half integer in d = 3) is different in d = 2 because angular momentum in general is no
longer quantized: rotations in the x-y plane commuted with each other, i.e. the rotation group
SO(2) is abelian and has only one generator which can have arbitrary eigenvalues. Second,
topology is different in two dimensions, in particular when discussing wave functions excluding
two particles sitting on the same place xk = xj which leads to effective configuration spaces
which are no longer simply connected.

In two dimensions, one obtains a plethora of possibilities with exciting new possibilities for
‘fractional spin and statistics’. These are important and have been discovered recently in, e.g.,
the fractional quantum Hall effect. For further literature on this topic, cf. S. Forte, ‘Quantum
mechanics and field theory with fractional spin and statistics’, Rev. Mod. Phys. 64, 193.

III.1.2 Basis vectors for Fermi and Bose systems

III.1.2.1 Single Particle

We assume to have a Hilbert space with a complete basis of wave vectors |ν〉 corresponding
to wave functions 〈rσ|ν〉 including the spin,

|ν〉 ↔ ψν(rσ) = 〈rσ|ν〉. (III.1.5)

Examples:

• harmonic oscillator, |ν〉 = |n〉 with n = 0, 1, 2, ... and the harmonic oscillator wave
functions ψn(r).

• two-level system with |ν〉 and ν = + and ν = −.

• hydrogen atom with |ν〉 = |nlsjm〉.

The last example shows that ν is a ‘multi-index’ (index ‘vector’).

III.1.2.2 N -particle system

We have N particles and N quantum numbers ν1,...,νN . A basis consists of all product states
|ν1, ..., νN〉 corresponding to wave functions ψν1(ξ1)...ψνN

(ξN), ξ = rσ,

|ν1, ..., νN〉 ↔ ψν1(ξ1)...ψνN
(ξN) = 〈ξ1|ν1〉...〈ξN |νN〉. (III.1.6)

These wave functions still don’t have any particular symmetry with respect to permutation of
particles. We use them to construct the basis wave functions for Bosons and Fermions.
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III.1.2.3 Permutations

There are N ! permutations of N particles. We label the permutations by N ! indices p and
define a permutation operator Π̂p, for example

Π̂p=(1,3)Ψ(ξ1, ξ2, ξ3) = Ψ(ξ3, ξ2, ξ1) (III.1.7)

Π̂p=(1,2,3)Ψ(ξ1, ξ2, ξ3) = Π̂p=(2,3)Ψ(ξ2, ξ1, ξ3) = Ψ(ξ2, ξ3, ξ1) (III.1.8)

We furthermore define the symmetrization operator Ŝ and the anti-symmetrization operator
Â,

Ŝ =
1√
N !

∑

p

Π̂p (III.1.9)

Â =
1√
N !

∑

p

Π̂psign(p), (III.1.10)

where sign(p) is the sign of the permutation which is either −1 or +1, sign(p) = (−1)n(p)

where n(p) is the number of swaps required to achieve the permutation p.

III.1.2.4 N -Boson systems

A basis for symmetric wave functions with N Bosons is constructed in the following way.
1. If we just have one possible state |ν1〉 of the system, the symmetric state and the

corresponding wave function is

| ν1, ..., ν1
︸ ︷︷ ︸

〉S ↔ 〈ξ1, ..., ξN |ν1, ..., ν1〉S ≡ ψν1(ξ1)...ψν1(ξN)

Ntimes
(III.1.11)

This wave function is obviously symmetric.
2. If we have two particles (N = 2), the basis is constructed from the states |ν1, ν2〉 with

corresponding wave functions ψν1(ξ1)ψν2(ξ2): this product is made symmetric,

|ν1, ν2〉S ↔ 〈ξ1, ξ2|ν1, ν2〉S ≡ 1√
2

[ψν1(ξ1)ψν2(ξ2) + ψν1(ξ2)ψν2(ξ1)]

= Ŝψν1(ξ1)ψν2(ξ2). (III.1.12)

3. If we just have two possible state |ν1〉 and |ν2〉 for a system with N particles, N1 particles
sit in |ν1〉 and N2 particles sit in |ν2〉. We now have to symmetrize the states

|ν1, ..., ν1
︸ ︷︷ ︸

, ν2, ..., ν2
︸ ︷︷ ︸

〉 ↔ ψν1(ξ1)...ψν1(ξN1)ψν2(ξN1+1)...ψν2(ξN2)

N1times N2times

N1 +N2 = N. (III.1.13)

If we apply the symmetrization operator Ŝ to this product,

1√
N !

∑

p

Π̂pψν1(ξ1)...ψν1(ξN1)ψν2(ξN1+1)...ψν2(ξN2), (III.1.14)
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we get a sum of N ! terms, each consisting of N products of wave functions. For example, for
N1 = 1 and N2 = 2 we get

1√
3!

∑

p

Π̂pψν1(ξ1)ψν2(ξ2)ψν2(ξ3) = (III.1.15)

=
1√
N !

[

ψν1(ξ1)ψν2(ξ2)ψν2(ξ3) + ψν1(ξ1)ψν2(ξ3)ψν2(ξ2) (III.1.16)

+ ψν1(ξ2)ψν2(ξ1)ψν2(ξ3) + ψν1(ξ2)ψν2(ξ3)ψν2(ξ1) (III.1.17)

+ ψν1(ξ3)ψν2(ξ1)ψν2(ξ2) + ψν1(ξ3)ψν2(ξ2)ψν2(ξ1)
]

, (III.1.18)

where in each line in the above equation we have N2! = 2! identical terms. Had we chosen an
example with N1 > 1 and N2 > 1, we would have got N1!N2! identical terms in each line of
the above equation. The symmetrized wave function therefore looks as follows:

1√
N !

N1!N2!

[

sum of
N !

N1!N2!
orthogonal wave functions

]

, (III.1.19)

which upon squaring and integrating would give

[
1√
N !
N1!N2!

]2
N !

N1!N2!
= N1!N2! (III.1.20)

and not one! We therefore need to divide the whole wave function by 1/
√
N1!N2! in order

to normalise it to one, and therefore the symmetric state with the corresponding normalised,
symmetrical wave function is

|ν1, ..., ν1, ν2, ..., ν2〉S (III.1.21)

↔ 1√
N !
√
N1!
√
N2!

∑

p

Π̂pψν1(ξ1)...ψν1(ξN1)ψν2(ξN1+1)...ψν2(ξN2).

This is now easily generalised to the case where we have N1 particles in state ν1, N2 particles
in state ν2,...,Nr particles in state νr with

r∑

i=1

Nr = N. (III.1.22)

We then have

|ν1, ..., ν1, ν2, ..., ν2, ..., νr, ..., νr〉S (III.1.23)

↔ 〈ξ1, ..., ξ1, ξ2, ..., ξ2, ..., ξr, ..., ξr|ν1, ..., ν1, ν2, ..., ν2, ..., νr, ..., νr〉S ≡

≡ 1√
N !
√
N1!
√
N2!...

√
Nr!
×

∑

p

Π̂pψν1(ξ1)...ψν1(ξN1)ψν2(ξN1+1)...ψν2(ξN2)...ψνr
(ξN−Nr+1)...ψνr

(ξN).
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III.1.2.5 N -Fermion systems

In this case, we have to use anti-symmetrized states with anti-symmetric wave functions,

|ν1, ..., νN〉A = Â|ν1, ..., νN 〉 =
1√
N !

∑

p

Π̂psign(p)|ν1, ..., νN〉

↔ 〈ξ1, ..., ξN |ν1, ..., ν1〉A ≡
1√
N !

∑

p

Π̂psign(p)ψν1(ξ1)...ψνN
(ξN)

=
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣

ψν1(ξ1) ψν1(ξ2) ... ψν1(ξN)
ψν2(ξ1) ψν2(ξ2) ... ψν2(ξN)
...

ψνN
(ξ1) ψνN

(ξ2) ... ψνN
(ξN)

∣
∣
∣
∣
∣
∣
∣
∣

. (III.1.24)

These determinants are called Slater determinants.

• A permutation of two of the particles here corresponds to a swapping of the corresponding
columns in the determinant and therefore gives a minus sign: the wave function is anti-
symmetric.

• If two of the quantum numbers ν1, ..., νN are the same, the determinant is zero: in a
system with identical Fermions, two or more than two particles can not be in the same
state (in contrast to Bosons). This important fact is called Pauli principle.

Finally, we remark that in Slater determinants we can let the permutations all operate either
on the coordinates ξi, or all on the indices νi:

〈ξ1, ..., ξN |ν1, ..., νN 〉A ≡
1√
N !

∑

p

sign(p)ψν1(ξp(1))...ψνN
(ξp(N))

=
1√
N !

∑

p

sign(p)ψνp(1)
(ξ1)...ψνp(N)

(ξN). (III.1.25)

Exercise: Explicitly verify this identity for the case of N = 3 particles.

This is in particular useful when it comes to calculation of matrix elements. The last form
justifies the notation

|ν1, ..., ν1〉A =
1√
N !

∑

p

sign(p)|νp(1), ..., νp(N)〉. (III.1.26)

III.2 2-Fermion Systems

In order to get a feeling for how to work with Fermion systems, we start with the simplest
case N = 2. The basis states are the Slater determinants

〈ξ1, ξ2|ν1, ν2〉A =
1√
2!

∣
∣
∣
∣

ψν1(ξ1) ψν1(ξ2)
ψν2(ξ1) ψν2(ξ2)

∣
∣
∣
∣

=
1√
2

[ψν1(ξ1)ψν2(ξ2)− ψν1(ξ2)ψν2(ξ1)] . (III.2.1)
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III.2.1 Two Electrons

Electrons have spin 1
2

and we now have to work out how the electron spin enters into the
Slater determinants. The single particle wave functions for particle 1 are products of orbital
wave functions and spin wave functions,

ψ(ξ1) = ψ(r1)|σ1〉(1). (III.2.2)

For spin-1/2, the spin label σ1 can take the two values σ1 = ±1/2 which by convention are
denoted as ↑ and ↓. The two spinors have the following representation in the two-dimensional
complex Hilbert space (spin-space),

| ↑〉(1) =

(
1
0

)

(1)

, | ↓〉(1) =

(
0
1

)

(1)

. (III.2.3)

Here, the index (1) means that this spin referes to particle (1).
We now consider the four possibilities for the spin projections σ1 and σ2 and the corre-

sponding four sets of basis wave functions,

1√
2

[
ψν1(r1)ψν2(r2)| ↑↑〉(12) − ψν1(r2)ψν2(r1)| ↑↑〉(12)

]

1√
2

[
ψν1(r1)ψν2(r2)| ↑↓〉(12) − ψν1(r2)ψν2(r1)| ↓↑〉(12)

]

1√
2

[
ψν1(r1)ψν2(r2)| ↓↑〉(12) − ψν1(r2)ψν2(r1)| ↑↓〉(12)

]

1√
2

[
ψν1(r1)ψν2(r2)| ↓↓〉(12) − ψν1(r2)ψν2(r1)| ↓↓〉(12)

]
. (III.2.4)

Here,

| ↑↓〉(12) ≡ | ↑〉(1) ⊗ | ↓〉(2) (III.2.5)

is a product spinor, i.e. a spin wave function with particle (1) with spin up and particle (2)
with spin down, and corresp[ondingly for the other product spinor.

We can now re-write the basis states Eq. (III.2.4) by forming linear combinations of the
‘mixed’ spinors (exercise: check these !),

ψS(ξ1, ξ2) = ψsym
ν1,ν2

(r1, r2)|S〉 (III.2.6)

ψT−1(ξ1, ξ2) = ψasym
ν1,ν2

(r1, r2)|T−1〉 (III.2.7)

ψT0(ξ1, ξ2) = ψasym
ν1,ν2

(r1, r2)|T0〉 (III.2.8)

ψT+1(ξ1, ξ2) = ψasym
ν1,ν2

(r1, r2)|T+1〉. (III.2.9)

Here, the symmetric and antisymmetric orbital wave functions are defined as

ψsym
ν1,ν2

(r1, r2) =
1√
2

[ψν1(r1)ψν2(r2) + ψν1(r2)ψν2(r1)] (III.2.10)

ψasym
ν1,ν2

(r1, r2) =
1√
2

[ψν1(r1)ψν2(r2)− ψν1(r2)ψν2(r1)] . (III.2.11)

Furthermore, the spin wave functions are defined as

|S〉 = 1√
2
[| ↑↓〉−| ↓↑〉] Singlet state

|T−1〉 = | ↓↓〉 Triplet State
|T0〉 = 1√

2
[| ↑↓〉+| ↓↑〉] , Triplet State

|T+1〉 = | ↑↑〉 Triplet State

. (III.2.12)
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III.2.2 Properties of Spin-Singlets and Triplets

We have another look at the two-particle spin states Eq. (III.2.12), writing them more ex-
plicitly as

|S〉 = 1√
2
[| ↑〉1 ⊗ | ↓〉2−| ↓〉1 ⊗ | ↑〉2] Singlet state

|T−1〉 = | ↓〉1 ⊗ | ↓〉2 Triplet State
|T0〉 = 1√

2
[| ↑〉1 ⊗ | ↓〉2+| ↓〉1 ⊗ | ↑〉2] Triplet state

|T+1〉 = | ↑〉1 ⊗ | ↑〉2 Triplet State

. (III.2.13)

III.2.2.1 Total Spin

One advantage of working with singlets and triplets is the fact that they are spin states of
fixed total spin: rthe singlets has total spin S = 0, the three triplets have total spin S = 1
and total spin projections M = −1, 0, 1:

Ŝ2|S〉 = ~S(S + 1)|S〉, S = 0, Ŝz|S〉 = ~M |S〉,M = 0 (III.2.14)

Ŝ2|T−1〉 = ~S(S + 1)|T−1〉, S = 1, Ŝz|T−1〉 = ~M |T−1〉,M = −1

Ŝ2|T0〉 = ~S(S + 1)|T0〉, S = 1, Ŝz|T0〉 = ~M |T0〉,M = 0

Ŝ2|T+1〉 = ~S(S + 1)|T+1〉, S = 1, Ŝz|T+1〉 = ~M |T+1〉,M = +1.

Often the total spin is conserved when we deal with interacting systems. If , for example, the
system is in a state that is a linear combination of the three triplets, it has to stay in the
sub-space spanned by the triplets and can’t get out of it. In that case instead of having a
four-dimensional space we just have to deal with a three-dimensional space.

III.2.2.2 Entanglement

There is a fundamental difference between the M = ±1 states |T±1〉 on the one side and the
M = 0 states |S〉 and |T0〉 on the other side:

• |T−1〉 = | ↓〉1 ⊗ | ↓〉2 and |T+1〉 = | ↑〉1 ⊗ | ↑〉2 are product states.

• |S〉 = 1√
2
[| ↑〉1 ⊗ | ↓〉2−| ↓〉1 ⊗ | ↑〉2] and |T0〉 = 1√

2
[| ↑〉1 ⊗ | ↓〉2+| ↓〉1 ⊗ | ↑〉2] can not be

written as product states: they are called entangled states.

For product states of two particles 1 and 2 (pure tensors),

|ψ〉1 ⊗ |φ〉2, (III.2.15)

one can say that particle 1 is in state |ψ〉 and particle 2 is in state |φ〉. States that can not be
written as product states are called entangled states. For example, for the state

|ψ〉1 ⊗ |φ〉2 + |φ〉1 ⊗ |ψ〉2, (III.2.16)

one can not say which particle is in which state: the two particles are entangled. Entangle-
ment is the key concept underlying all modern quantum information theory, such as quantum
cryptography, quantum teleportation, or quantum computing.
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III.2.3 The Exchange Interaction

III.2.3.1 Spin-independent Hamiltonian

We assume a Hamiltonian for two identical electrons of the form

Ĥ = − ~
2

2m
∆1 + V (r1)−

~
2

2m
∆2 + V (r2) + U (|r1 − r2|) (III.2.17)

which does not depend on the spin. The Hamiltonian is symmetric with respect to the particle
indices 1 and 2. The solutions of the stationary Schrödinger equation Ĥψ(r1, r2) = Eψ(r1, r2)
for the orbital parts of the wave function can be classified into symmetric and anti-symmetric
with respect to swapping r1 and r2: this is because we have

Ĥψ(r1, r2) = Eψ(r1, r2)↔ Ĥψ(r2, r1) = Eψ(r2, r1)

↔ ĤΠ̂12ψ(r1, r2) = EΠ̂12ψ(r1, r2) = Π̂12Eψ(r1, r2) = Π̂12Ĥψ(r1, r2)

↔ [Ĥ, Π̂12] = 0, (III.2.18)

which means that the permutation operator Π̂12 commutes with the Hamiltonian. The eigen-
states of Ĥ can therefore be chosen such they are also simultaneous eigenstates of Π̂12 which
are symmetric and antisymmetric wave functions with respect to swapping r1 and r2.

Since the total wave function (orbital times spin) must be antisymmetric, this means that
for energy levels corresponding to symmetric orbital wave functions lead to spin singlets with
total spin S = 0. Energy levels corresponding to anti-symmetric orbital wave functions lead
to spin triplets with total spin S = 1. Even though there is no spin-dependent interaction
term in the Hamiltonian, the spin and the possible energy values are not independent of each
other!

III.2.3.2 Perturbation Theory

Assume we treat the interaction term V (|r1 − r2|) in the Hamiltonian Eq. (III.2.17) as a
perturbation,

Ĥ = Ĥ0 + Ĥ1, Ĥ0 = − ~
2

2m
∆1 + V (r1)−

~
2

2m
∆2 + V (r2)

Ĥ1 = U (|r1 − r2|) . (III.2.19)

We seek the first correction to an energy level E
(0)
αβ of Ĥ0,

Ĥ0φ
±
αβ(r1, r2) = E

(0)
αβφ

±
αβ(r1, r2), E

(0)
αβ = E(0)

α + E
(0)
β

φ±
αβ(r1, r2) =

1√
2

[φα(r1)φβ(r2)± φα(r2)φβ(r1)] , (III.2.20)

where φα and φβ are two eigenstates with eigenenergies E
(0)
α and E

(0)
β of the (identical) single

particle Hamiltonians −
� 2

2m
∆ + V (r).

We assume the single particle levels to be non-degenerate. Still, the two-electron level E
(0)
αβ

is degenerate because it corresponds to the two states |φ±
αβ〉 (+ for the symmetric and − for

the anti-symmetric state. The corresponding two-by-two matrix of Ĥ1 we need diagonalise for
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the degenerate first order perturbation theory in the sub-space spanned by |φ±
αβ〉 is however

diagonal so that things become easy:

H
1

=

(

〈φ+
αβ|Ĥ1|φ+

αβ〉 〈φ+
αβ|Ĥ1|φ−

αβ〉
〈φ−

αβ|Ĥ1|φ+
αβ〉 〈φ−

αβ|Ĥ1|φ−
αβ〉

)

=

(
Aαβ + Jαβ 0

0 Aαβ − Jαβ

)

. (III.2.21)

Inserting the definitions, we have (i, j,= ±)

〈φi
αβ|Ĥ1|φj

αβ〉 =

∫ ∫

dr1dr2

[
φi

αβ(r1, r2)
]∗
U (|r1 − r2|)φj

αβ(r1, r2). (III.2.22)

Exercise: Show that 〈φ+
αβ|Ĥ1|φ−

αβ〉 = 〈φ−
αβ|Ĥ1|φ+

αβ〉 = 0.

The explicit calculation of the remaining diagonal elements 〈φ+
αβ|Ĥ1|φ+

αβ〉 and 〈φ−
αβ|Ĥ1|φ−

αβ〉
yields

Aαβ =

∫ ∫

dr1dr2|φα(r1)|2U (|r1 − r2|) |φβ(r2)|2

(direct term) (III.2.23)

Jαβ =

∫ ∫

dr1dr2φ
∗
α(r2)φ

∗
β(r1)U (|r1 − r2|)φα(r1)φβ(r2)

(exchange term, exchange integral) (III.2.24)

Exercise: Verify these expressions.

The symmetrical orbital wave function (+) belongs to the S = 0 (singlet) spinor, whereas
the anti-symmetrical orbital wave function (−) belongs to the T = 0 (triplet) spinors. There-

fore, the unperturbed energy level E
(0)
αβ splits into two levels

E
(1)
αβ,S=0 = E

(0)
αβ + Aαβ + Jαβ, S = 0 singlet (III.2.25)

E
(1)
αβ,S=1 = E

(0)
αβ + Aαβ − Jαβ, S = 1 triplet. (III.2.26)

III.2.3.3 Direct and Exchange Term: Discussion

1. For α = β the anti-symmetrical orbital state vanishes and one has

Aαα = Jαα. (III.2.27)

In this case there is only one singlet state and there are no triplet states.
2. Extreme examples for the interaction potential:

a) U (|r1 − r2|) = U = const

 Aαβ = U, Jαβ = Uδαβ (III.2.28)

b) U (|r1 − r2|) = U0δ(r1 − r2)

 Aαβ = Jαβ = U0

∫

dr|φα(r)|2|φβ(r)|2. (III.2.29)
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III.3 Two-electron Atoms and Ions

Here, we deal with the Helium atom (Z = 2) , Lithium ion Li+ (Z = 3), Beryllium ion
Be++(Z = 4) etc. These are two-electron systems as in section III.2.1 with Hamiltonian
Eq. (III.2.17),

Ĥ = − ~
2

2m
∆1 + V (r1)−

~
2

2m
∆2 + V (r2) + U (|r1 − r2|)

V (r) = − Ze2

4πε0r
, U (|r1 − r2|) =

e2

4πε0|r1 − r2|
. (III.3.1)

III.3.1 Perturbation theory in U

A problem with perturbation theory here is the fact that the interaction U between the two
electrons is not small.

The unperturbed states |α〉 and |β〉 for the orbital wave functions (cf. section III.2.3.2)
are the eigenstates of the hydrogen problem, Eq. (II.1.20),

|α〉 = |nlm〉, |β〉 = |n′l′m′〉. (III.3.2)

Note that these do not contain a spin index.

III.3.1.1 Ground state

The unperturbed ground state has |nlm〉 = |100〉 and |n′l′m′〉 = |100〉, i.e. α = β with a
symmetrical orbital wave function φ+

αα(r1, r2) = φ100(r1)φ100(r2) and a singlet spinor |S〉. The
energy to first order in U therefore is

E(1)
αα = E(0)

αα + Aαα, α = (100) (III.3.3)

Aαα =

∫ ∫

dr1dr2|φ100(r1)|2U (|r1 − r2|) |φ100(r2)|2. (III.3.4)

Calculation of A yields

E
(1)
100,100 = E

(0)
1 + E

(0)
1 + A100,100 = 2

(

−1

2

Z2e2

4πε0a0

)

+
5

8

Ze2

4πε0a0
. (III.3.5)

For Z = 2, one has 2E
(0)
1 = −108.8eV and A100,100 = 34eV such that E

(1)
100,100 = −74.8eV.

Exercise: Calculate the integral leading to the result Eq. (III.3.5). Solution hints are given
in Gasiorowicz [3].

III.3.1.2 Excited states

Now our perturbation theory with α 6= β and finite exchange term Jαβ comes into play.
Further details: textbooks.



IV. THE HARTREE-FOCK METHOD

IV.1 The Hartree Equations, Atoms, and the Periodic Table

IV.1.1 Effective Average Potential

The basic idea here is to replace the complicated interactions among the electrons by an
effective, average potential energy that each electron i at position ri experiences.

In the Hartree approach one assumes that particle j is described by a wave function (spin
orbital) ψνj

(ξj) with orbital part ψνj
(rj), and the statistics (anti-symmetrization of all the

total N -particle wave function for Fermions, symmetrizatin for Bosons) is neglected. In the
following, we discuss electrons.

For electrons interacting via the Coulomb interaction U(r) = e2/4πε0r, the potential seen
by an electron i at position ri is given by

VH(ri) =
−e

4πε0

N∑

j=1(6=i)

∫

drj

|ψνj
(rj)|2

|rj − ri|
. (IV.1.1)

This is the sum over the potentials generated by all other electrons j 6= i which have a
charge density −e|ψj(rj)|2. The corresponding potential energy for electron i is −eVH(ri), and
therefore one describes electron i by an effective single particle Hamiltonian,

H
(i)
Hartree = H

(i)
0 + VHartree(ri)

= − ~
2

2m
∆i + V (ri) +

e2

4πε0

N∑

j=1(6=i)

∫

drj

|ψνj
(rj)|2

|rj − ri|
, (IV.1.2)

where V (ri) is the usual potential energy due to the interaction with the nucleus. The corre-
sponding Schrödinger equations for the orbital wave functions ψνi

for electron i are


− ~
2

2m
∆i + V (ri) +

e2

4πε0

N∑

j=1(6=i)

∫

drj

|ψνj
(rj)|2

|rj − ri|



ψνi
(ri) = εiψνi

(ri). (IV.1.3)

The total wave function in this Hartree approximation is the simple product

ΨHartree(r1, σ1; ...; rN , σN) = ψν1(r1, σ1)...ψνN
(rN , σN). (IV.1.4)

Remarks:

• The Hartree equation Eq. (IV.1.3) is a set of i = 1, ..., N non-linear coupled integro-
differential equations.

• As the solutions ψνi
of the equations appear again as terms (the Hartree potential) in

the equations, these are called self-consistent equations. One way to solve them is
by iteration: neglect the Hartree term first, find the solutions ψ

(0)
νi , insert them in the

Hartree potential, solve the new equations for ψ
(1)
νi , insert these again, and so on until

convergence is reached.
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• The Pauli principle is not properly accounted for in this approach, as we do not have
a Slater determinant but only a product wave function. This can be improved by the
Hartree-Fock equations which we derive in the next section.

IV.1.2 Angular Average, Shells, and Periodic Table

A further simplification of the Hartree equations, Eq. (IV.1.3), is achieved by replacing the
Hartree potential by its angular average,

VHartree(r)→ 〈VHartree〉 (r) ≡
∫

dΩ

4π
VHartree(r). (IV.1.5)

This still depends on all the wave functions ψνi
, but as the one-particle potential now is

spherically symmetric, we can use the decomposition into spherical harmonics, radial wave
functions, and spin,

〈ξ|νi〉 = ψνi
(ξ) = Rni,li(r)Yli,mi

(θ, φ)|σi〉, νi = (ni, li, mi, σi). (IV.1.6)

Here, the index νi = (ni, li, mi, σi) indicates that we are back to our usual quantum numbers
nlmσ that we know from the hydrogen atom. In contrast to the latter, the radial functions now
depend on n and l because we do not have the simple 1/r Coulomb potential as one-particle
potential.

An even cruder approximation to VHartree(r) would be a parametrization of the form

VHartree(r) +
e2

4πε0

Z

r
→ Veff(r) ≡ e2

4πε0

Z(r)

r
(IV.1.7)

Z(r → 0) = Z, Z(r →∞) = 1. (IV.1.8)

by which one loses the self-consistency and ends up with one single Schrödinger equation for
a particle in the potential Veff(r).

Exercise: Give a physical argument for the condition Z(r → 0) = Z, Z(r →∞) = 1 in the
above equation.

IV.1.2.1 Periodic Table

The ground states of atoms with N = Z electrons in the period table can now be understood
by forming Slater determinants (‘configurations’) with N spin-orbitals |νi〉 = |nilimiσi〉. The
atoms are thus ‘built up’ from these solutions. This is denoted as

H 1s 2S1/2

He (1s)2 1S0

Li (He)(2s) 2S1/2

Be (He)(2s)2 1S0

B (He)(2s)2(2p) 2P1/2

C (He)(2s)2(2p)2 3P0

... ...

(IV.1.9)

These are built up by ‘filling up the levels’ with electrons. For a given (n, l) there are 2(2l+1)
orbitals (2 spin states for each given m-value).
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The spectroscopic description is given by the quantum numbers S, L, J (total spin, orbital,
angular momentum) in the form

2S+1LJ . (IV.1.10)

Carbon is the first case where Hund’s Rules kick in. These ‘rules’ are rules and no strict
theorems, but they seem to work well for the understanding of atoms. Here I cite them after
Gasiorowicz (web-supplement)

1. The state with largest S lies lowest: spin-symmetric WFs have anti-symmetric orbital
WFs and therefore reduced electron-electron interaction.

2. For a given value of S, the state with maximum L lies lowest: the higher L, the more
lobes (and thereby mutual ‘escape routes’ for interacting electrons) there are in the Ylms.

3. L, S given. (i) not more than half-filled incomplete shell: J = |L − S|; (ii) more than
half-filled shell: J = L+ S: due to spin-orbit interaction.

IV.2 Hamiltonian for N Fermions

This is a preparation for the new method (Hartree-Fock) we learn in the next section where
we deal with interactions between a large number of Fermions.

The Hamiltonian for N Fermions is given by the generalization of the N = 2 case,
Eq. (III.2.17), and reads

Ĥ = Ĥ0 + Û ≡
N∑

i=1

Ĥ
(i)
0 +

1

2

N∑

i6=j

U(ξi, ξj)

Ĥ
(i)
0 = − ~

2

2m
∆i + V (ri). (IV.2.1)

IV.2.1 Expectation value of Ĥ0

Let us consider a N -Fermion state (Slater determinant), cf. Eq. (III.1.24),

|Ψ〉 = |ν1ν2...νN〉A =
1√
N !

∑

p

Π̂psign(p)|νp(1)νp(2)...νp(N)〉. (IV.2.2)

We wish to calculate the expectation value 〈Ψ|Ĥ0|Ψ〉 with Ĥ0 from Eq. (IV.2.1). Consider

for example the free Hamiltonian Ĥ
(1)
0 for the first particle,

〈Ψ|Ĥ(1)
0 |Ψ〉 =

1

N !

∑

pp′

sign(p)sign(p′)〈νp(N)...νp(2)νp(1)|Ĥ(1)
0 |νp′(1)νp′(2)...νp′(N)〉

=
1

N !

∑

pp′

sign(p)sign(p′)〈νp(N)...νp(2)|νp′(2)...νp′(N)〉〈νp(1)|Ĥ(1)
0 |νp′(1)〉.

For N − 1 numbers we must have p(2) = p′(2),...,p(N) = p′(N) (otherwise the term is zero),
but if you have a permutation with N − 1 terms fixed, the last term ist automatically fixed
and we have p = p′, thus (note sign(p)2 = 1)

〈Ψ|Ĥ(1)
0 |Ψ〉 =

1

N !

∑

p

〈νp(1)|Ĥ(1)
0 |νp(1)〉. (IV.2.3)
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The sum of the single-particle Hamiltonians yields

〈Ψ|Ĥ0|Ψ〉 = (IV.2.4)

=
1

N !

∑

p

〈νp(1)|Ĥ(1)
0 |νp(1)〉+ 〈νp(2)|Ĥ(2)

0 |νp(2)〉+ ... + 〈νp(N)|Ĥ(N)
0 |νp(N)〉,

but all the Hamiltonians Ĥ
(i)
0 have the same form, the sum

∑

p just gives N ! identical terms,
and therefore

〈Ψ|Ĥ0|Ψ〉 =
N∑

i=1

〈νi|Ĥ0|νi〉, (IV.2.5)

where we can omit the index (i) in Ĥ
(i)
0 and write Ĥ0 for the free Hamiltonian of a single particle

(note that Ĥ0 in Eq. (IV.2.1) is the total free Hamiltonian; some books use ĥ0 instead of Ĥ0 to
make this distinction clearer, but small letters are not nice as a notation for a Hamiltonian).

IV.2.2 Expectation value of Û

This is only slightly more complicated: consider for example the term U(ξ1, ξ2),

〈Ψ|U(ξ1, ξ2)|Ψ〉 =
1

N !

∑

pp′

sign(p)sign(p′)〈νp(N)...νp(2)νp(1)|U(ξ1, ξ2)|νp′(1)νp′(2)...νp′(N)〉

=
1

N !

∑

pp′

〈νp(N)...νp(3)|νp′(3)...νp′(N)〉〈νp(2)νp(1)|U(ξ1, ξ2)|νp′(1)νp′(2)〉.

Again, only those terms survive where νp(N) = νp′(N),...,νp(3) = νp′(3). We could have, e.g.,
p(1) = 4 and p(2) = 7 in which case neither 4 nor 7 can’t be among the p′(3),...,p′(N) (this
would yield zero overlap in 〈νp(N)...νp(3)|νp′(3)...νp′(N)〉) and therefore 4 and 7 must be among
p′(1) and p′(2).

This means we get two possibilities for the permutation pairs p and p′ now: one with
νp(1) = νp′(1) and νp(2) = νp′(2), and the other with νp(1) = νp′(2) and νp(2) = νp′(1). In the first
case νp(1) = νp′(1),νp(2) = νp′(2), νp(3) = νp′(3),...,νp(N) = νp′(N) which means the permutaton p′ is
the same as p. In the second case, p′ is the same permutation as p apart from one additional
swap of p(1) and p(2): this means that sign(p′) = −sign(p) and therefore

〈Ψ|U(ξ1, ξ2)|Ψ〉 =
1

N !

∑

p

〈νp(2)νp(1)|U(ξ1, ξ2)|νp(1)νp(2)〉 − 〈νp(1)νp(2)|U(ξ1, ξ2)|νp(1)νp(2)〉.

The sum over all pairs i, j now again yields

〈Ψ|Û |Ψ〉 =
1

N !

∑

p

∑

i6=j

1

2

[
〈νp(j)νp(i)|U |νp(i)νp(j)〉 − 〈νp(i)νp(j)|U |νp(i)νp(j)〉

]

=
1

2

∑

i6=j

[〈νjνi|U |νiνj〉 − 〈νiνj|U |νiνj〉] . (IV.2.6)
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IV.2.2.1 Spin independent symmetric Û

In this case,

U(ξi, ξj) = U (|ri − rj|) . (IV.2.7)

We write this explicitly with wave functions which are products of orbital wave functions
ψν(r) and spinors |σ〉,

〈ξ|ν〉 = ψν(r)|σ〉, (IV.2.8)

and take advantage of the fact that the interaction U does not depend on spin. Then,
Eq. (IV.2.6) becomes

〈Ψ|Û |Ψ〉 =
1

2

∑

i6=j

[〈νjνi|U |νiνj〉 − 〈νiνj|U |νiνj〉]

=
1

2

∑

i6=j

∫ ∫

drdr′
[

ψ∗
νj

(r′)ψ∗
νi

(r)U (|r− r′|)ψνi
(r)ψνj

(r′)〈σi|σi〉〈σj|σj〉

− ψ∗
νi

(r′)ψ∗
νj

(r)U (|r− r′|)ψνi
(r)ψνj

(r′)〈σj|σi〉〈σi|σj〉
]

=
1

2

∑

i6=j

∫ ∫

drdr′
[

|ψνj
(r′)|2|ψνi

(r)|2U (|r− r′|)

− ψ∗
νi

(r′)ψ∗
νj

(r)U (|r− r′|)ψνi
(r)ψνj

(r′)δσiσj

]

. (IV.2.9)

Using our direct and exchange term notation, Eq. (III.2.23), we can write this in a very simple
form as a sum over direct terms Aνiνj

and exchange terms Jνiνj
,

〈Ψ|Û |Ψ〉 =
1

2

∑

i,j

[
Aνiνj

− Jνiνj
δσiσj

]
. (IV.2.10)

Here, we recognize that we actually don’t need the restriction i 6= j in the double sum: this
term is zero anyway.

Note that Eq. (IV.2.9) refers to states |Ψ〉 which are simple Slater determinants. It cannot
be used, e.g., for states like the M = 0 singlet or triplet which are linear combinations

|ψ1↑ψ2↓〉A ± |ψ1↓ψ2↑〉A, (IV.2.11)

because these would lead to mixed terms

〈ψ2↓ψ1↑|U |ψ1↓ψ2↑〉A (IV.2.12)

in the expectation value!

IV.3 Hartree-Fock Equations

IV.3.1 The Variational Principle

The stationary Schrödinger equation

ĤΨ = εΨ (IV.3.1)
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can be derived from a variational principle. For the ground state of the system, this is
formulated as a problem of finding the wave vector Ψ of the system among all possible wave
vectors such that the expectation value of the energy (i.e., the Hamiltonian) is minimized,

〈Ψ|Ĥ|Ψ〉 = min, 〈Ψ|Ψ〉 = 1, (IV.3.2)

under the additional condition that Ψ be normalised. We are therefore looking for a minimum
of the energy functional

E[Ψ] ≡ 〈Ψ|Ĥ|Ψ〉 (IV.3.3)

under the additional condition that Ψ be normalised.

IV.3.1.1 Functional Derivates

1. If the Hilbert space belonging to Ĥ was finite dimensional (for example in the case of the
two-level system), the energy functional would just be a quadratic form and Ψ = (c1, c2)

T

would just be a two-component vector.
2. For states |Ψ〉 corresponding to wave functions Ψ(r), the energy functional is a ‘function

of a (wave) function’. Minimising E[Ψ] means that we have to set its first functional ‘derivative’
to zero (in very much the same way as we set the first derivative of a function to zero in order
to find its minimum).
Definition: The derivative of a function f(x) is defined as

df(x)

dx
≡ lim

ε→0

f [x+ ε · δx]− f [x]

ε
. (IV.3.4)

(δx is a small deviation around the variable x).
Definition: The functional derivative of a functional F [Ψ] is defined as

δF [Ψ]

δΨ
≡ lim

ε→0

F [Ψ + ε · δΨ]− F [Ψ]

ε
. (IV.3.5)

(δΨ is a small deviation around the function Ψ).
So we recognise that everything is really quite analogous to ordinary derivative. The

functional derivative of E[Ψ] is obtained from calculating

E[Ψ + ε · δΨ] =

∫

dr {Ψ(r) + ε · δΨ(r)}∗ Ĥ {Ψ(r) + ε · δΨ(r)}

=

∫

drΨ∗(r)ĤΨ(r) + ε

∫

dr
[

δΨ∗(r)ĤΨ(r) + Ψ∗(r)ĤδΨ(r)
]

+ ε2

∫

drδΨ∗(r)ĤδΨ(r) (IV.3.6)

and therefore

δE[Ψ]

δΨ
=

∫

dr
[

δΨ∗(r)ĤΨ(r) + Ψ∗(r)ĤδΨ(r)
]

≡ 〈δΨ|Ĥ|Ψ〉+ 〈Ψ|Ĥ|δΨ〉. (IV.3.7)
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IV.3.1.2 Lagrange Multiplier

The additional condition 〈Ψ|Ψ〉 = 1 can be incorporated into the minimisation procedure
by adding a term to the energy functional, introducing a Lagrange multiplier λ, and thereby
defining the functional

F [Ψ] ≡ E[Ψ] + λ [〈Ψ|Ψ〉 − 1] . (IV.3.8)

Its functional derivative is

δF [Ψ]

δΨ
= 〈δΨ|Ĥ|Ψ〉+ 〈Ψ|Ĥ|δΨ〉+ λ [〈δΨ|Ψ〉+ 〈Ψ|δΨ〉] . (IV.3.9)

Exercise: Check this equation.

Minimization then means

0 =
δF [Ψ]

δΨ
 〈δΨ|Ĥ + λ|Ψ〉+ 〈Ψ|Ĥ + λ|δΨ〉 = 0. (IV.3.10)

As δΨ is arbitrary and complex, this can only be true if

[Ĥ + λ]|Ψ〉 = 0, 〈Ψ|[Ĥ + λ] = 0 (IV.3.11)

which are two equations which are the conjugate complex to each other. Writing λ = −ε, this
means

ĤΨ = εΨ, (IV.3.12)

which is the stationary Schrödinger equation. However, here ε is the lowest eigenvalue with
corresponding eigenstate Ψ. We thus recognise:

Minimization of the functional F [Ψ] ≡ E[Ψ] − ε [〈Ψ|Ψ〉 − 1] is equivalent to finding the
lowest eigenvalue and eigenstate of the stationary Schrödinger equation ĤΨ = εΨ.

IV.3.2 The Variational Principle for Many-Electron Systems

The basic idea of Hartree-Fock now is to determine the lowest eigenenergy with corresponding
eigenstate Ψ of an N -electron system not by solving the stationary Schrödinger equation
ĤΨ = εΨ, but by minimizing the functional F [Ψ]. As these two are equivalent, nothing
would have been gained. However, for N -electron systems either of these methods has to be
done approximately anyway and the argument is now that the minimization procedure is the
better starting point.

Idea: do not carry out the minimization of the functional over all possible states Ψ, but just
over a certain sub-class of states, i.e., those which can be written as a anti-symmetrized products
of some single particle states |νi〉, with the |νi〉 to be determined, i.e. Slater determinants
|ν1, ..., νN〉. The determination of the |νi〉 leads to the Hartree-Fock equations. Note that
here and in the following, |νi〉 does not refer to any fixed set of basis states but to the states
to be determined from the Hartree-Fock equations.
Definition: The single particle states |νi〉 correspond to single particle wave functions ψνi

(r, σ).
The label νi includes the spin index. In quantum chemistry, these wave functions are sometimes
called spin-orbitals, molecular orbitals, or shells.



IV. The Hartree-Fock Method 31

IV.3.2.1 Functional Derivative

We use the Hamiltonian Eq. (IV.2.1),

Ĥ = Ĥ0 + Û ≡
N∑

i=1

Ĥ
(i)
0 +

1

2

N∑

i6=j

Uij

Ĥ
(i)
0 = − ~

2

2m
∆i + V (ri), Uij = U(ξi, ξj). (IV.3.13)

The energy functional now depends on the N wave functions ψνi
(r, σ), i = 1, ..., N ,

F [Ψ] = F [ψν1 , ..., ψνN
] = F [{ψνi

}]. (IV.3.14)

The definition of the functional derivative is not more complicated than in the one-component
case,

δF [Ψ]

δΨ
≡ lim

ε→0

F [{ψνi
+ ε · δψi}]− F [{ψνi

}]
ε

, (IV.3.15)

where we now have i = 1, ..., N independent ‘deviations’ δψi from the functions ψi. We
furthermore want to ensure that all single particle states |νi〉 are normalised. Therefore, we
introduce our functional F [Ψ] with N Lagrange multipliers λi,

F [Ψ] ≡ 〈νN , ..., ν1|Ĥ|ν1, ..., νN 〉A +
N∑

i=1

λi[〈νi|νi〉 − 1]. (IV.3.16)

We have calculated the energy expectation values already in Eq. (IV.2.5) and Eq. (IV.2.9),

F [{ψνi
}] =

N∑

i=1

〈νi|Ĥ0|νi〉+
1

2

∑

i6=j

[〈νjνi|U |νiνj〉 − 〈νiνj|Uij|νiνj〉]

+

N∑

i=1

λi[〈νi|νi〉 − 1]. (IV.3.17)

The individual terms are simply calculated:

δ

δΨ

N∑

i=1

〈νi|Ĥ0|νi〉 =

= lim
ε→0

1

ε

[
N∑

i=1

〈νi + εδνi|Ĥ0|νi + εδνi〉 −
N∑

i=1

〈νi|Ĥ0|νi〉
]

=
N∑

i=1

[

〈δνi|Ĥ0|νi〉+ 〈νi|Ĥ0|δνi〉
]

. (IV.3.18)

The term from the interaction U yields

δ

δΨ

1

2

∑

ij

[〈νjνi|U |νiνj〉 − 〈νiνj|U |νiνj〉] (IV.3.19)

=
1

2

∑

ij

[

〈δνjνi|U |νiνj〉+ 〈νjδνi|U |νiνj〉+ 〈νjνi|U |δνiνj〉+ 〈νjνi|U |νiδνj〉
]

− 1

2

∑

ij

[

〈δνiνj|U |νiνj〉+ 〈νiδνj|U |νiνj〉+ 〈νiνj|U |δνiνj〉+ 〈νiνj|U |νiδνj〉
]

.
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We can use the symmetry property (Exercise: proof!)

〈νiνk|U |νlνm〉 = 〈νkνi|U |νmνl〉 (IV.3.20)

to simplify things by using, e.g., 〈νjδνi|U |νiνj〉 = 〈δνiνj|U |νjνi〉 and changing the summation
indices i,j such that

δ

δΨ

1

2

∑

ij

[〈νjνi|U |νiνj〉 − 〈νiνj|U |νiνj〉] (IV.3.21)

=
∑

ij

[

〈δνjνi|U |νiνj〉+ 〈νjνi|U |νiδνj〉 − 〈δνiνj|U |νiνj〉 − 〈νiνj|U |νiδνj〉
]

=
∑

ij

[

〈δνjνi|U |νiνj〉 − 〈δνjνi|U |νjνi〉+ (H.c.)
]

,

where again in the ‘−’ term we have swapped indices, and H.c means that there are two terms
which are the hermitian conjugates of the two others.

IV.3.2.2 ‘Direct’ and ‘Exchange’ Operators

We defining these one-particle operators by their matrix elements (excessive use of Dirac
notation, hurrah!)

〈µ|Ĵi|ν〉 ≡ 〈µνi|U |νiν〉 〈δνj|Ĵi|νj〉 = 〈δνjνi|U |νiνj〉 (IV.3.22)

〈µ|K̂i|ν〉 ≡ 〈µνi|U |ννi〉 〈δνj|K̂i|νj〉 = 〈δνjνi|U |νjνi〉. (IV.3.23)

Note that both these operators depend on the still to be determined single particle states |νi〉!.
We can now write the functional derivate in a very elegant manner,

δ

δΨ

1

2

∑

ij

[〈νjνi|U |νiνj〉 − 〈νiνj|U |νiνj〉] =

N∑

j=1

〈δνj|Ĵ − K̂|νj〉+ (H.c.)

Ĵ ≡
∑

i

Ĵi, K̂ ≡
∑

i

K̂i, (IV.3.24)

and the total functional derivative becomes

δF [Ψ]

δΨ
=

N∑

j=1

〈δνj|Ĥ0 + λj + Ĵ − K̂|νj〉+ (H.c.). (IV.3.25)

As we set the functional derivative to zero

δF [Ψ]

δΨ
= 0 

(

Ĥ0 + λj + Ĵ − K̂
)

|νj〉 = 0, (IV.3.26)

as all the deviations δνj are independent.

IV.3.3 Hartree-Fock Equations

We write out Eq. (IV.3.26) in detail, setting λj = −εj,
(

Ĥ0 + Ĵ − K̂
)

|νj〉 = εj|νj〉 (IV.3.27)

〈µ|Ĵ|ν〉 ≡
∑

i

〈µνi|U |νiν〉, 〈µ|K̂|ν〉 ≡
∑

i

〈µνi|U |ννi〉,
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where we again stated the definition of the two operators Ĵ and K̂. How do these equations
look in the coordinate representation? Let’s write

(

Ĥ0 + Ĵ − K̂
)

|νj〉 = εj|νj〉 

〈r|
(

Ĥ0 + Ĵ − K̂
)

|νj〉 = εj〈r|νj〉 

〈r|Ĥ0|νj〉+
∑

i

〈rνi|U |νiνj〉 −
∑

i

〈rνi|U |νjνi〉 = εj〈r|νj〉 

Ĥ0ψνj
(r) +

∑

i

∫

dr′ψ∗
νi

(r′)U(|r − r′|)ψνi
(r′)ψνj

(r)

−
∑

i

∫

dr′ψ∗
νi

(r′)U(|r − r′|)ψνj
(r′)ψνi

(r)δσiσj
= εjψνj

(r). (IV.3.28)

These are the Hartree-Fock equations in the position representation; we write them out again,
[

Ĥ0 +
∑

i

∫

dr′|ψνi
(r′)|2U(|r − r′|)

]

ψνj
(r)

−
∑

i

∫

dr′ψ∗
νi

(r′)U(|r − r′|)ψνj
(r′)ψνi

(r)δσiσj
= εjψνj

(r). (IV.3.29)

This looks like a set of j = 1, ..., N stationary Schrödinger equations, but things are actually
more complicated as the equations are non-linear.

IV.3.3.1 Direct Term

The direct term,

direct term

[
∑

i

∫

dr′|ψνi
(r′)|2U(|r − r′|)

]

ψνj
(r) (IV.3.30)

acts like a local one-particle potential on particle j: it depends on all the wave functions ψi(r
′)

that have still to be determined. The direct term has a simple physical interpretation: it
is the potential at position r generated by the total density

∑

i |ψi(r
′)|2 of all the individual

electrons in their states |νi〉 at position r′. The direct term can be interpreted as a ‘direct’
re-normalisation of the one-particle Hamiltonian Ĥ0.

IV.3.3.2 Exchange Term

The exchange term,

exchange term
∑

i

∫

dr′ψ∗
νi

(r′)U(|r − r′|)ψνj
(r′)ψνi

(r)δσiσj
(IV.3.31)

is more complicated and cannot be written as a simple re-normalisation of the one-particle
Hamiltonian Ĥ0. Its spin-dependence indicates that it originates from the exchange interaction
between indistinguishable Fermions.

What we have achieved, though, is a self-consistent description of the interacting N -
Fermion systems in terms of a single Slater determinant built from the states ψi(r, σ). Actually,
for spin-independent Ĥ0 and U only the orbital parts ψi(r enter the Hartree-Fock equations,
although the spin-indices do play a role in the exchange term.
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IV.3.3.3 Example: N = 2, ‘closed shell’

In the case N = 2, we are back to the Helium atom (N = 2 electrons). We assume

ψν1(r, σ) = ψ(r)| ↑〉, ψν2(r, σ) = ψ(r)| ↓〉, (IV.3.32)

i.e. we only have two spin orbitals with opposite spin. From the Hartree-Fock equations
Eq. (E.4.2), we obtain

[

Ĥ0 +
2∑

i=1

∫

dr′|ψ(r′)|2U(|r − r′|)
]

ψ(r)

−
2∑

i=1

∫

dr′ψ∗(r′)U(|r − r′|)ψ(r′)ψ(r)δσiσj
= εjψ(r). (IV.3.33)

Formally, these are still two equations due to the label j (= 1, 2), but the two equations are
the same and we may set ε1 = ε2 = ε. The sum in the exchange part has only one term which
is half the direct part, and therefore (we re-insert the explicit expression for Ĥ0)

[

− ~
2

2m
∆ + V (r) +

∫

dr′|ψ(r′)|2U(|r − r′|)
]

ψ(r) = εψ(r). (IV.3.34)

Since we have only one orbital wave function, we only have one equation.

IV.3.3.4 Ground State Energy

The ground state energy in Hartree-Fock can be expressed using our equations Eq. (IV.2.9)
and Eq. (IV.2.5),

〈Ψ|Ĥ|Ψ〉 = 〈Ψ|Ĥ0|Ψ〉+ 〈Ψ|Û |Ψ〉 (IV.3.35)

=

N∑

i=1

〈νi|Ĥ0|νi〉+
1

2

∑

i6=j

〈νjνi|U |νiνj〉 − 〈νiνj|U |νiνj〉

=
N∑

i=1

〈νi|Ĥ0 +
1

2

(

Ĵ − K̂
)

|νi〉, (IV.3.36)

where again we used the direct and exchange operators Ĵ and K̂, Eq. (IV.3.27). Since the
|νi〉 are the solutions of the HF equations Eq. (IV.3.27),

(

Ĥ0 + Ĵ − K̂
)

|νj〉 = εj|νj〉, (IV.3.37)

we obtain

EΨ ≡ 〈Ψ|Ĥ|Ψ〉 =
N∑

i=1

[

εi −
1

2
〈νi|

(

Ĵ − K̂
)

|νi〉
]

(IV.3.38)

=
1

2

N∑

i=1

[

εi + 〈νi|Ĥ0|νi〉
]

. (IV.3.39)



V. MOLECULES

V.1 Introduction

Molecules are system consisting of electrons and nuclei. This definition covers the full range
from rather simple molecules like H2 up to extremely complex situations with billions of nuclei,
or in principle even solids or fluids although one usually thinks of something like a microscopic
object. The question, of course, is what microscopic really means. In principle, one could
have molecules with macroscopic large numbers (like 1023) of electrons and nuclei. Would
these behave as quantum or as classical objects?

Even for small molecules, there are in fact some fundamental, conceptual issues in the field
of molecular structure, cf. for example the article by B. T. Sutcliffe in ch. 35 of Vol. 1 of the
‘Handbook of Molecular Physics and Quantum Chemistry’, Wiley (2003). These are related to
the question of whether or not molecular structure and properties of molecules can be strictly
derived from a microscopic Schrödinger equation of an isolated molecule, including all the
Coulomb interaction among the constituents. For example, the total Hamiltonian commutes
with the parity operator which means that itsd eigenstates are parity eigenstates and therefore
cannot must have zero expectation value of the static dipole moment. This would mean that
there exist no molecules with static dipole moments, which apparently is in contradiction to
what we learn from chemistry. Another such ‘paradoxon’ seems to be isomers of polyatomic
molecules, and the concept of the chemical bond (‘deconstructing the bond’) is not an easy
one, either. These seem to be open questions.

V.1.1 Model Hamiltonian

We start from a Hamiltonian describing a system composed of two sub-systems, electrons (e)
and nuclei (n)

H = He +Hn +Hen, (V.1.1)

where Hen is the interaction between the two systems. Note that the splitting of the Hamil-
tonian H is not unique: for example, Hn could just be the kinetic energy of the nuclei with
their mutual interaction potential included into Hen (as in the BO approximation).

The set-up H = He + Hn + Hen is quite general and typical for so-called ‘system-bath’
theories where one would say the electrons are the ‘system’ and the nuclei are the ‘bath’ (or
vice versa!). In the theory of molecules, however, things are a little bit more complicated
as there is a back-action of from the electrons on the nuclei. This back-action is due to the
electronic charge density acting as a potential for the nuclei.

There is no a priori reason why the nuclei and the electronic system should not be treated
on equal footing. However, the theory has a small parameter

κ =
(m

M

) 1
4

(V.1.2)
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given by the ratio of electron mass m and a typical nuclear mass M � m, and the exponent
1/4 is introduced for convenience in the perturbation theory used by Born and Oppenheimer in
their original paper. The smallness of this parameter makes it possible to use an approximation
which is called the Born-Oppenheimer approximation.

We assume there is a position representation, where q ≡ {x1, ...,xN} represents the posi-
tons of all electrons, X ≡ {X1, ...,XN} the positions of all nuclei, and correspondingly for the
momenta p and P ,

H = H(q, p;X,P ) = He(q, p) +Hn(X,P ) +Hen(q,X). (V.1.3)

Spin is not considered here. Also note that the interaction only depends on (q,X) and not on
the momenta.

V.2 The Born-Oppenheimer Approximation

This is the central aproximation used in many calculations.

V.2.1 Derivation

We now try to attack the Schrödinger equation HΨ = EΨ for the total system (electron plus
nuclei).

V.2.1.1 Unsuccessful Attempt

A first guess to solve the stationary Schrödinger equation HΨ = EΨ for the total system
would be a separation ansatz

H(q, p;X,P )Ψ(q,X) = EΨ(q,X)

Ψ(q,X) = ψe(q)φn(X) unsuccessful, (V.2.1)

which does not work because the interaction Hen(q,X) depends on both q and X.

V.2.1.2 More Successful Attempt

As Hen(q,X) depends on the positions of the nuclei X, let us try an ansatz

Ψ(q,X) = ψe(q,X)φn(X) successful (V.2.2)

where now the electronic part depends on the nuclear coordinates X as well. This looks un-
symmetric: why shouldn’t one have Ψ(q,X) = ψe(q,X)φn(q,X)? First, there is an asymmetry
in the problem in the form of M � m, and Ψ(q,X) = ψe(q,X)φn(q,X) is no more better
than Ψ(q,X) in the first place.

The idea with writing Ψ(q,X) = ψe(q,X)φn(X) is that the electronic part ψe(q,X) already
solves part of the problem, i.e.

[He(q, p) +Hen(q,X)]ψe(q,X) = E(X)ψe(q,X), (V.2.3)

an equation in which X, of course, appears as an external classical parameter that commutes
with all other variables. Consequently, the eigenvalue E(X) has to depend on X. We thus
obtain

Hψeφn ≡ [He +Hn +Hen]ψeφn

= [Hn + E(X)]ψeφn (?) = Eψeφn (V.2.4)
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where the last questionmark indicated what we would like to have! Since Hn and E(X) depend
on the nuclear coordinates only, one would like to use an equation like

[Hn + E(X)]φn(X) = Eφn(X), (V.2.5)

because then we would have achieved our goal. However, the operator Hn contains the nuclear
momenta P which operate on the X in ψe(q,X), i.e.

Hψeφn = ψe [Hn + E(X)]φn + [Hnψeφn − ψeHnφn]

= Eψeφn + [Hnψeφn − ψeHnφn]. (V.2.6)

This shows that we are almost there if it wasn’t for the underlined term. One now tries to
find arguments why this term can be neglected. If it can be neglected, then we have achieved
the full solution of the Schrödinger equation by the two separate equations

[He(q, p) +Hen(q,X)]ψe(q,X) = E(X)ψe(q,X) electronic part

[Hn + E(X)]φn(X) = Eφn(X) nuclear part. (V.2.7)

These two equations Eq. (V.2.7) are the central equations of the Born-Oppenheimer ap-
proximation. Even without solving them, some quite interesting observations can already
be made:

• The electronic part is calculated as if the nuclei were at fixed positions X (‘clamped
nuclei’).

• The eigenvalue of the energy of the electronic part serves as a potential energy for the
nuclei in the nuclear part of the equations.

V.2.2 Discussion of the Born-Oppenheimer Approximation

We now have to justify the neglect of the underlined term in

Hψeφn = Eψeφn + [Hnψeφn − ψeHnφn]. (V.2.8)

Up to here, everything was still fairly general. Now we make out choice for Hn as just the
kinetic energy of the nuclei,

Hn =

N∑

i=1

P 2
i

2Mi
. (V.2.9)

We simplify the following discussion by writing

Hn =
P 2

2M
= − ~

2

2M
∇2

X , (V.2.10)

which refers to a) a single relative motion of two nuclei of effective mass M , or alternatively b)

represents an ‘abstract notation’ for Hn =
∑N

i=1
P 2

i

2Mi
(to which the following transformations

can easily be generalised).
We write

Hnψeφn − ψeHnφn = − ~
2

2M

[
∇2

Xψe(q,X)φn(X)− ψe(q,X)∇2
Xφn(X)

]

= − ~
2

2M

[

∇X {φn∇Xψe + φe∇Xψn} − ψe∇2
Xφn

]

= − ~
2

2M

[

2∇Xφn∇Xψe + φn∇2
Xψe

]

. (V.2.11)
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This term is therefore determined by the derivative of the electronic part with respect to the
nuclear positions X, and it has the factor 1/M in front. The ‘handwaving’ argument now is
to say that the derivatives ∇Xψe and ∇2

Xψe are small.

V.2.3 Adiabaticity and Geometric Phases

The electronic part equation

[He(q, p) +Hen(q,X)]ψe(q,X) = E(X)ψe(q,X) (V.2.12)

usually should give not only one but a whole set of eigenstates,

[He +Hen] |α(X)〉 = Eα(X)|α(X)〉. (V.2.13)

Assume that for a fixed X we have orthogonal basis of the electronic Hilbert space with states
|α(X)〉, no degeneracies and a discrete spectrum Eα(X),

〈α(X)|β(X)〉 = δαβ. (V.2.14)

Adiabaticity means that when X is changed slowly from X → X ′, the corresponding state
slowly changes from |α(X)〉 → |α(X ′)〉 and does not jump to another α′ 6= α like |α(X)〉 →
|α′(X ′)〉. In that case, we can use the |α(X)〉 as a basis for all X and write

Ψ(q,X) =
∑

α

φα(X)ψα(q,X). (V.2.15)

Now

H
∑

α

|φα〉n ⊗ |ψα〉e =
∑

α

[Hn + Eα(X)] |φα〉n ⊗ |ψα〉e, (V.2.16)

and taking the scalar product with a 〈ψα| of the Schrödinger equation HΨ = EΨ therefore
gives

[〈ψα|Hn|ψα〉e + Eα(X)] |φα〉n = E|φα〉n (V.2.17)

This is the Schrödinger equation for the nuclei within the adiabatic approximation. Now using
again

Hn = − ~
2

2M
∇2

X  Hnψα(q,X)φα(X)

= − ~
2

2M

[

ψα(q,X)∇2
Xφα(X) + φα(X)∇2

Xψα(q,X)

+ 2∇Xφα(X)∇Xψα(q,X)
]

(V.2.18)

and therefore the nuclear Schrödinger equation becomes

[〈ψα|Hn|ψα〉e + Eα(X)] |φα〉n = E|φα〉n  
[

− ~
2

2M
∇2

X + Eα(X)− 〈ψα|
~

2∇2
X

2M
|ψα〉 − 〈ψα|

~
2∇X

M
|ψα〉∇X

]

|φα〉n

= E|φα〉n (V.2.19)



V. Molecules 39

which can be re-written as
[

− ~
2

2M
∇2

X + Eα(X)− ~
2

2M
G(X)− ~

2

M
F (X)∇X

]

|φα〉n = E|φα〉n

G(X) ≡ 〈ψα|∇2
Xψα〉, F (X) ≡ 〈ψα|∇Xψα〉 , (V.2.20)

where we followed the notation by Mead and Truhlar in their paper J. Chem. Phys. 70, 2284
(1979). Eq. (E.5.2) is an important result as it shows that the adiabatic assumption leads
to extra terms F (X) and G(X) in the nuclear Schrödinger equation in BO approximation on
top of just the potential created by the electrons. In particular, the term F (X) is important
as it leads to a non-trivial geometrical phase in cases where the curl of F (X) is non-zero.
This has consequences for molecular spectra, too. geometric phases such as the abelian Berry
phase and the non-abelian Wilczek-Zee holonomies play an important role in other areas
of modern physics, too, one example being ‘geometrical quantum computing’. For more info
on the geometric phase in molecular systems, cf. the Review by C. A. Mead, Prev. Mod.
Phys. 64, 51 (1992).

V.2.4 Breakdown of the Born-Oppenheimer Approximation

This is a non-trivial, much discussed issue and in actual fact still the topic of present research.
From our discussion in the previus section we understand that adiabaticity is lost if transitions
between electronic states |α(X)〉 → |α′(X ′)〉 occur while change X. One example for is the
so-called Landau-Zener tunneling between nearby energy levels Eα(X) and Eα′(X). Also
discussed in this context are the Renner-Teller and the Jahn-Teller effects, cf. the short
summary by B. T. Sutcliffe in ch. 36 of Vol. 1 of the ‘Handbook of Molecular Physics and
Quantum Chemistry’, Wiley (2003).

V.3 The Hydrogen Molecule Ion H+
2

The hydrogen molecule is an example of an diatomic molecule. These contain two nuclei
of charge Z1e and Z2e; they are called homonuclear for two identical nuclei (Z1 = Z2)
and heteronuclear (Z1 6= Z2) otherwise. For diatomic molecules the Born-Oppenheimer
approximation can be reliably justified (CHECK).

V.3.1 Hamiltonian for H+
2

(Cf. Weissbluth [4] ch. 26 for this section). The Hamiltonian for the electronic part at fixed
positions xa and xb of the two protons is a Hamiltonian for a single electron at position x,

H(0)
e =

p2

2m
− e2

4πε0

[
1

|x− xa|
+

1

|x− xb|
− 1

R

]

, (V.3.1)

where R ≡ |xa − xb| and the (fixed) Coulomb repulsion energy ∝ 1/R between the two nuclei
has been included for later convenience. The eigenstates of this Hamiltonian can be determined
from an exact solution in ellipsoidal coordinates. The corresponding wave functions are called
molecular orbitals (MO) because these orbitals spread out over the whole molecule.

Instead of discussing the exact solution, it is more instructive to discuss an approximate
method that can also be used for more complicated molecules. This method is called LCAO
(linear combination of atomic orbitals) and has a centrol role in quantum chemistry.
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V.3.2 The Rayleigh-Ritz Variational Method

For a given Hamiltonian H we minimise the expectation value of the energy over a sub-set of
states |Ψ〉 that are linear combinations of n given states |ψi〉,

E = min
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , |Ψ〉 =

n∑

i=1

xi|ψi〉. (V.3.2)

The |ψi〉 are assumed to be normalised but not necessarily mutually orthogonal, i.e., one can
have 〈ψi|ψj〉 6= 0.

The energy E = E(x1, ..., xn) is therefore minimized with respect to the n coefficients xi,
i = 1, ..., n. It can be written as

E = minx1,...,xn

∑n
i,j=1 x

∗
iHijxj

∑n
i,j=1 x

∗
iSijxj

≡ minx

x†Hx

x†Sx
, (V.3.3)

where one has introduced the matrices H and S with matrix elements

Hij = 〈ψi|H|ψj〉, Sij = 〈ψi|ψj〉. (V.3.4)

We find the minimum of

f(x) ≡
x†Hx

x†Sx
(V.3.5)

by setting the gradient to zero. We treat x and its complex conjugate x∗ as independent
variables and calculate

∂

∂x∗k

(
x†Hx

)
=

∂

∂x∗k

∑

ij

x∗iHijxj =
∑

j

Hkjxj = (Hx)k

 ∇∗ (x†Hx
)

= Hx (V.3.6)

Correspondingly,

∇∗ (x†Sx
)

= Sx. (V.3.7)

Thus,

∇∗f(x) =
Hx

x†Sx
−

x†HxSx

(x†Sx)2
=

Hx

x†Sx
−
f(x)Sx

x†Sx
=

(H − f(x)S)x

x†Sx

 (H − ES)x = 0, (V.3.8)

since E = f(x) at the minimum! A necessary condition for a minimum therefore is the
equation (H − ES)x = 0, which has a solution for x only if

det
∣
∣H − ES

∣
∣ = 0. (V.3.9)

Exercise: Check which equations one obtains when taking the derivative ∇ instead of ∇∗ !

We summarise:

ERayleigh−Ritz ≡ min
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , |Ψ〉 =

n∑

i=1

xi|ψi〉 (V.3.10)

 (H − ES)x = 0

Hij ≡ 〈ψi|H|ψj〉, Sij ≡ 〈ψi|ψj〉,x ≡ (x1, ..., xn)T .

The minimization problem thus led us to an eigenvalue problem.
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V.3.3 Bonding and Antibonding

(Cf. Atkins and Friedman [5], ch. 8.3, for this section). We now apply the Rayleigh-Ritz
variational method to the Hydrogen Molecule Ion H+

2 , restricting ourselves to just n = 2 real
wave functions (atomic orbitals) ψi (i = 1, 2), i.e.

MO = Ψ = LCAO = x1ψ1 + x2ψ2 (V.3.11)

ψ1(r) = ψn=1,l=0,m=0(r− ra), ψ2(r) = ψn=1,l=0,m=0(r− rb)

with two hydrogen groundstate s-orbitals for nuclei at ra and rb, respectively.

V.3.3.1 Rayleigh-Ritz Results

We require the matrices H and S,

H =

(
α β
β α

)

, S =

(
1 S
S 1

)

(V.3.12)

α ≡ 〈ψ1|H|ψ1〉 = 〈ψ2|H|ψ2〉, β = 〈ψ1|H|ψ2〉, S = 〈ψ1|ψ2〉.

We have to solve

det
∣
∣H − ES

∣
∣ = 0 det

∣
∣
∣
∣

α− E β − ES
β − ES α− E

∣
∣
∣
∣
= 0

 (α− E)2 − (β − ES)2 = 0 α− E = ±(β − ES)

E+ =
α + β

1 + S
, E− =

α− β
1− S . (V.3.13)

This give the eigenvalues of the energy, E±. We find the eigenvectors (x1, x2) from

(α− E±)x1 + (β − E±S)x2 = 0 (V.3.14)

E+ : ((1 + S)α− (α + β))x1 + ((1 + S)β − (α + β)S)x2 = 0

(Sα− β)x1 + (β − Sα)x2 = 0 x1 = x2 ≡ x+.

E− : ((1− S)α− (α− β))x1 + ((1− S)β − (α− β)S)x2 = 0

(−Sα + β)x1 + (β − Sα)x2 = 0 x1 = −x2 ≡ x−. (V.3.15)

The normalisation constant is determined from

1 = 〈Ψ|Ψ〉 = x2
1 + x2

2 + 2x1x2〈ψ1|ψ2〉 = x2
1 + x2

2 + 2x1x2S

 1 = x2
+ + x2

+ + 2x2
+S  x+ =

1
√

2(1 + S)
(V.3.16)

 1 = x2
− + x2

− − 2x2
−S  x− =

1
√

2(1− S)
. (V.3.17)

Summarising, we therefore have obtained the two molecular orbitals (MOs) with energies E±,

E+ : Ψ+ =
1

√

2(1 + S)
(ψ1 + ψ2) bonding (V.3.18)

E− : Ψ− =
1

√

2(1− S)
(ψ1 − ψ2) antibonding. (V.3.19)

Note that the normalisation factor is different for the two MOs, this is due to the fact that
the original AOs (atomic orbitals) are not orthogonal.
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V.3.3.2 Explicit Calculation of α, β, S

This is required in order to find the values for the two energies E±, and also in order to find out
which of the two states Ψ± has lower energy! The calculations are performed by introducing
elliptical coordinates 1 ≤ µ ≤ ∞, −1 ≤ ν ≤ 1, 0 ≤ φ ≤ 2π,

µ =
ra + rb

R
, ν =

ra − rb

R
(V.3.20)

and noting that the volume element in these coordinates is

dV =
1

8
R3(µ2 − ν2)dµdνdφ. (V.3.21)

The result for α, β, and S is found as a function of the (fixed) distance R between the two
protons. Using this together with Eq. (V.3.13), one finally obtains

E+ = E1s +
e2

4πε0a0

[
1

R
− j + k

1 + S

]

E− = E1s +
e2

4πε0a0

[
1

R
+
j − k
1− S

]

R ≡ |ra − rb|/a0, S ≡
(

1 +R +
1

3
R2

)

e−R (V.3.22)

j ≡ a0

∫

dV
|ψ1s(r− ra)|2
|r− rb|)

=
1

R

(
1− (1 +R)e−2R

)

k ≡ a0

∫

dV
ψ1s(r− ra)ψ1s(r− rb)

|r− ra|)
= (1 +R)e−R.

Be careful because I haven’t checked these explicit expressions, which are from Atkins/Friedman
[5] ch. 8.3.

REMARKS:

• The energies j and k are here written as dimensionless quantities.

• The energy j is due to the electron charge density around nucleus a in the Coulomb field
of nucleus b. The energy k is an interference term.

• One has j > k and therefore the energy E+ corresponding to the bonding state is the
lower of the two: Occupation of the bonding orbital Ψ+ lowers the energy of the
molecule and ‘draws the two nuclei together’, as we will see from the curve E+(R) below
which represents the potential in BO approximation for the two nuclei. The bonding
orbital corresponds to a wave function with even parity with respect to with respect to
reflections at the plane that lies symmetrically between the two nuclei.

• The antibonding orbital Ψ− has a larger energy. It corresponds to an odd wave
function.

• For the Hydrogen ion, sometimes one uses the notation (cf. Weissbluth [4] ch. 26.2)

Ψ+ ≡ 1σ+
g bonding MO (V.3.23)

Ψ− ≡ 1σ+
u antibonding MO, (V.3.24)

where the indices mean even for g (German ‘gerade’) and odd for u (German ‘ungerade’)
and σ+ referring to a symmetry (see below).

The charge distribution in Ψ+ and Ψ− is shown in Fig.(V.3.3.2).
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Fig. V.1: Energy level splitting for Ψ+ (a) and Ψ− (b), from Weissbluth [4].

Fig. V.2: Charge distribution in Ψ+ (a) and Ψ− (b), from Weissbluth [4].

V.3.3.3 Symmetries of MOs in LCAO

(cf. Weissbluth [4] ch. 26.2). This leads to a classification of MOs according to their symmetry
under symmetry transformations. The most important classes are the σ molecular orbitals
which form σ-bonds, and the π molecular orbitals which form π-bonds, cf. Fig.
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Fig. V.3: σ-type and π-type LCAO-MOs, from Weissbluth [4]

V.3.3.4 Molecular Potential Energy

Within BO approximation, the energies E±(R) enter the nuclear Hamiltonian (cf. Eq. (??)
with εα = E±) for the wave functions χ

[
∑

i=a,b

P2
i

2M
+ E±(R)

]

χ±(xa,xb) = Eχ±(xa,xb) (V.3.25)

of the nuclear system with R = |xa − xb|, cf. Eq. (V.3.1). Clearly, a separation in center-of
mass and relative motion is easily done here. The potential energy for the nuclei is given by
the function E±(R), cf. Eq. (V.3.22),

E±(R) = E1s +
e2

4πε0a0

[
1

R
∓ j(R)± k(R)

1± S(R)

]

, (V.3.26)
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Fig. V.4: E±(R), Eq. (V.3.26), for the H
+
2 -ion in Born-Oppenheimer approximation and using the

MO-LCAO Rayleigh-Ritz method, from Weissbluth [4].

with the explicit expression for j(R), k(R), S(R), in Eq. (V.3.22). The parametric eigenener-
gies of the electronic system become the potential for the nuclei, which is the characteristic fea-
ture of the BO approximation. The corresponding potential curves are shown in Fig.(V.3.3.4).

• The potential energy E+(R) of the bonding molecular orbital has a minimum at R = R0.
This determines the equilibrium position of the two nuclei. Occupation of the bonding
MO helps to bond the nuclei together and thereby form the molecule.

• The potential energy E−(R) of the antibonding molecular orbital has no local minimum.
Therefore, the antibonding state is an excited state in which the molecule dissociates.

V.4 Hartree-Fock for Molecules

We now discuss a method to calculate molecular orbitals within the Hartree-Fock method.
Let us start from Eq. (IV.3.27),

(

Ĥ0 + Ĵ − K̂
)

|νj〉 = εj|νj〉 (V.4.1)

〈µ|Ĵ|νj〉 ≡
∑

i

〈µνi|U |νiνj〉, 〈µ|K̂|νj〉 ≡
∑

i

〈µνi|U |νjνi〉,

and assume a closed shell situation and a Hamiltonian Ĥ0 + U which is diagonal in spin-
space, i.e. does not flip the spin. The counter j runs from 1 to 2N , there are N orbitals with
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spin up and N orbitals with spin down. The index j thus runs like

j = 1 ↑, 1 ↓, 2 ↑, 2 ↓, ..., N ↑, N ↓ . (V.4.2)

We write

ψνj=2k−1
≡ ψk| ↑〉, ψνj=2k

≡ ψk| ↓〉, (V.4.3)

because j = 2k, k = 1, ..., N corresponds to spin-orbitals with spin ↓ and j = 2k − 1,
k = 1, ..., N corresponds to spin-orbitals with spin ↑. Use the Fock operator

F ≡ Ĥ0 + Ĵ − K̂ (V.4.4)

and let us, for example, set j = 2k − 1 to obtain

F|ψk〉 ⊗ | ↑〉 = εk↑|ψk〉 ⊗ | ↑〉 (V.4.5)

(V.4.6)

and expand the orbital wave function as

(MO) ψk =

M∑

l=1

clkφl, (LCAO) (V.4.7)

with l = 1, ...,M given atomic orbitals. Inserting yields

〈↑ | ⊗ 〈φl′|F|
M∑

l=1

clk|φl〉 ⊗ | ↑〉 = εk↑

M∑

l=1

clk〈φl′|φl〉

M∑

l=1

F↑↑
l′l clk = εk↑

M∑

l=1

Sl′lclk (V.4.8)

Sl′l ≡ 〈φl′|φl〉, F↑↑
l′l ≡ 〈↑ | ⊗ 〈φl′|F|φl〉 ⊗ | ↑〉.

V.4.1 Roothan Equations

The equations Eq. (V.4.8) are called Roothan equations (they are usually written for
spin-independent Fock-operator F . We summarize the situation so far:

• We have l = 1, ...,M atomic orbitals (AOs) φl for k = 1, ..., N molecular orbitals (MOs)
expressed as linear combinations (LCAO) of the AOs.

• We define the matrix C as the matrix of the coefficients, C
lk

= clk, S as the matrix of
the overlaps, S

lk
= Slk, and F as the Fock matrix.

• As Ĥ0 +U is diagonal in spin-space so is the Fock-operator F whence there are no mixed
terms F↓↑ or F↑↓.

We can then write the Roothan equations as

F↑↑C = S C ε↑ (V.4.9)

F↓↓C = S C ε↓, (V.4.10)
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where ε are diagonal matrices for the energies εk. Now these look like simultaneous linear
equations but of course they are not, because the Fock-operator depends on the coefficients
ckl that we try to determine: recall F ≡ Ĥ0 + Ĵ − K̂ with

Ĵ↑↑
l′l ≡

2N∑

i=1

〈l′νi|U |νil〉 (V.4.11)

K̂↑↑
l′l ≡

2N∑

i=1

〈l′νi|U |lνi〉〈σi| ↑〉,

where we first considered spin up. The i-sum runs over spin-orbitals, i.e. AOs including the
spin. We now assume U to be spin-independent.

Ĵl′l ≡
∑

σ=0,1

N∑

k=1

〈l′ν2k−σ|U |ν2k−σl〉 = 2
N∑

k=1

〈l′ψk|U |ψkl〉

K̂l′l ≡
∑

σ=0,1

N∑

k=1

〈l′ν2k−σ|U |lν2k−σ〉〈σ| ↑〉 =

N∑

k=1

〈l′ψk|U |lψk〉,

where σ = 0 corresponds to spin down and σ = 1 corresponds to spin up, and the orbital part
of the spin-orbital ν2k−σ is ψk by definition. Now everything is expressed in terms of orbitals
only and the spin has just led to the factor of two in front of the direct term!

We now use the LCAO expansion ψk =
∑

m cmkψm and thus obtain

Ĵl′l = 2
N∑

k=1

M∑

m,m′=1

c∗m′kcmk〈l′m′|U |ml〉 =
M∑

m,m′=1

Pm′m〈l′m′|U |ml〉

K̂l′l =
N∑

k=1

M∑

m,m′=1

c∗m′kcmk〈l′m′|U |lm〉 =
1

2

M∑

m,m′=1

Pm′m〈l′m′|U |lm〉

Pm′m ≡ 2
N∑

k=1

c∗m′kcmk, populations (V.4.12)

where the populations depend on the c’s: it is them who are responsible for the non-linearity
(self-consistent character) of the Roothan equations. Summarizing, the matrix elements of the
Fock operator are given by

F↑↑
l′l =

(

Ĥ0
)↑↑

l′l
(V.4.13)

+
M∑

m,m′=1

Pm′m[{cij}]
(

〈l′m′|U |ml〉 − 1

2
〈l′m′|U |lm〉

)

.



VI. TIME-DEPENDENT FIELDS

VI.1 Time-Dependence in Quantum Mechanics

The basis equation is the Schrödinger equation. For a given (time-dependent) Hamiltonian
H(t), the time evolution of a Dirac ket is

i~∂t|Ψ(t)〉 = H(t)|Ψ(t)〉. (VI.1.1)

There are usually two steps in solving a given physical problem

1. find H(t) for the problem at hand.

2. solve the corresponding Schrödinger equation.

Depending on the problem, one often has one of the following cases:

H(t) = H time-independent Hamiltonian (VI.1.2)

H(t) = H(t+ T ) periodic time-dependence (period T ) (VI.1.3)

H(t) arbitrary time-dependence in Hamiltonian (VI.1.4)

The second case occurs, e.g., in the interaction of atoms with monochromatic electric fields
like

E(r, t) = E0 cos (kr− ωt) . (VI.1.5)

An explicit time-dependence in the Hamiltonian usually represents classical fields or parame-
ters that can be controlled from the outside and which are not quantum variables.

With respect to the interaction between atoms or molecules and light, there are two groups
of problems one has to sort out:

1. find the correct Hamiltonian H(t) (in fact not so easy).

2. find appropriate techniques to solve the Schrödinger equation (at least in principle one
knows how to do that).

VI.1.1 Time-evolution with time-independent H

(Set ~ = 1 in the following). In this case, the initial value problem

i∂t|Ψ(t)〉 = H|Ψ(t)〉, |Ψ(t0)〉 = |Ψ〉0 (VI.1.6)

is formally solved as

|Ψ(t)〉 = U(t, t0)|Ψ〉0, U(t, t0) ≡ e−iH(t−t0), t ≥ t0, (VI.1.7)
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where we introduced the time-evolution operator U(t, t0) as the exponential of the operator
−iH(t− t0) by the power series

ex =
∞∑

n=0

xn

n!
. (VI.1.8)

Things are simple, however, when we use the solutions of the stationary Schrödinger equation

H|n〉 = εn|n〉, (VI.1.9)

where the eigenstates |n〉 form a complete basis and one has

〈n|Ψ(t)〉 =
∑

m

〈n|e−iH(t−t0)|m〉〈m|Ψ〉0 (VI.1.10)

=
∑

m

〈n|m〉e−iεm(t−t0)〈m|Ψ〉0

=
∑

m

δnme
−iεm(t−t0)〈m|Ψ〉0

= e−iεn(t−t0)〈n|Ψ〉0
 |Ψ(t)〉 =

∑

n

|n〉〈n|Ψ(t)〉 =
∑

n

|n〉e−iεn(t−t0)〈n|Ψ〉0,

where the underlined terms are the expansion coefficients of |Ψ(t)〉 in the basis {|n〉}.

VI.1.2 Example: Two-Level System

Consider

H =

(
0 Tc

Tc 0

)

. (VI.1.11)

We calculate the time-evolution operator U(t, t0) ≡ e−iH(t−t0) by two methods:

VI.1.2.1 Power Series

Use

H = Tcσx, σx ≡
(

0 1
1 0

)

σ0
x = 1̂, σ1

x = σx, σ2
x = 1̂

 eασx = 1̂ +
α

1!
σx +

α2

2!
1̂ +

α3

3!
σx +

α4

4!
1̂ + ...

= cosh(α)1̂ + sinh(α)σx

 U(t, t0) ≡ e−iH(t−t0) = cosh(−i(t− t0)Tc)1̂ + sinh(−i(t− t0)Tc)σx

= cos[(t− t0)Tc]1̂− i sin[(t− t0)Tc]σx. (VI.1.12)
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VI.1.2.2 Eigenvectors

We diagonalise H according to

H = SDS−1, (VI.1.13)

where D is the diagonal matrix of the eigenvalues and S the orthogonal matrix of the eigen-
vectors. This yields

eαH = eαSDS−1

= SeαDS−1 (VI.1.14)

which follows from the definition of the power series (Exercise: CHECK)! For H = Tcσx, we
already calculated the EVs in an earlier chapter,

(
0 Tc

Tc 0

)

=
1√
2

(
1 1
1 −1

)(
ε+ 0
0 ε−

)
1√
2

(
1 1
1 −1

)

(VI.1.15)

with ε± = ±Tc. Thus,

U(t, t0) ≡ e−iH(t−t0) = Se−i(t−t0)DS−1

=
1

2

(
1 1
1 −1

)(
e−i(t−t0)Tc 0

0 e+i(t−t0)Tc

)(
1 1
1 −1

)

=
1

2

(
1 1
1 −1

)(
e−i(t−t0)Tc e−i(t−t0)Tc

e+i(t−t0)Tc −e+i(t−t0)Tc

)

=

(
cos[(t− t0)Tc] −i sin[(t− t0)Tc]
−i sin[(t− t0)Tc] cos[(t− t0)Tc]

)

= cos[(t− t0)Tc]1̂− i sin[(t− t0)Tc]σx. (VI.1.16)

VI.1.2.3 Quantum Oscillations in Two-Level Systems

We can now easily calculate these: use an initial condition

|Ψ〉0 = αL|L〉+ αR|R〉 =

(
αL

αR

)

 |Ψ(t)〉 = U(t, t0)|Ψ〉0 =
{
cos[(t− t0)Tc]1̂− i sin[(t− t0)Tc]σx

}
|Ψ〉0

= {αL cos[(t− t0)Tc]− iαR sin[(t− t0)Tc]} |L〉
+ {αR cos[(t− t0)Tc]− iαL sin[(t− t0)Tc]} |R〉. (VI.1.17)

Check out a few examples:
αL = 1, αR = 0 (particle initially in left well): in this case, the probabilities for the particle to
be in the left (right) well at time t ≥ t0 are

|〈L|Ψ(t)〉|2 = cos2[(t− t0)Tc] (VI.1.18)

|〈R|Ψ(t)〉|2 = sin2[(t− t0)Tc] quantum-mechanical oscillations.

VI.2 Time-dependent Hamiltonians

There are almost no exact analytical solutions when the Hamiltonian, H(t), is time-dependent.
A few exceptions do exist, however.
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VI.2.1 Spin 1
2

in Magnetic Field

This case is, for example, extremely important for NMR (nuclear magnetic resonance). Even
here the Hamiltonian H(t) is in general not exactly soluble, its form is

H(t) ≡ B(t)σ ≡ Bx(t)σ̂x +By(t)σ̂y +Bz(t)σ̂z

≡
(
Bz(t) B∗

‖(t)

B‖(t) −Bz(t)

)

, B‖(t) ≡ Bx(t) + iBy(t), (VI.2.1)

where the Pauli-matrices are defined as

σ̂x ≡
(

0 1
1 0

)

, σ̂y ≡
(

0 −i
i 0

)

, σ̂z ≡
(

1 0
0 −1

)

. (VI.2.2)

Why is that so difficult? Let us write the Schrödinger equation

i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉, |Ψ(t)〉 ≡
(
ψ1(t)
ψ2(t)

)

 i
d

dt
ψ1(t) = Bz(t)ψ1(t) +B∗

‖(t)ψ2(t)

i
d

dt
ψ2(t) = B‖(t)ψ1(t)− Bz(t)ψ2(t). (VI.2.3)

We assume B‖ 6= 0 and write (omit the t-dependence for a moment)

ψ1 =
iψ̇2 +Bzψ2

B‖
(VI.2.4)

iψ̈2 = Ḃ‖ψ1 +B‖ψ̇1 − Ḃzψ2 − Bzψ̇2

=
Ḃ‖
B‖

[iψ̇2 +Bzψ2]− iB‖[Bzψ1 +B∗
‖ψ2]− Ḃzψ2 −Bzψ̇2

=
Ḃ‖
B‖

[iψ̇2 +Bzψ2]− iBz[iψ̇2 +Bzψ2]− iB‖B
∗
‖ψ2 − Ḃzψ2 − Bzψ̇2

= i
Ḃ‖
B‖
ψ̇2 +

[

Ḃ‖
B‖
Bz − iB2

z − i|B‖|2 − Ḃz

]

ψ2. (VI.2.5)

This is a second order ODE with time-dependent coefficients, which in general is not solvable
in terms of known functions (it can of course be solved numerically quite easily).

VI.2.1.1 Constant B

In this case we must of course recover our usual two-level system:

iψ̈2 = −i[B2
z + |B‖|2]ψ2 = −i|B|2ψ2 (VI.2.6)

 ψ̈2 + |B|2ψ2 = 0 (VI.2.7)

 ψ2(t) = ψ2(0) cos |B|t+
ψ̇2(0)

|B| sin |B|t (VI.2.8)

For constant B, the eigenvalues of the Hamiltonian

H ≡
(
Bz B∗

‖
B‖ −Bz

)

(VI.2.9)
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are given by (Bz − ε)(−Bz − ε) − |B‖|2 = 0 or ε± = ±
√
B2

z + |B‖|2 = ±|B|. Therefore,
Eq. (VI.2.6) describes quantum mechanical oscillations with angular frequency of half the
level splitting 2|B| between ground and excited state, in agreement with our specific example
Bz = 0, B‖ = Tc from section VI.1.2.3.

VI.2.1.2 Rotating Field

This is defined as for constant field in z direction and an oscillating field in the x-y plane,

Bz(t) = B0 = const, B‖(t) = B1e
iωt. (VI.2.10)

Our equation for ψ2 thus becomes

iψ̈2 = i
Ḃ‖
B‖
ψ̇2 +

[

Ḃ‖
B‖
Bz − iB2

z − i|B‖|2 − Ḃz

]

ψ2

= −ωψ̇2 + i[ωB0 −B2
0 − |B1|2]ψ2

 ψ̈2 − iωψ̇2 + [B2
0 + |B1|2 − ωB0]ψ2 = 0. (VI.2.11)

This can be solved using the exponential ansatz method ψ2(t) = ce−izt which yields a quadratic
equation for z,

z2 − ωz + [ωB0 −B2
0 − |B1|2] = 0

z± =
ω

2
± 1

2

√

ω2 + 4B2
0 − 4ωB0 + 4|B1|2 =

ω

2
± 1

2
ΩR

ΩR ≡
√

(ω − 2B0)2 + 4|B1|2 Rabi-frequency. (VI.2.12)

Note that the term 2B0 in the Rabi-frequency is determined by the level-splitting ∆ ≡ 2B0 in
absence of the time-dependent field B‖(t). The solution for ψ2(t) (from which ψ1(t) follows
immediately) therefore is

ψ2(t) = c1e
i

�
ω
2
+

ΩR
2 � t

+ c2e
i

�
ω
2
−ΩR

2 � t

= ei ω
2

t

[

c′1 cos
ΩR

2
t+ c′2 sin

ΩR

2
t

]

. (VI.2.13)

We can choose, e.g., the initial condition ψ2(0) = 1 from which follows

ψ2(t) = ei ω
2

t

[

cos
ΩR

2
t+ c′2 sin

ΩR

2
t

]

0 = ψ1(0) =
iψ̇2 +Bzψ2

B‖

∥
∥
∥
∥
∥

t=0

=
−ω

2
+ iΩR

2
c′2 +B0

B1

 c′2 = −iω − 2B0

ΩR

(VI.2.14)

This leads to

|ψ2(t)|2 = cos2 ΩR

2
t +

(ω − 2B0)
2

Ω2
R

sin2 ΩR

2
t (VI.2.15)

=
(ω − 2B0)

2

Ω2
R

+
4|B1|2

Ω2
R

cos2 ΩR

2
t Rabi-Oscillations.

Note that the quantum-mechanical oscillations at constant B (e.g., the case B = (Tc, 0, 0)
in Eq. (VI.1.18)) occur for a time-independent Hamiltonian. The Rabi-oscillations occur
in a time-dependent Hamiltonian containing a time-dependent term (‘time-dependent field’).
These two often get mixed up in the literature.
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VI.2.2 Landau-Zener-Rosen problem

This is another exactly solvable case for a two-level system. To be discussed later in the
context of adiabatic and non-adiabatic transitions between energy levels.

VI.3 Time-Dependent Perturbation Theory

VI.3.1 Model Hamiltonian

This is written in the form

H(t) = H0 + V (t) (VI.3.1)

with the time-dependence in the perturbation V (t). The case H(t) = H0(t) + V with a
constant perturbation operator but a time-dependent ‘free part’ also exists, but is slightly less
used.

The term ‘time-dependent’ perturbation theory, however, primarily refers to perturbation
theory for the time-dependence of the wave function and is also used for time-independent
Hamiltonians H(t) = H.

VI.3.2 The Interaction Picture

This is introduced in order to facilitate the solution of the Schrödinger equation

d

dt
|Ψ(t)〉 = −iH(t)|Ψ(t)〉 (VI.3.2)

We define

|Ψ(t)〉I ≡ eiH0t|Ψ(t)〉 (VI.3.3)

and derive the new Schrödinger equation for |Ψ(t)〉I,
d

dt
|ΨI(t)〉 = iH0|ΨI(t)〉+ eiH0t d

dt
|Ψ(t)〉

= iH0|ΨI(t)〉 − ieiH0t [H0 + V (t)] e−iH0t|ΨI(t)〉
= −ieiH0tV (t)e−iH0t|ΨI(t)〉 ≡ −iVI(t)|ΨI(t)〉. (VI.3.4)

The Schrödinger equation therefore is transformed into the interaction picture

d

dt
|Ψ(t)〉 = −iH(t)|Ψ(t)〉 ↔ d

dt
|ΨI(t)〉 = −iVI(t)|ΨI(t)〉

|Ψ(t)〉I ≡ eiH0t|Ψ(t)〉, VI(t) ≡ eiH0tV (t)e−iH0t. (VI.3.5)

VI.3.3 First Order Perturbation Theory

This is achieved by doing the first iteration in

d

dt
|ΨI(t)〉 = −iVI(t)|ΨI(t)〉

 |ΨI(t)〉 = ΨI(t0)〉 − i
∫ t

t0

dt′VI(t
′)|ΨI(t

′)〉

= |ΨI(t0)〉 − i
∫ t

t0

dt′VI(t
′)|ΨI(t0)〉+O(V 2

I ). (VI.3.6)
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We take t0 = 0 for simplicity and the initial state therefore is |ΨI(0)〉 = |Ψ(0)〉,

|ΨI(t)〉 = |Ψ(0)〉 − i
∫ t

0

dt′VI(t
′)|Ψ(0)〉+O(V 2

I ). (VI.3.7)

This can be worked out in some more detail by assuming a basis |n〉 of eigenstates of H0,

H0|n〉 = εn|n〉, 1̂ =
∑

n′

|n′〉〈n′| (VI.3.8)

〈n|ΨI(t)〉 = 〈n|Ψ(0)〉 − i
∑

n′

∫ t

0

dt′〈n|VI(t
′)|n′〉〈n′|Ψ(0)〉+O(V 2

I ).

Let us assume the initial state |Ψ(0)〉 = |m〉 is an eigenstate of H0, then

〈n|ΨI(t)〉 = δnm − i
∫ t

0

dt′〈n|VI(t
′)|m〉+O(V 2

I ). (VI.3.9)

The probability to find the system in state |n〉 after time t is then a transition probability.
Use |〈n|Ψ(t)〉|2 = |〈n|ΨI(t)〉|2 (EXERCISE:CHECK!) to find within first order perturbation
theory

Pm→n(t) = |〈n|Ψ(t)〉|2 =

∣
∣
∣
∣

∫ t

0

dt′〈n|VI(t
′)|m〉

∣
∣
∣
∣

2

first order

|Ψ(0)〉 ≡ |m〉 6= |n〉. (VI.3.10)

VI.3.3.1 Time-Independent Hamiltonian V (t) = V

In this case

〈n|VI(t
′)|m〉 = 〈n|eiH0t′V e−iH0t′ |m〉 = e−i(εn−εm)t′〈n|V |m〉

 Pm→n(t) = |〈n|V |m〉|2
∣
∣
∣
∣

∫ t

0

dt′e−i(εn−εm)t′
∣
∣
∣
∣

2

= |〈n|V |m〉|2
∣
∣
∣
∣

e−i(εn−εm)t − 1

εn − εm

∣
∣
∣
∣

2

= |〈n|V |m〉|2 4
sin2 εn−εm

2
t

(εn − εm)2
(VI.3.11)

As for the sin2 function, we now use the representation of the Dirac Delta-function,

Theorem:
For any integrable, normalised function f(x) with

∫∞
−∞ dxf(x) = 1,

lim
ε→0

1

ε
f
(x

ε

)

= δ(x). (VI.3.12)

Here, we apply it with f(x) = 1
π

sin2(x)
x2

lim
ε→0

1

ε

1

π

sin2(x/ε)

(x/ε)2
= δ(x), lim

t→∞

t

2π

sin2(∆Et/2)

(∆Et/2)2
= δ(∆E)

 lim
t→∞

1

t
Pm→n(t) = lim

t→∞
|〈n|V |m〉|2 2π

t

2π

sin2 εn−εm

2
t

[(εn − εm)t/2]2

= 2π |〈n|V |m〉|2 δ(εn − εm). (VI.3.13)
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This is an extremely important result, and we therefore highlight it here again, introducing
the transition rate Γm→n,

Γm→n ≡ lim
t→∞

1

t
Pm→n(t) =

2π

~2
|〈n|V |m〉|2 δ(εn − εm) (VI.3.14)

The total transition rate into any final state |n〉 is, within first order perturbationtheory in
V , given by the sum over all n,

Γm ≡ 2π

~2

∑

n

|〈n|V |m〉|2 δ(εn − εm)

Fermi’s Golden Rule. (VI.3.15)

VI.3.4 Higher Order Perturbation Theory

(This is also discussed in Merzbacher [2] though with a slightly different notation.
We start from the time-dependent Schrödinger equation

i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉. (VI.3.16)

The state |Ψ(t)〉 at time t is obtained from the state |Ψ(t0)〉 at time t0 by application of the
time evolution operator U(t, t0) via

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉. (VI.3.17)

If H(t) = H is time-independent, we have

U(t, t0) = e−iH(t−t0), time-independent Hamiltonian. (VI.3.18)

For arbitrary H(t), we have

i∂tU(t, t0) = H(t)U(t, t0), U(t0, t0) = 1. (VI.3.19)

We now assume a form

H(t) = H0 + V (t). (VI.3.20)

We solve this differential equation by introducing the interaction picture time-evolution oper-
ator Ũ(t, t0),

Ũ(t, t0) = eiH0tU(t, t0)e
−iH0t0 (VI.3.21)

i∂tŨ(t, t0) = −H0Ũ(t, t0) + i(−i)eiH0tH(t)U(t, t0)e
−iH0t0

= −H0Ũ(t, t0) + eiH0t[H0 + V (t)]e−iH0teiH0tU(t, t0)e
−iH0t0

= −H0Ũ(t, t0) + eiH0t[H0 + V (t)]e−iH0tŨ(t, t0)

= Ṽ (t)Ũ(t, t0) (VI.3.22)

Ṽ (t) = eiH0tV (t)e−iH0t. (VI.3.23)

VI.3.5 States

Using Eq. (VI.3.3), in the interaction picture

|Ψ(t)〉I ≡ eiH0t|Ψ(t)〉 = eiH0tU(t, t0)|Ψ(t0)

= eiH0te−iH0tŨ(t, t0)e
iH0t0 |Ψ(t0)〉

= Ũ(t, t0)|Ψ(t0)〉I . (VI.3.24)



VI. Time-Dependent Fields 56

VI.3.5.1 Successive Interation

We can obtain the time-evolution operator Ũ(t, t0) in the interaction picture by successive
iteration:

i∂tŨ(t, t0) = Ṽ (t)Ũ(t, t0) (VI.3.25)

 Ũ(t, t0) = 1− i
∫ t

t0

dt1Ṽ (t1)Ũ(t1, t0)

= 1− i
∫ t

t0

dt1Ṽ (t1) + (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2Ṽ (t1)Ṽ (t2) + ...

= 1 +
∞∑

n=1

(−i)n

∫ t

t0

dt1

∫ t1

t0

dt2...

∫ tn−1

t0

dtnṼ (t1)...Ṽ (tn).

There is a compact notation that slightly simplifies things here: time-ordered products
of operators are defined with the time-ordering operator T which orders a product of
operators Ṽ (t1)...Ṽ (tn) with arbitrary times t1,...,tn such that the ‘earliest’ operator is left
and the ‘latest’ operator is right. For example,

T [Ṽ (t1)Ṽ (t2)] = θ(t1 − t2)Ṽ (t1)Ṽ (t2) + θ(t2 − t1)Ṽ (t2)Ṽ (t1), (VI.3.26)

where

θ(t ≥ 0) = 1, θ(t < 0) = 0. (VI.3.27)

Using the time-ordering operator, one can then show

Ũ(t, t0) = 1 +

∞∑

n=1

(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2...

∫ t

t0

dtnT [Ṽ (t1)...Ṽ (tn)]

≡ T exp

[

−i
∫ t

t0

dt′Ṽ (t′)

]

. (VI.3.28)

Note that now the upper limit of all integrals is the same t and that there is the additional
1/n! in front of each term.



VII. INTERACTION WITH LIGHT

VII.1 Electromagnetic Fields and Maxwells Equations

Literature here: R. Loudon ‘The Quantum Theory of Light’ [6] and C. Cohen-Tannoudji, J.
Dupont-Roc, G. Grynberg ‘Atom-Photon Interactions’ [7].

Electromagnetism brings in the notion of fields as described by Maxwell’s equations

∇ ·B = 0 (VII.1.1)

∇×E +
∂B

∂t
= 0 (VII.1.2)

ε0∇ ·E = ρ (VII.1.3)

∇×B− 1

c2
∂E

∂t
= µ0j (VII.1.4)

in a shorthand notation where B = B(r, t) etc. The transversal parts of E and B are dynamical
variables:

VII.1.1 Longitudinal and transversal parts

Helmholtz’ theorem: E and B can be decomposed into

E = E‖ + E⊥, B = B‖ + B⊥ (VII.1.5)

∇×E‖ = ∇×B‖ = 0, ∇ ·E⊥ = ∇ ·B⊥ = 0. (VII.1.6)

This becomes clearer in Fourier space, e.g.

Ê(k) = Ê‖(k) + Ê⊥(k) (VII.1.7)

Ê‖(k) = [k · Ê(k)]k/k2, Ê⊥(k) = [k× Ê(k)]× k/k2. (VII.1.8)

VII.1.1.1 Longitudinal E and B are ‘trivial’

For the magnetic field, one has

0 = ∇ ·B 0 = k · B̂(k) B̂‖(k) = 0 B‖ = 0, (VII.1.9)

which means that the magnetic field is purely transversal, i.e. B = B⊥.
For the electric field, one has

ε0∇ ·E = ρ, ε0ik · Ê(k) = ρ(k) Ê‖(k, t) = − ik

ε0k2
ρ(k, t), (VII.1.10)

at all times t the longitudinal electric field is determined by the charge distribution at the
same time (no retardation effects).

Therefore, the longitudinal fields are no independent variables; they are either zero for
the magnetic field (B‖ = 0) or just given by the charge in the case of the electric field. By
contrast, the transverse fields are independent variables.
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VII.1.2 Potentials

The Maxwell equations are a system of first order PDEs that can be transformed into second
order equations by introduction of potentials.

• This facilitates quantization of the em field by the analogy with harmonic oscillators in
Newtons equations.

• This also is in analogy with classical mechanics, where one tries to work with potentials
instead of forces which often simplifies things.

One has

E = −∇φ− ∂tA, B = ∇×A (VII.1.11)

with the scalar potential φ and the vector potential A. In Fourier space,

Ê(k) = −ikφ(k)− ∂tÂ(k) Ê⊥(k) = −∂tÂ⊥(k) (VII.1.12)

B̂(k) = ik× Â(k) = ik× Â⊥(k). (VII.1.13)

The‘non-trivial’ transverse components of the field are therefore determined only by the trans-
verse component Â⊥ of the vector potential.

VII.1.2.1 Gauge Transformations

The potentials are not uniquely determined by the fields which are left invariant under a gauge
transformation

A′ = A +∇f, φ′ = φ− ∂tf. (VII.1.14)

Again in Fourier space,

Â′(k) = Â(k) + ikf(k) Â′
⊥(k) = Â⊥(k). (VII.1.15)

The important transverse component of the vector potential, from which the transverse com-
ponents Ê⊥(k) and B̂(k) are derived via Eq. (VII.1.12), is therefore left invariant under a
gauge transformation.

VII.1.2.2 Coulomb Gauge

In the Coulomb gauge one sets

A‖ = 0 kÂ(k) = 0 ∇ ·A = 0. (VII.1.16)

The vector potential A = A⊥ is purely transverse in the Coulomb gauge. We then have

Ê(k) = −ikφ(k)− ∂tÂ(k) 

kÊ(k) = −ikkφ(k)− ∂tkÂ(k) = −ikkφ(k) (VII.1.17)

 −iρ(k)/ε0 = −ikkφ(k) ∇2φ(r, t) = −ρ(r, t)/ε0, (VII.1.18)

which is the Poisson equation.
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VII.2 Gauge invariance in single-particle non-relativistic QM

Here, we follow Merzbacher [2].
We now look at the interaction between charges and the electromagnetic field. The first

step is to find the Hamiltonian, which is done via the sequence ‘classical Lagrangian - classical
Hamiltonian - QM Hamiltonian’. For a particle of mass m with charge q in an electromagnetic
field described by potentials (φ,A), the classical Hamiltonian is

H = H(t) +Hrad, H(t) ≡ 1

2m
(p− qA)2 + qφ (VII.2.1)

Hrad =
1

2

∫

dr
[
ε0E

2
⊥ + µ−1

0 B2
]
. (VII.2.2)

The em field are still treated classically here. The replacement of the momentum p by

p→ p− qA (VII.2.3)

is called minimal coupling. The term Hrad is the energy of the electromagnetic field.

VII.2.1 Local Gauge Transformation

If we change

A′ = A +∇f, φ′ = φ− ∂tf, (VII.2.4)

the Hamiltonian in the new gauge becomes (Hrad is not changed)

H ′(t) ≡ 1

2m
(p− qA′)

2
+ qφ′ (VII.2.5)

The time-dependent Schrödinger equations in the old and the new gauge are

i∂tψ = H(t)ψ, i∂tψ
′ = H ′(t)ψ′. (VII.2.6)

They should describe the same physics which is the case if

ψ′(r, t) = Uψ(r, t), U = eiqf(r,t)/c. (VII.2.7)

This can be seen by

i∂tψ
′ = i∂tUψ = (i∂tU)ψ + iU∂tψ = (i∂tU)ψ + iUHψ = [(i∂tU) + UH]ψ

= [(i∂tU) + UH]U †Uψ = [(i∂tU) + UH]U †ψ′ = H ′ψ′

↔ H ′ = (i∂tU)U † + UHU †, (VII.2.8)

which means

H ′ = (i∂tU)U † + UHU †, ψ′(r, t) = Uψ(r, t) ↔ same physics.

The transformation from H to H ′ and correspondingly ψ to ψ′ is completely arbitrary and
works for any Hamiltonian and transformation (operator) U . In the context we are discussing
it here, U is a phase and thus an element of the group U(1). The transformation U = eiqf(r,t)/c

is a local gauge transformation as it involves a r-dependent phase.
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VII.2.1.1 Example: spatially constant electric field, zero magnetic field

We choose a gauge (set c = 1)

φ = 0,A = −
∫ t

−∞
dt′E(t′). (VII.2.9)

We transform to a new gauge

A′ = A +∇f = 0, φ′ = φ− ∂tf = −∂tf

 ∇f = −A, f(r, t) = r

∫ t

−∞
dt′E(t′) φ′(r, t) = −rE(t)

 i∂tψ
′ = H ′(t)ψ′ with H ′(t) =

p2

2m
− qrE(t). (VII.2.10)

VII.3 Gauge invariance for many charges in non-relativistic QM

We follow Woolley [8]. Things become a little bit more complicated now.

VII.3.1 Charge and current densities, polarization and magnetization

The charge and current density for N charges qn at positions rn are

ρ(r) =
∑

n

qnδ(rn − r), j(r) =
∑

n

qnṙnδ(rn − r) (VII.3.1)

These can be expressed in terms of polarization fields P (electric polarization) and M (mag-
netic polarization or magnetization) via

ρ = −∇ ·P, j =
dP

dt
+∇×M. (VII.3.2)

In some traditional formulations of electromagnetism, one distinguishes between ‘bound’ and
‘free’ charges which, however, from a fundamental point of view is a little bit artificial. The
above definition of P and M thus refers to the total charge and current charge densities
without such separation.

The interesting thing now is the fact that P and M are not uniquely defined by Eq. (VII.3.2).
They are arbitrary in very much the same way as the potentials φ and A are arbitrary. Note
that only the longitudinal part of P is uniquely determined from Eq. (VII.3.2) and given by
the charge density,

ρ = −∇ ·P ikP(k) = ρ(k)

 P‖(k) ≡ [kP(k)]k/k2 = −iρ(k)k/k2. (VII.3.3)

One can transform P and M according to

P→ P′ = P +∇×U, M→M′ = M− dU

dt
+∇u, (VII.3.4)

with P′ and M′ still fulfilling Eq. (VII.3.2). Following Woolley, this arbitraryness is related
to charge conservation (I think this interpretation can be carried over to QM and be linked
to U(1) invariance of QED). In the classical theory it is the divergence operator playing the
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central role (ε0∇ ·E = ρ, Gauss’ law) and the central object in this discussion therefore is the
Greens function g(r, r′) in

∇r · g(r, r′) = −δ(r− r′). (VII.3.5)

Fourier transformation yields

− ikg(k) = −1 g‖(k) ≡ [kg(k)]k/k2 = −ik/k2

g⊥(k) arbitrary. (VII.3.6)

In other words, all the arbitraryness (all the fuss about gauge invariance) sits in the transversal
part of the Greens function g(r, r′) of the divergence operator.

The polarization is now expressed by g(r, r′) that solves ρ = −∇ ·P, i.e.

P(r) =

∫

dr′g(r, r′)ρ(r′). (VII.3.7)

VII.3.2 The Hamiltonian

This has to be worked out in detail, starting from the Lagrangian, which is described in
Woolley [8]. The result is

H(t) = H(t) +Hrad

Hrad =
1

2

∫

dr
[
ε0E

2
⊥ + µ−1

0 B2
]

(VII.3.8)

H(t) =
∑

n

1

2mn
[pn − qnA(rn, t)] + VCoul + VEP + Vgg

VCoul ≡
1

2

∑

n,m

qnqm
4πε0|rn − rm|

VEP ≡ −
∑

n

qn

∫

drE⊥ · g(r, rn) = −
∫

drE⊥P⊥

Vgg ≡
1

2ε0

∑

n,m

qnqm

∫

drg⊥(r, rn)g⊥(r, rm).

(VII.3.9)

Up to here everything is completely classical (just classical charges and fields). Quantization
of the charge degrees of freedom is done canonically via pn → p̂n = − i

� ∇n.

VII.3.2.1 Coulomb Gauge

The Coulomb gauge theory is obtained with the choice

g⊥(r, r′) = 0, ∇ ·A = 0. (VII.3.10)

The Hamiltonian in the Coulomb gauge then is

HCoul(t) = H(t) +Hrad

Hrad =
1

2

∫

dr
[
ε0E

2
⊥ + µ−1

0 B2
]

(VII.3.11)

H(t) =
∑

n

1

2mn
[pn − qnA(rn, t)] + VCoul, ∇ ·A = 0. (VII.3.12)

without the polarization terms VEP and Vgg.
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VII.3.3 Power-Zienau-Woolley Transformation

One can now show that the Coulomb gauge Hamiltonian HCoul(t) can be transformed into a
Hamiltonian H(t) in any other gauge as specified by g⊥ and given by Eq. (VII.3.8). This is
achieved by the so-called Power-Zienau-Woolley Transformation which is a unitary transfor-
mation of the Coulomb gauge Hamiltonian HCoul(t),

H(t) = Λ−1HCoul(t)Λ, Λ ≡ exp

[

i

∫

drA(r, t)P(r)

]

. (VII.3.13)

A relation can be derived between A and ACoul, cf. Woolley [8],

A(r, t) = ACoul(r, t)−∇ ·
∫

dr′ACoul(r
′, t)g⊥(r′, r). (VII.3.14)

If this is inserted into H(t), Eq. (VII.3.8), one obtains

H(t) = H(t) +Hrad

Hrad =
1

2

∫

dr
[
ε0E

2
⊥ + µ−1

0 B2
]

(VII.3.15)

H(t) =
∑

n

p2
n

2mn
+ VCoul + VEP + VPP + magnetic terms

VCoul ≡
1

2

∑

n,m

qnqm
4πε0|rn − rm|

VEP ≡ −
∫

drE⊥P⊥

VPP ≡ 1

2ε0

∫

drP⊥(r)2. (VII.3.16)

Basically, apart from the magnetic terms the pA coupling is transformed away and one has
instead a coupling not to the vector potential, but to the electric field E⊥. As a slight warning,
here things can again get a little bit confusing: compare the discussion in Cohen-Tannoudji,
Dupont-Roc and Grynberg [7], and the lecture notes by K.P. Marzlin, http://qis.ucalgary.ca/ pmar-
zlin/lectures/al0203/ who gives more detailed derivations. In fact, one has to interpret the
field in the transformed Hamiltonian as a displacement field D⊥ rather than the electric field
E⊥.

VII.3.4 Some Remarks on Fields

• fields as stupid book-keeping tool? Cf. Feynman’s Nobel Prize speech. Do you really
understand what a field is?

• but there is modern point of view: EM as U(1) gauge theory. Automatically brings in
the concept of a field. Or can one do gauge theories without fields.

• retardation is a key point: if retardation is neglected: Breit-formula (Landau-Lifshitz
Vol. IV) as c→∞ limit.

• QED Lagrange density just contains minimal coupling to vector potential, no explicit
interaction between particles. Coulombs law follows as first term in an expansion in 1/c,
cf. (Landau-Lifshitz Vol. IV).



VIII. ROTATIONS AND VIBRATIONS OF
MOLECULES

VIII.1 Vibrations and Rotations in Diatomic Molecules

Here, we follow Weissbluth [4] ch. 27, and Landau-Lifshitz III [1].

VIII.1.1 Hamiltonian

Before deriving the Hamiltonian, a short excursion to classical mechanics of two particles:

VIII.1.1.1 Angular Momentum of Two Particles

If two particles have positions r1 and r2 and momenta p1 and p2, the angular momentum of
the total system of the two particles is

L = r1 × p1 + r2 × p2. (VIII.1.1)

We introduce center-of-mass and relative coordinates according to

R =
m1r1 +m2r2

m1 +m2
, r = r2 − r1, (VIII.1.2)

and furthermore momenta

P = p1 + p2 (VIII.1.3)

p =
m1p2 −m2p1

m1 +m2
. (VIII.1.4)

Note that the relative momentum p is not just the difference of the individual momenta. It is
rather defined such that in terms of

µ ≡ m1m2

m1 +m2

reduced mass, (VIII.1.5)

one has

µṙ = µ(ṙ2 − ṙ1) = µ

(
p2

m2
− p1

m1

)

= p. (VIII.1.6)

Using these definitions, one checks

L = r1 × p1 + r2 × p2 (VIII.1.7)

= R×P + r× p. (VIII.1.8)

This is the sum of a center-of-mass angular momentum, R × P, and a relative angular mo-
mentum, r× p.
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VIII.1.1.2 Born-Oppenheimer Approximation

We recall the Born-Oppenheimer Approximation for the total wave function Ψ(q,X) of a
molecule, cf. Eq. (V.2.15),

Ψ(q,X) =
∑

α

φα(X)ψα(q,X), (VIII.1.9)

where q stands for the electronic, X for the nuclear coordinates, and the sum is over a complete
set of adiabatic electronic eigenstates with electronic quantum numbers α. This form leads to
the Schrödinger equation in the adiabatic approximation Eq. (V.2.17),

[〈ψα|Hn|ψα〉e + Eα(X)] |φα〉n = E|φα〉n. (VIII.1.10)

Here, Eα(X) is the potential acting on the nuclei. We now specify the kinetic energy of the
nuclear part for a diatomic molecule,

Hn =
P2

2M
+

p2

2µ
. (VIII.1.11)

Exercise Check that Hn =
p2

1

2m1
+

p2
2

2m2
.

The effective nuclear Hamiltonian corresponding to an electronic eigenstate α thus is

Hn,α = 〈ψα|
P2

2M
|ψα〉+ 〈ψα|

p2

2µ
|ψα〉+ Eα(r), (VIII.1.12)

which is a sum of a center-of-mass Hamiltonian and a Hamiltonian for the relative motion of
the two nuclei. Only the latter is interesting because it contains the potential Eα(r). Note
that both center-of-mass and relative Hamiltonian still contain the geometrical phase terms,
cf. Eq. (E.5.2), which however we will neglect in the following.

VIII.1.2 Angular Momentum

Neglecting the geometric phase terms, Eq. (E.5.2), we have in three spatial dimensions

Hrel
n,α =

p2

2µ
+ Eα(r) = − ~

2

2µ
∆r + Eα(r)

= − ~
2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)

+
J2

2µr2
+ Eα(r), (VIII.1.13)

where J is the relative angular momentum operator of the nuclei. We have a three-dimensional
problem which however due to the radial symmetry of Eα(r) is reduced to a one-dimensional
radial eqaution, very much as for the case of the hydrogen atom! We could write the eigen-
functions of Hrel

n,α as

Ψ(r) = R(r)YJM(θ, φ) (VIII.1.14)

with the corresponding angular quantum numbers J and M of the nuclear relative motion
separated off in the spherical harmonics.

Instead of dealing with the angular momentum operator of the nuclei, one would rather
descrive rotations of the whole molecule by the total angular momentum K of the molecule

K = J + L + S, (VIII.1.15)

where L is the total angular momentum of all electrons and S is the total spin.
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VIII.1.2.1 Spin S = 0

This is the simplest case. The total angular momentum of the nuclei is then

J = K− L. (VIII.1.16)

Since we have neglected geometric phase terms, we can replace ∆r by its expectation value in
the electronic state α under consideration,

∆r = 〈ψα|∆r|ψα〉 (VIII.1.17)

 J2 = 〈ψα|J2|ψα〉 = 〈ψα|(K− L)2|ψα〉. (VIII.1.18)

This allows one to express everything in terms of total angular quantum numbers K as follows:
We first write

J2 = 〈ψα|(K− L)2|ψα〉 (VIII.1.19)

= 〈ψα|K2|ψα〉 − 2〈ψα|KL|ψα〉+ 〈ψα|L2|ψα〉.

First, K2 is conserved and can be replaced by its eigenvalue K(K + 1) whence

〈ψα|K2|ψα〉 = K(K + 1). (VIII.1.20)

Second, 〈ψα|L2|ψα〉 only depends on the electronic degrees of freedom and can therefore be
simply added to the potential Eα(r).

Finally, we assume that the electronic state α is an eigenstate of the z component Lz with
eigenvalue Λ of the electronic angular momentum. Then,

〈ψα|KL|ψα〉 = K〈ψα|L|ψα〉 = KezΛ. (VIII.1.21)

On the other hand, we have Jez = 0 since the angular momentum of the two nuclei is
perpendicular to the molecule axis ez ∝ r, thus

(Kz − Lz) = 0 Kz = Lz (VIII.1.22)

and

〈ψα|KL|ψα〉 = KezΛ = LzΛ

= 〈ψα|Lz|ψα〉Λ = Λ2. (VIII.1.23)

Summarizing, we now have for the radial part

− ~
2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)

+
K(K + 1)

2µr2
− 2Λ2

2µr2
+
〈ψα|L2|ψα〉

2µr2
+ Eα(r)

≡ − ~
2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)

+
K(K + 1)

2µr2
+ Uα(r).

Thus we have finally arrived at the form for the effective potential energy,

K(K + 1)

2µr2
+ Uα(r). (VIII.1.24)

The first term K(K+1)
2µr2 is the centrifugal energy as in the hydrogen problem. Since Kz = Lz

with fixed eigenvalue Λ for the given state α, the eigenvalues of the total angular momentum
must fulfill

K ≥ Λ. (VIII.1.25)



VIII. Rotations and Vibrations of Molecules 66

VIII.1.3 Radial SE

Our SE for the radial motion of the two nuclei has the form
[

− ~
2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)

+
K(K + 1)

2µr2
+ Uα(r)

]

Rα;Kv(r) = εα;KvRα;Kv(r). (VIII.1.26)

We therefore have two sets of quantum numbers K and v that describe the rotational and
vibrational and state of the molecule for a given electronic state α. Setting

Rα;Kv(r) =
1

r
Pα;Kv(r) (VIII.1.27)

leads to a standard one-dimensional SE with a ‘proper’ d2

dr2 kinetic energy term,
[

− 1

2µ

d2

dr2
+ Uα(r) +

K(K + 1)

2µr2

]

Pα;Kv(r) = εα;KvPα;Kv(r), r ≥ 0. (VIII.1.28)

VIII.1.3.1 Harmonic Approximation

The rotation term K(K+1)
2µr2 is assumed as small, and the potential Uα(r) is expanded around a

minimum rα,

Uα(r) = Uα(rα) +
1

2

d2

dr2
Uα(r = rα)(r − rα)2 + ... (VIII.1.29)

Here, rα can be considered as the equilibrium distance of the two nuclei which clearly still
depends on the electronic quantum number α. If the higher order terms in the Taylor expansion
are neglected, and K(K+1)

2µr2 replaced by K(K+1)
2µr2

α
, the approximate SE becomes

[

− 1

2µ

d2

dr2
+
K(K + 1)

2µr2
α

+ Uα(rα) +
1

2
µω2

α(r − rα)2

]

P harm
α;Kv (r)

= εα;KvP
harm
α;Kv (r), ω2

α =
1

µ

d2

dr2
Uα(r = rα). (VIII.1.30)

This is the equation of a linear harmonic oscillator apart from the fact that r ≥ 0. However,
|r−rα| has been assumed to be small anyway and within this approximation, the energy levels

are therefore those of a linear harmonic oscillator shifted by K(K+1)
2µr2

α
+ Uα(rα),

εharm
α;Kv =

K(K + 1)

2µr2
α

+ Uα(rα) + ωα

(

v +
1

2

)

. (VIII.1.31)

VIII.1.3.2 The Energy Spectrum

The structure of the energy spectrum is determined by the magnitude of the three terms
K(K+1)

2µr2
α

, Uα(rα), and ωα

(
v + 1

2

)
. These differ strongly due to their dependence on the relative

nuclei mass µ. In terms of the small dimensionless parameter m/µ (where m is the electron
mass), we have

Uα = O(1), electronic part (VIII.1.32)

ωα

(

v +
1

2

)

= O(m/µ)1/2, vibrational part (VIII.1.33)

K(K + 1)

2µr2
α

= O(m/µ), rotational part. (VIII.1.34)
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In spectroscopic experiments, one determined energy differences δE which therefore are broadly
determined by

δEel � δEvib � δErot. (VIII.1.35)

VIII.1.4 Spin S > 0

Things get a little bit more complicated for S > 0 which leads to the so-called Hund’s cases
a, b, c and d. For more details cf. Landau-Lifshitz III [1], or Atkins-Friedman.

VIII.1.5 Beyond the Harmonic Approximation

The harmonic approximation has to break down somewhere. A diatomic molecule with its
two nuclei harmonically bound would never be able to dissociate into two individual atoms or
ions.

One way is to introduce phenomenological potentials with fitting parameters, e.g. the
Morse potential

Uα(r)→ UMorse
α (r) ≡ Dα

[
1− e−βα(r−rα)

]2
, (VIII.1.36)

where Dα is the depth of the minimum below the asymptote and represents the dissociation
energy of the molecule.

VIII.2 Selection Rules

VIII.2.1 Dipole Approximation

Assume system of charges qn localised around a spatial position r0 = 0. The coupling to an
electric field E(r, t) within dipole approximation is then given by

Hdip(t) = −dE(t), d ≡
∑

n

qαrα, (VIII.2.1)

where E(t) ≡ E(r0, t) is the electric field at r0 = 0. The dipole approximation is valid if the
spatial variation of E(r, t) around r0 is important only on length scales l with l � a, where
a is the size of the volume in which the charges are localised. For a plane wave electric field
with wave length λ one would have l ∼ λ.

VIII.2.2 Pure Rotation

Pure rotational transitions are between states where only rotational quantum numbers are
changed,

|KmK , v, α〉 → |K ′m′
K , v, α〉 (VIII.2.2)

leaving the vibrational quantum number(s) v and the electronic quantum number(s) α un-
changed. Such transitions then depend on matrix elements of the dipole operator,

〈KmK|d|K ′m′
K〉. (VIII.2.3)
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The calculation of this matrix element, using spherical harmonics, yields the purely rotational
selection rules

∆K = ±1, ∆mK = 0,±1. (VIII.2.4)

Writing the rotational part of the energy as

εrot(K) = BK(K + 1) (VIII.2.5)

 ∆εrot(K) ≡ B(K + 1)(K + 2)− BK(K + 1) = 2B(K + 1).

The distance between the corresponding spectral lines is constant, ∆εvib(K+1)−∆εvib(K) =
2B.

VIII.2.3 Pure Vibration

In this case, we have to deal with the harmonic oscillator.

VIII.2.3.1 Recap of the Harmonic Oscillator

The Hamiltonian of the harmonic oscillator

Ĥosc =
p̂2

2m
+

1

2
mω2x̂2 (VIII.2.6)

can be re-written using the ladder operators

a ≡
√
mω

2~
x̂+

i√
2m~ω

p̂, a† ≡
√
mω

2~
x̂− i√

2m~ω
p̂ (VIII.2.7)

x̂ =

√

~

2mω

(
a+ a†

)
, p̂ = −i

√

m~ω

2

(
a− a†

)
, (VIII.2.8)

as

Ĥosc = ~ω

(

a†a +
1

2

)

. (VIII.2.9)

The commutation relation is

[x̂, p̂] = i~, [a, a†] = 1. (VIII.2.10)

The eigenfunctions of the harmonic oscillator are n-phonon states,

Ĥosc|n〉 = εn|n〉, εn = ~ω

(

n+
1

2

)

, n = 0, 1, 2, ...

|n〉 ↔ ψn(x) =
(mω

π~

)1/4 1√
n!2n

Hn

(√
mω

~
x

)

e−
mω
2 � x2

, (VIII.2.11)

where Hn are the Hermite polynomials.
The ladder operators are also called creation (a†) and annihiliation (a) operators. They

act on the states |n〉 as

a†|n〉 =
√
n + 1|n+ 1〉, a|n〉 =

√
n|n− 1〉, a|n〉 = 0. (VIII.2.12)

The state |0〉 is called ground state.
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VIII.2.3.2 Pure Vibrational Dipole Transitions

Pure vibrational transitions are between states where only vibrational quantum numbers are
changed,

|KmK, v, α〉 → |KmK, v
′, α〉. (VIII.2.13)

Such transitions then depend on matrix elements of the dipole operator,

〈v|dα|v′〉, (VIII.2.14)

where |v〉 is an harmonic oscillator eigenstate (we write v instead of n now), and

dα = 〈α|d|α〉 (VIII.2.15)

is the diagonal matrix element of the dipole operator between the adiabatic electronic eigen-
states |α〉.

Remember that the harmonic potential came from the Taylor expansion of the Born-
Oppenheimer energy,

Uα(r) ≈ Uα(rα) +
1

2

d2

dr2
Uα(r = rα)(r − rα)2

 Ĥosc =
p̂2

2µ
+

1

2
mω2

αx̂
2 = ~ωα

(

a†a+
1

2

)

(VIII.2.16)

ω2
α =

1

µ

d2

dr2
Uα(r = rα) (VIII.2.17)

where the harmonic oscillator coordinate x = r − rα.
The dipole moment operator dα depends on the electronic wave functions α and thus

parametrically on the coordinate x that describes the internuclear separation. We Taylor-
expand

dα(x) = dα(0) + d′
α(0)x+O(x2). (VIII.2.18)

For transitions between v and v′ 6= v, one therefore has to linear approximation

〈v|dα|v′〉 = d′
α(0)〈v|x|v′〉 = d′

α(0)

√

~

2µω
〈v|a+ a†|v′〉

= d′
α(0)

√

~

2µω

(

δv+1,v′
√
v + 1 + δv−1,v′

√
v
)

. (VIII.2.19)

The vibrational selection rule thus is

∆v = ±1. (VIII.2.20)

The corresponding energy differences determine the transition frequency,

∆εvib(v) = ~ωα, (VIII.2.21)

which means that a purely vibrational, harmonic spectrum just consists of a single spectral
line!
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Fig. VIII.1: Franck-Condon-Principle. Left: Classical picture, right: quantum-mechanical pic-
ture. From Prof. Ed Castner’s lecture http://rutchem.rutgers.edu/.

VIII.2.4 Vibration-Rotation Spectra

Vibrational and Rotational transitions are coupled, and one now has to discuss the various
transition possibilities. This leads to a description in terms of P-, Q-, and R-branch for
the allowed transitions in diatomic molecules. For further reading, cf. Atkins/Friedman [5]
ch. 10.11 or Weissbluth [4] ch. 27.2

VIII.3 Electronic Transitions

Transitions between two molecular states in general involve all quantum numbers: electronic,
vibrational, and rotational, i.e.

|KmK , v, α〉 → |K ′m′
K , v

′, α′〉. (VIII.3.1)

VIII.3.1 The Franck-Condon Principle

Here, a good description is in Atkins/Friedman ch. 11.4.
For simplicity, we leave out the rotations here and just discuss electronic and vibrational

transitions. In a classical picture (with respect to the large mass nuclear motion), one considers
the two potential curves Uα(r) and Uα′(r) and argues that the electronic transition occurs so
fast that the nuclear system has no time to react: before and after the transition, the nuclear
coordinate X is the same. This, however, means that the distance |x′| ≡ |X − rα′| from the
equilibrium position rα′ after the transition and the distance |x| ≡ |X−rα| from the equilibrium
position rα before the transition are not the same: when the nuclei are in equilibrium before
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the transition (X = rα, x = 0), their new coordinate x′ relative to the new equilibrium rα′ is
x′ ≡ X − rα′ = rα − rα′ 6= 0 after the transition.

The total dipole moment operator is a sum of electronic and nuclear dipole moment,

d = −e
∑

i

qi + e
∑

s

ZsXs = de + dn. (VIII.3.2)

The transition matrix element in Born-Oppenheimer approximation is (α 6= α′)

〈α′v′|de + dn|αv〉 =

∫

dqdXψ∗
α′(qX)φ∗

α′,v′(X)(de + dn)φα,v(X)ψα(qX)

=

∫

dXφ∗
α′,v′(X)

[∫

dqψ∗
α′(qX)deψα(qX)

]

φα,v(X)

+

∫

dXφ∗
α′,v′(X)φα,v(X)dn

∫

dqψ∗
α′(qX)ψα(qX)

=

∫

dXφ∗
α′,v′(X)

[∫

dqψ∗
α′(qX)deψα(qX)

]

φα,v(X) + 0

≈ 〈α′|de|α〉S(v, v′), S(v, v′) ≡ 〈v′|v〉. (VIII.3.3)

Here it was assumed that the integral

∫

dqψ∗
α′(qX)deψα(qX) ≈ 〈α′|de|α〉 (VIII.3.4)

does not depend on the nuclear coordinates X.
The transition between two electronic levels α and α′ is therefore determined by the dipole

matrix element 〈α′|de|α〉 and the Franck-Condon factors S(v, v′), which are the overlap
integrals of the corresponding vibronic states. As these states belong to different electronic
states α and α′, the overlaps are not zero, and there is also no selection rule for ∆v.



IX. INTERACTION BETWEEN MOLECULES

IX.1 From microscopic to macroscopic

IX.1.1 Introduction

Often one wants to replace a fully microscopic theory by a more manageable, effective theory.
This can be done in two steps as follows:

First step: divide the system under consideration into constituent entities (subsystems).
Second step: find a description in terms of effective potentials between the constituent

entities while trying to stay as close as possible to the full microscopic theory.
Example 1: Two molecules of size a at distance R� a. Full system = all electrons and all

nuclei together. Subsystems: the two molecules. This is a ‘good description’ as long as each
molecule is recognizable as one unity. Separation of a) length and b) energy scales is important
here: a) R� a; b) the force between the molecules is not strong enough to destroy them, e.g.
by ripping out electrons.

Example 2: Nuclear physics. Underlying microscopic theory is QCD. Use effective descrip-
tion of system (nucleus) in terms of effective potentials between constituent nucleons (neutrons
and protons).

Example 3: (classical or quantum) statistical mechanics, e.g. calculation of the free energy
of a system of atomsor a system of molecules (gas/liquid/solid).

3a) Cohesive energy of solids, cf. Ashcroft/Mermin ‘Solid State Physics’ [9] ch. 20.
3b) Dispersion forces in colloids, cf. Mahanty/Ninham ‘Dispersion Forces’ [10].

IX.1.2 General considerations

In the following, the system under consideration is a system of interacting charges (electrons
and nuclei) as described by a non-relativistic Schrödinger equation. We are mostly interested
in the case where the subsystems are molecules (or atoms). Key questions are the following:
what are the forces between the molecules? What are the interactions among the molecules?
What kind of effective potentials does one need to describe a system of N molecules ?

IX.2 Effective Potentials

IX.2.1 Electrostatics: multipole expansions

This is the simplest case: each of the N subsystems (molecules) is considered as a distribution
of charges with charge density ρn(x). The total charging energy is

E =
1

2

∑

nn′

∫ ∫

dxdx′ρn(x)ρn′(x′)

|x− x′| . (IX.2.1)
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We assume the molecules well separated with their center of mass at Rn. We first consider
the contribution from two different molecules, n 6= n′, and thus write

x = Rn + ξ, x′ = Rn′ + ξ′ (IX.2.2)

and expand 1
|x−x′| for each pair n, n′, using the Taylor expansion

1

|R + a| =
1

R

(

1 +
a2 + 2Ra

R2

)−1/2

(IX.2.3)

=
1

R

(

1− 1

2R2
(a2 + 2Ra) +

3

8R4
(a2 + 2Ra)2 + ...

)

(IX.2.4)

with R = Rnn′ ≡ Rn −Rn′ and a = ξ − ξ′. We assume uncharged molecules, i.e.
∫

dxρn(x) = 0. (IX.2.5)

This yields
∫ ∫

dxdx′ρn(x)ρn′(x′)

|x− x′| =

=

∫ ∫

dξdξ′ρn(ξ)ρn′(ξ′)
1

R

(
1− 1

2R2
([ξ − ξ′]2 + 2R[ξ − ξ′])

+
3

8R4
([ξ − ξ′]2 + 2R[ξ − ξ′])2 + ...

)

=

∫ ∫

dξdξ′ρn(ξ)ρn′(ξ′)
1

R

(
0 + 2

1

2R2
ξξ′ + 0 +

3

8R4
4(R[ξ − ξ′])(R[ξ − ξ′]) + ...

)

=

∫

dξdξ′ρn(ξ)ρn′(ξ′)
1

R

( 1

R2
ξξ′ − 3

R4
(Rξ)(Rξ′) + ...

)

=
dndn′

|Rnn′|3 − 3
(Rnn′dn)(Rnn′dn′)

|Rnn′|5 + ..., Rnn′ ≡ Rn −Rn′ (IX.2.6)

Here, the dipole moments are defined as

dn =

∫

dxxρn(x), (IX.2.7)

and the remaining terms are dipole-quadrupole, quadrupole-quadrupole etc interaction ener-
gies which decay faster with increasing R. Usually the dipole-dipole interaction terms are
dominant over the higher multipoles for the interaction between molecules.

Summarizing, we have

E =
1

2

∑

n

Eself
n +

1

2

∑

nn′

(

Ed−d
nn′ + E

higher multipoles
nn′

)

(IX.2.8)

Eself
n =

∫ ∫

dxdx′ρn(x)ρn(x′)

|x− x′|

Ed−d
nn′ (Rnn′) =

dndn′

|Rnn′|3 − 3
(Rnn′dn)(Rnn′dn′)

|Rnn′|5 , Rnn′ ≡ Rn −Rn′.

Exercise: Derive the expression for Ed−d
nn′
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IX.2.1.1 Remark on Dipole-Dipole Interaction

The interaction energy of two dipoles with distance vector R,

Ed−d(R) =
d1d2

|R|3 − 3
(Rd1)(Rd2)

|R|5 (IX.2.9)

can alternatively be written as

Ed−d(R) = −d1E
dip
2 = −d2E

dip
1 , (IX.2.10)

where Edip
2 is the electric field generated by dipole 2 at the position of dipole 1, and vice versa.

IX.2.2 Effective Interaction between Molecules

IX.2.2.1 From Classical to Quantum

So far everything is still completely classical. We obtain an effective Hamiltonian for N
molecules by writing

Heff ≡ H0 + V, H0 =
∑

n

H
(n)
0 (IX.2.11)

V =
1

2

∑

nn′

Ed−d
nn′ , (IX.2.12)

with H
(n)
0 the individual Hamiltonian of molecule n, and V the interaction between all the

molecules.
From the Hamiltonian Heff , Eq. (IX.2.11), a semi-classical theory can be constructed as

follows: for given internal states of the molecules, we derive effective classical interaction po-
tentials that eventually lead to a classical dynamics of the molecule positions Rn and momenta
P̂n in the phase space of the (P̂n,Rn) of the molecules.

If V is regarded as a small perturbation, the interaction potentials are obtained most easily
by calculating the T -matrix of the system of N molecules with respect to the decomposition
Eq. (IX.2.11).

IX.2.2.2 The T -Matrix

For the following, Economou’s ‘Green’s functions in quantum physics’ [11] is a useful reference.
We perform perturbation theory for a Hamiltonian

H = H0 + V (IX.2.13)

by defining two Green’s functions (resolvents) of H and H0 as the operators

G(z) = (z −H)−1, G0(z) = (z −H0)
−1. (IX.2.14)

We have

G = (z −H0 − V )−1 = (G−1
0 − V )−1 = (1−G0V )−1G0 (IX.2.15)

and by expanding in V we obtain the Dyson equation

G = G0 +G0V G0 +G0V G0V G0 + ... = G0 +G0V G. (IX.2.16)
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We can express the full Green’s function G in terms of the free Green’s function G0 and the
T -matrix,

G = G0 +G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + ...

= G0 +G0 [V + V G0V + V G0V G0V + ...]G0 ≡ G0 +G0TG0

T (z) ≡ V + V G0(z)V + V G0(z)V G0(z)V + ... (IX.2.17)

We recognize that T (z) plays the role of an effective, z-dependent potential, the knowledge of
which is sufficient to calculate the full Green’s function G.

IX.2.2.3 Two molecules

(Reading assigment: revision of statistical density operator).
We assume the unperturbed state (no interaction) of the two molecules described by a

(quantum statistical) density operator

ρ̂ =
∑

kk′

Pkk′|kk′〉〈kk′|, (IX.2.18)

where the undashed indices refer to molecule 1 and the dashed ones to molecule 2. We call
the unperturbed eigenvalues of H0

Ekk′ ≡ Ek + Ek′ (IX.2.19)

and define the effective interaction as

Veff ≡
∑

kk′

pkk′〈kk′|T (Ekk′)|kk′〉 (IX.2.20)

=
∑

kk′

Pkk′〈kk′|V |kk′〉+
∑

kk′

Pkk′〈kk′|V G0(Ekk′)V |kk′〉+ ...

≡ V
(1)
eff + V

(2)
eff + ... (IX.2.21)

We write the interaction potential operator V

V =
∑

i

vi ⊗ v′i (IX.2.22)

as a sum over products of operators belonging to molecule 1 and molecule 2. We furthermore
assume uncorrelated classical probabilities

Pkk′ = pkpk′. (IX.2.23)

IX.2.3 First oder term: static dipole-dipole interaction

The first order term in Veff in our expansion Eq. (IX.2.20) is

V
(1)
eff =

∑

i

∑

k

pk〈k|vi|k〉
∑

k′

pk′〈k′|v′i|k′〉 =
∑

i

〈vi〉〈v′i〉. (IX.2.24)

This is just given by the expectation value of the terms that make up the interaction potential
=
∑

i vi ⊗ v′i, Eq. (IX.2.22). For the dipole-dipole interaction, this gives

V
(1)
eff (R) =

〈d〉〈d′〉
|R|3 − 3

(R〈d〉)(R〈d′〉)
|R|5 . (IX.2.25)
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Since the first order is linear in the interaction potential operator V , the effective V
(1)
eff is

essential just the V with all operators replaced by their expectation values. This is the static
dipole-dipole interaction between the molecules. The corresponding force between the two
dipoles is

F
(1)
eff (R) = −∇V (1)

eff (R). (IX.2.26)

Its form is just as in the classical dipole-dipole interaction. However, this interaction is zero
if one of the expectation values of the dipole moment operators vanishes. Such molecules are
said to have no static dipole moment.

IX.2.4 Second oder term: (London) dispersion forces (van-der-Waals forces)

This is a much more interesting case.

IX.2.4.1 Physical Picture

The second order term becomes important if the first order term is zero, i.e. when the molecules
have no static dipole moment. Quantum mechanically, the expectation value of the dipole
moment is zero, but there can be quantum fluctuations as with any expectation value. These
fluctuations (‘fluctuating dipoles’) generate fluctuating electric fields that eventually lead to
an attractive interaction between the molecules. In quantum chemistry, the resulting forces
are called dispersion forces, in physics they are often called van-der-Waals forces. They can
be derived from quantum field theory (quantum electrodynamics), which establishes their
close relation to the Casimir effect and also accounts for retardation effects due to the finite
propagation velocity of interaction (speed of light). If these retardation effects are neglected,
we can derive the van-der-Waals forces from our second order perturbation theory, which was
based on semi-classical considerations. This is essentially the derivation that was first given
by F. London.

IX.2.4.2 Derivation from Second Order Term

We have

V
(2)
eff ≡

∑

kk′

pkpk′〈kk′|V G0(Ekk′)V |kk′〉

=
∑

kk′nn′

pkpk′

〈kk′|V |nn′〉〈nn′|V |kk′〉
Ek + Ek′ − En − En′

, (IX.2.27)

where we have inserted 1̂ =
∑

nn′ |nn′〉〈nn′| twice and used

〈nn′|G0(z)|mm′〉 =
δnmδmm′

z − Enn′

. (IX.2.28)

Exercise: verify these expressions.
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IX.2.4.3 Matrix Elements

We recall the form of the interaction operator,

V = Ed−d(R) =
dD

|R|3 − 3
(Rd)(RD)

|R|5 , (IX.2.29)

where we now write d for d1 and D for d2. Choosing

R = Rez (IX.2.30)

in z-direction, we can write the interaction operator as a quadratic form,

V = dMD, M =
1

R3
diag(1, 1,−2). (IX.2.31)

We abbreviate the matrix elements of the dipole moment components as

〈k|dα|n〉 ≡ dkn
α , 〈k|Dα|n〉 ≡ Dkn

α , α = x, y, z. (IX.2.32)

This allows us to write the square in the numerator of Eq. (IX.2.27) as

〈kk′|V |nn′〉〈nn′|V |kk′〉 = 〈kk′|dMD|nn′〉〈nn′|dMD|kk′〉 (IX.2.33)

=
∑

αβγδ

dkn
α MαβD

k′n′

β dnk
γ MγδD

n′k′

δ

=
∑

αγ

dkn
α dnk

γ Dk′n′

α Dn′k′

γ MααMγγ .

For simplicity, we now assume spherical symmetry for both molecules (which is OK if they
are 1-atom molecules, i.e. atoms, but not very realistic otherwise although the following
calculations can be generalised to that case as well.) The following property of products of
dipole moment operators then holds:

dkn
α dnk

β =
1

3
δαβd

kndnk, Dkn
α Dnk

β =
1

3
δαβD

knDnk. (IX.2.34)

Then,

〈kk′|V |nn′〉〈nn′|V |kk′〉 =
1

9
dkndnkDk′n′

Dn′k′
∑

αβ

MαβMαβ

=
1

9
dkndnkDk′n′

Dn′k′
∑

α

MααMαα

=
2

3

1

R6
dkndnkDk′n′

Dn′k′

. (IX.2.35)

The effective interaction therefore is

V
(2)
eff (R) ≡ 2

3

1

R6

∑

kk′nn′

pkpk′

dkndnkDk′n′

Dn′k′

Ek + Ek′ − En − En′

. (IX.2.36)

If the two molecules are in their groundstates labeled as k = 0 and k′ = 0′, this becomes

V
(2),GS
eff (R) ≡ 2

3

1

R6

∑

nn′

dkndnkDk′n′

Dn′k′

E0 + E0′ − En − En′

. (IX.2.37)

The interaction potential therefore is negative, corresponding to an attractive dispersion
force, and falls of as R−6.
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IX.2.5 Polarizabilities, Linear Response Theory

IX.2.5.1 Static Fields

A molecule in a static electric field E acquires the additional energy (dipole interaction)

V = −dE, d =
∑

i

qiri, (IX.2.38)

where d denotes the dipole moment operator and qi the ith charge. As a result of the interac-
tion with the electric field, the average dipole moment of the molecule changes from its value
〈d〉0 at zero electric field,

〈d〉 = 〈d〉0 + αE + higher order in E. (IX.2.39)

The polarization tensor α (d×d matrix, where d is the dimension of the system, i.e. usually
d = 3) can be obtained from second order perturbation theory.

IX.2.5.2 Time-dependent Fields

More generally, for time-dependent fields the molecule has a Hamiltonian

H(t) = H0 + V (t), V (t) ≡ −dE(t), (IX.2.40)

where H0 is the ‘free’ molecule Hamiltonian without the field. As a result of the interaction
with the electric field, the average dipole moment now is

〈d〉t = 〈d〉0 +

∫ t

−∞
dt′α(t− t′)E(t′) + higher order in E, (IX.2.41)

where the expectation value

〈d〉t ≡ 〈ψ(t)|d|ψ(t)〉 (IX.2.42)

is calculated with the wave function at time t. The response of the molecule to the time-
dependent electgric field is now a function of time, in fact it is in general a retarded response
as expressed by the convolution integral over the time-dependent polarisability tensor α(t−t′).
The response at time t is only to electric fields at an earlier time t′ < t which ensures causality:
there is no response to fields in the future.

We can calculate the expectation value 〈d〉t in time-dependent perturbation theory in the
interaction picture. We assume that the field is switched on at an early time t0 and write

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (IX.2.43)

with our time-evolution operator, Eq. (VI.3.17). Using the interaction picture,

|ψI(t)〉 = |ψI(t0)〉 − i
∫ t

t0

dt′Ṽ (t′)|ψI(t0)〉+ ...

〈ψI(t)| = 〈ψI(t0)|+ i〈ψI(t0)|
∫ t

t0

dt′Ṽ (t′) + ...

 〈ψ(t)|d|ψ(t)〉 = 〈ψI(t)|d̃(t)|ψI(t)〉 = 〈ψI(t0)|d̃(t)|ψI(t0)〉

− i

∫ t

t0

dt′〈ψI(t0)|d̃(t)Ṽ (t′)− Ṽ (t′)d̃(t)|ψI(t0)〉+ ...

= 〈d̃(t)〉0 − i
∫ t

t0

dt′〈[d̃(t), Ṽ (t′)]〉0 + ..., (IX.2.44)
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where we defined

〈...〉0 ≡ 〈ψI(t0)...ψI(t0)〉. (IX.2.45)

We compare this with the original definition

〈d〉t = 〈d〉0 +

∫ t

−∞
dt′α(t− t′)E(t′) + higher order in E (IX.2.46)

= 〈d̃(t)〉0 − i
∫ t

t0

dt′〈[d̃(t), Ṽ (t′)]〉0 + ..., V (t) ≡ −dE(t)

and send t0 → −∞,

α(t− t′) = i〈[d̃(t), d̃(t′)]〉0θ(t− t′), (IX.2.47)

where the step function θ(t− t′) ensures that t > t′. The matrix elements

α
αβ

(t− t′) = i〈[d̃α(t), d̃β(t′)]〉0θ(t− t′) (IX.2.48)

are the components of the polarisation tensor. They describe the response of the molecule to
an electric field E(t′) and are expressed in terms of expectation values of products of dipole-
operators with respect to the unperturbed wave function |ψI(t0 → −∞)〉.

IX.2.5.3 Response Functions

The polarizabilities are examples of response functions: the response of the expectation
value of an observable (operator) A to an external perturbation

V (t) = −Bf(t), (IX.2.49)

(f is a c-function and B an operator), is given by a dynamical susceptibility

χAB(t− t′) = i〈[Ã(t), B̃(t′)]〉0θ(t− t′)

〈A〉t = 〈A〉0 +

∫ ∞

−∞
dt′χAB(t− t′)f(t′) +O(f 2). (IX.2.50)

In frequency space, the first order correction to the expectation value is

δ〈A〉(1)ω = χAB(ω)f(ω). (IX.2.51)

For example, for the polarization of a molecule in an electric field E(t) we have for the dipole
moment component dα

δ〈dα〉(1)ω = χdαdβ
(ω)Eβ(ω) ≡ α

αβ
(ω)Eβ(ω). (IX.2.52)



X. EXAMPLES

E.1 Two-Level System

Consider the double-well system in the basis of the left state (|L〉) and the right state (|R〉).
The Hamiltonian is written as

HTLS ≡ Ĥ0 + Ĥ1 =

(
ε
2

Tc

Tc − ε
2

)

, Ĥ0 =

(
ε
2

0
0 − ε

2

)

, Ĥ1 =

(
0 Tc

Tc 0

)

. (E.1.1)

E.1.1

a) Briefly explain the meaning of ε and Tc.
b) Calculate the eigenvalues of HTLS.
c) Calculate the eigenvectors for the case ε = 0.
d) Use first order degenerate perturbation theory to calculate eigenvalues and eigenvectors of
HTLS. Compare to the exact result

E.2 Hydrogen Atom

E.2.1

Derive the Darwin term ĤKE = − 1
2mc2

(
p2

2m

)2

as the relativistic energy correction for the

Hamiltonian.

E.2.2

a) Briefly explain the origin of the spin-orbit coupling. Write down the most general form of
a spin-orbit Hamiltonian.
b) Sketch the level scheme for n = 2 when spin-orbit and relativistic terms are included.

E.3 Bosons and Fermions

E.3.1

a) Write down the wave function for three identical Bosons which are all in the same spin
orbital ψα(ξ), where ξ = (r, σ) denotes the position and spin coordinate.
b) Write down the wave function for two identical Fermions in spin orbitals ψ1(ξ) and ψ2(ξ).



X. Examples 81

E.3.2

Verify the identity for Slater determinants,

〈ξ1, ..., ξN |ν1, ..., νN 〉A ≡
1√
N !

∑

p

sign(p)ψν1(ξp(1))...ψνN
(ξp(N))

=
1√
N !

∑

p

sign(p)ψνp(1)
(ξ1)...ψνp(N)

(ξN). (E.3.1)

by explicit calculation for N = 3 Fermions.

E.3.3

a) Use the spin-up/spin-down notation and write down the four spin wave functions (triplets
and singlet) for two spin 1/2 particles. Assign total spin S and total spin projection M to
each of them.
b) Use the triplets and singlet from a) and briefly explain the meaning of ‘entanglement’.
c) Consider the following four spin-orbitals

ψ1(r)| ↑〉, ψ1(r)| ↓〉, ψ2(r)| ↑〉, ψ2(r)| ↓〉. (E.3.2)

(i) For a system of two electrons, explicitly write down the four basis states, i.e. the four Slater
determinants (each is an antisymmetric linear combination of products of these spin-orbitals).

(ii) Explicitly write down the single-triplet basis as linear combinations of the basis states
from (i).

E.3.4

a) Consider symmetric and anti-symmetric orbital wave functions for two Fermions,

φ±
αβ(r1, r2) =

1√
2

[φα(r1)φβ(r2)± φα(r2)φβ(r1)] , (E.3.3)

and show that the matrix elements

〈φ+
αβ|Û |φ−

αβ〉 = 〈φ−
αβ|Û |φ+

αβ〉 = 0, Û = U(|r1 − r2|). (E.3.4)

b) Write down the terms

〈φ+
αβ|Û |φ+

αβ〉, 〈φ−
αβ|Û |φ−

αβ〉 = 0 (E.3.5)

explicitely as double integrals. Which one is the direct term, which one is the exchange term?
c) Write down the first order correction of the ground state energy of Helium explicitely as
double integrals (you don’t need to calculate these integrals).

E.4 Hartree-Fock

Consider the Hamiltonian of N electrons interacting via a interaction potential U which is
constant and does not depend on the coordinates of the particles,

Ĥ = Ĥ0 + Û ≡
N∑

i=1

Ĥ
(i)
0 +

1

2

N∑

i6=j

U. (E.4.1)
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E.4.1

Let ε1, ε2,... be the sequence of the (non-degenerate) eigenvalues of the one-particle Hamilto-

nians Ĥ
(i)
0 , with corresponding eigenstates Ψ1(ξ), Ψ2(ξ),...

a) Write down the exact expression for the ground state energy E0 of the total Hamiltonian
Ĥ,

(i) for U = 0
(ii) for U > 0.

b) Write down the N -electron ground state wave function of the total Hamiltonian Ĥ for both
cases U = 0 and U > 0.

E.4.2

The Hartree-Fock equations in the position representation are
[

Ĥ0 +
∑

i

∫

dr′|ψνi
(r′)|2U(|r − r′|)

]

ψνj
(r)

−
∑

i

∫

dr′ψ∗
νi

(r′)U(|r − r′|)ψνj
(r′)ψνi

(r)δσiσj
= εjψνj

(r). (E.4.2)

In this problem, we consider the case where the interaction is constant, U=const.
a) Simplify the Hartree-Fock equations by using the orthonormality of the ψνi

.
b) Thus solve the Hartree-Fock equations for the ground state wave function |Ψ〉HF explicitly.
c) Using b), calculate the Hartree-Fock ground state energy

EΨ =
1

2

N∑

i=1

[

εi + 〈νi|Ĥ0|νi〉
]

. (E.4.3)

d) Compare the Hartree-Fock ground state energy EΨ with the exact ground state energy E0

from the exact solution of the previous problem and briefly discuss your result.

E.5 Molecules

E.5.1

Assume a Hamiltonian

H = He(q, p) +Hn(X,P ) +Hen(q,X) (E.5.1)

for the interaction between electrons e and nuclei n in a molecule, where X stands for the
nuclear and q for the electronic coordinates.
a) Write down the Schrödinger equation for i) the electronic wave function ψe(q,X), and ii)
the nuclear wave function φn(X) in the Born-Oppenheimer approximation.
b) Briefly explain the idea of the Born-Oppenheimer approximation.
c) Assuming a basis of electronic states ψα(q,X), write the total wave function of a molecule
as Ψ(q,X) =

∑

α φα(X)ψα(q,X). Hence derive the Schrödinger equation for the nuclear part,
[

− ~
2

2M
∇2

X + Eα(X)− ~
2

2M
G(X)− ~

2

M
F (X)

]

|φα〉n = E|φα〉n

G(X) ≡ 〈ψα|∇2
Xψα〉, F (X) ≡ 〈ψα|∇Xψα〉 , (E.5.2)
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E.5.2

Consider the Hydrogen molecule ion H+
2 .

a) Write down the Hamiltonian for the electronic part of H+
2 , including the repulsion energy

of the protons.
b) Briefly explain (one or two sentences) what LCAO means.
c) Write down the molecular orbitals (MO) for the lowest bonding and antibonding state in
H+

2 in terms of atomic orbitals.
d) Briefly explain the spatial symmetry of the bonding and antibonding MO in H+

2 .
e) Sketch the effective potentials for the nuclei E±(R) as a function of their distance R for
the bonding and the antibonding state. Very briefly explain why the bonding state is called
‘bonding’.

E.6 Time-Dependence

E.6.1

Consider the Hamiltonian for a particle in a double well potential with both energies left and
right εR = εL = 0 and tunnel coupling Tc,

H =

(
0 Tc

Tc 0

)

. (E.6.1)

Consider an initial state at time t = 0,

|Ψ(t = 0)〉 = |L〉 =

(
1
0

)

. (E.6.2)

a) Calculate the state vector |Ψ(t)〉 =

(
αL(t)
αR(t)

)

for times t > 0.

b) Use the result from a) to calculate the probability to find the particle in the left well after
time t.

E.6.2

We discuss the interaction picture with respect to a Hamiltonian H = H0 +V in this problem.
a) Prove that for any given operator M , the interaction picture operator MI(t) ≡ eiH0tMe−iH0t

fulfills

d

dt
MI(t) = i[H0,MI(t)], (E.6.3)

where [A,B] ≡ AB − BA is the commutator of two operators.
b) Prove the rule [AB,C] = A[B,C] + [A,C]B for any three operators A, B, C.
c) Now consider the harmonic oscillator H0 = ωa†a. Use b) and the fundamental relation
[a, a†] = 1 to find the interaction picture operator aI(t) and a†I(t).
d) Now consider the time-dependent Hamiltonian of a harmonic oscillator in a damped, oscil-
lating radiation field,

H(t) = H0 + V (t), H0 = ωa†a, V (t) = V0e
−t/τ

[
e−iω0ta† + eiω0ta

]
. (E.6.4)
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i) Use c) to calculate the transition probability from the ground state |0〉 at t = 0 to the first
excited state |1〉 after time t→∞,

P0→1(t→∞) =

∣
∣
∣
∣

∫ ∞

0

dt′〈1|VI(t
′)|0〉

∣
∣
∣
∣

2

. (E.6.5)

Hint: Use a|0〉 = 0 and a†|0〉 = |1〉.
ii) Sketch P0→1(t→∞) as a function of the radiation frequency ω0.
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