
Ruby is a powerful programming language with 
a focus on simplicity, but beneath its elegant 
syntax it performs countless unseen tasks.

Ruby Under a Microscope gives you a 
hands-on look at Ruby’s core, using extensive 
diagrams and thorough explanations to show 
you how Ruby is implemented (no C skills 
required). Author Pat Shaughnessy takes 
a scientific approach, laying out a series of 
experiments with Ruby code to take you behind 
the scenes of how programming languages 
work. You’ll even find information on JRuby 
and Rubinius (two alternative implementations 
of Ruby), as well as in-depth explorations of 
Ruby’s garbage collection algorithm.

Ruby Under a Microscope will teach you:

	How a few computer science concepts 
underpin Ruby’s complex implementation

	How Ruby executes your code using a 
virtual machine

	How classes and modules are the same 
inside Ruby

	How Ruby employs algorithms originally 
developed for Lisp

	How Ruby uses grammar rules to parse 
and understand your code

	How your Ruby code is translated into a 
different language by a compiler

No programming language needs to be a 
black box. Whether you’re already intrigued by 
language implementation or just want to dig 
deeper into Ruby, you’ll find Ruby Under a 
Microscope a fascinating way to become 
a better programmer.

About the Author
Well known for his coding expertise and 
passion for the Ruby programming language, 
Pat Shaughnessy blogs and writes tutorials 
at http://patshaughnessy.net/. He also 
develops Ruby applications at management 
consulting firm McKinsey & Co. Shaughnessy 
is a regular presenter on the Ruby conference 
circuit, and his articles and presentations have 
been featured in the Ruby Weekly newsletter, 
the Ruby5 podcast, and The Ruby Show. 
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Praise for Ruby Under a Microscope

“Many people have dug into the Ruby source code, but few make it back 
out and tell the tale as elegantly as Pat does in Ruby Under a Microscope! 
I particularly love the diagrams—and there are lots of them—as they 
make many opaque implementation topics a lot easier to understand, 
especially when coupled with Pat’s gentle narrative. This book is a delight 
for language implementation geeks and Rubyists with a penchant for dig-
ging into the guts of their tools.”
—Peter Cooper (@peterc), Editor of Ruby Inside and Ruby Weekly

“Man, this book was missing in the Ruby landscape—awesome content.”
—Xavier Noria (@fxn), Ruby Hero, Ruby on Rails Core Team Member

“Pat Shaughnessy did a tremendous job writing THE book about Ruby 
internals. Definitely a must read—you won’t find information like this 
anywhere else.”
—Santiago Pastorino (@spastorino), WyeWorks Co-Founder,  
Ruby on Rails Core Team Member

“I really enjoyed the book and now have a far better understanding of both 
Ruby and CS. The writing made very complex topics (at least for me) very 
accessible, and I found the book hard to put down. Diagrams were awesome 
and are already popping in my head as I code. This is by far one of my top 3 
favourite Ruby books.”
—Vlad Ivanovic (@vladiim), Digital Strategist at Holler Sydney

“While I’m not usually digging into Ruby Internals, this book was an 
absolutely awesome read.” 
—David Deryl Downey (@daviddwdowney), Founder of CyberSpace 
Technologies Group

“Nearly every Ruby expert will benefit from knowing so much about how 
the language and runtime operate.”
—Dr. Dobb’s

“Ruby isn’t just a black box anymore, but rather a tool that I understand 
and feel good using.”
—Robert Mosolgo, Rails Developer, Planning Center Online
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F o r e w o r d

Oh, hi! I didn’t see you come in. I don’t want to be too forward, but let me 
preface this by saying you should buy this book! 

My name is Aaron Patterson, but my Internet friends call me “tenderlove.” 
I am on both the Ruby core team and the Ruby on Rails core team, and I 
did the technical review of this book. Does that mean you should listen 
to me? No. Well, maybe.

Actually, when Pat approached me to do the technical review of this 
book, I was so excited that my top hat fell off and I dropped my monocle in 
my coffee! I knew about Pat’s previous work on Ruby Under a Microscope, and 
the idea of making an updated and print version available made me really 
happy. I think many developers are intimidated by Ruby’s internals and are 
afraid to dive in. Quite often people ask me how they can learn about how 
Ruby works under the hood or where to get started hacking on Ruby inter-
nals. Unfortunately I didn’t have a good answer for people—until now.

Pat’s style of writing, in combination with experimentation, makes Ruby 
internals very approachable. The experiments are combined with explana-
tions of Ruby’s internals such that you can easily understand why Ruby acts 
the way it does with regard to behavior and performance. Next time you 
encounter some behavior in your Ruby code, whether it be with perfor-
mance, local variables and your environment, or even garbage collection, 
this book won’t just tell you why your code behaves the way it does, but will 
even tell you how.

If you’re someone who wants to start hacking on Ruby’s internals, or if 
you just want to understand why Ruby acts the way it does without any hand-
waving, this is the book for you. I enjoyed this book, and I hope you will too.

Aaron Patterson
<3 <3 <3 <3



F o r e w o r d  t o  
t h e  J a p a n e s e  E d i t i o n

The science fiction novel A Connecticut Yankee in King 
Arthur’s Court by Mark Twain1 is one of the books I still 
remember reading from my elementary school days. 
It is the story of an American living in the 1880s who accidentally travels 
through time to King Arthur–era Britain and nonetheless survives, taking 
advantage of his knowledge from the modern (1880) era. Surely you would 
be very powerful in the 5th century if you had knowledge of telephones, 
bicycles, and guns. But if we travelled from the 21st century to the 5th cen-
tury, how much of our knowledge could we utilize? Bicycles are okay, but 
how about computers? It seems almost impossible to build computers and 
networks from scratch by ourselves. Modern technology products are too 
advanced for individuals to reproduce. We don’t know how technologies 
work even when we use them in our everyday lives.

Ruby is one such technology. Even though we use it every day, few of 
us know what it looks like on the inside, how it runs internally, or how one 
could re-create such a programming language. Ruby Under a Microscope 
sheds light on this and reveals the mystery of Ruby internals.

1. Mark Twain, A Connecticut Yankee in King Arthur’s Court (Kameyama Nagarjuna translation, 
Iwasaki Bookstore, 1971).



This book explains the software architecture of Ruby, the structure of 
its object system, and tips for performance improvement. In addition to that, 
it covers not only CRuby but also JRuby and Rubinius. I know of few books 
where you can find this type of knowledge. Though we have Minero Aoki’s 
Ruby Hacking Guide2 in Japan, it’s been difficult to obtain a copy for a long 
time. It explains a version of Ruby as old as 1.7 and naturally does not cover 
newer technologies like YARV. I believe Ruby Under a Microscope will contrib-
ute to a wider understanding of Ruby internals.

In the future someone inspired by this book may join the development 
of Ruby. It may be you. We will definitely welcome that. Or, someone may 
begin creating a next-generation programming language. I hope to see that 
happen.

Yukihiro Matsumoto
Matsue, Japan
October 2014

2. Minero Aoki, Ruby Source Code Kanzen Kaisetsu, known as the Ruby Hacking Guide (Impress, 
2002); http://i.loveruby.net/ja/rhg/book/; http://ruby-hacking-guide.github.io/.

http://i.loveruby.net/ja/rhg/book/
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I could never have finished a project like this without 
the support of many different people!

First of all, thanks to Satty Bhens and everyone else at McKinsey for 
giving me the flexibility to write a book and keep my day job at a great 
company. Alex Rothenberg and Daniel Higginbotham gave me invalu-
able advice, suffered through reading many early drafts, and helped me 
throughout the process. Special thanks to Xavier Noria, who took an 
interest in the project early on, gave me fantastic feedback on the entire 
rough draft, and was also the inspiration behind Experiment 6-1. Santiago 
Pastorino reviewed the rough draft as well. Jill Caporrimo, Prajakta Thakur, 
Yvannova Montalvo, Divya Ganesh, and Yanwing Wong were my “proofread-
ing SWAT team.” Self-publishing would have been much harder without 
your help. Finally, without the constant encouragement and support Peter 
Cooper has given me this year, I probably never would have attempted to 
write this book. Thank you, Peter.

Thanks to everyone at No Starch Press for helping me bring an 
expanded, updated version of Ruby Under a Microscope to print. The result is 
a book I’m proud of and one the Ruby internals topic deserves. Thanks to 
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to follow. Thank you, Riley Hoffman and Alison Law, for your editing advice 
and for beautifully reproducing hundreds of diagrams for print. You’ve been 
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What seems complex from 
a distance is often quite 
simple when you look 

closely enough.



I n t r o d u c t i o n

At first glance, learning how to use Ruby can seem 
fairly simple. Developers around the world find Ruby’s 
syntax to be graceful and straightforward. You can 
express algorithms in a very natural way, and then it’s 
just a matter of typing ruby at the command line and 
pressing enter, and your Ruby script is running.

However, Ruby’s syntax is deceptively simple; in fact, Ruby employs 
sophisticated ideas from complex languages like Lisp and Smalltalk. 
On top of this, Ruby is dynamic; using metaprogramming, Ruby programs 
can inspect and change themselves. Beneath this thin veneer of simplicity, 
Ruby is a very complex tool.

By looking very closely at Ruby—by learning how Ruby itself works 
internally—you’ll discover that a few important computer science concepts 
underpin Ruby’s many features. By studying these, you’ll gain a deeper 
understanding of what is happening under the hood as you use the lan-
guage. In the process, you’ll learn how the team that built Ruby intends for 
you to use the language.
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Ruby Under a Microscope will show you what happens inside Ruby when 
you run a simple program. You’ll learn how Ruby understands and executes 
your code, and with the help of extensive diagrams, you’ll build a mental 
model of what Ruby does when you create an object or call a block. 

Who This Book Is For
Ruby Under a Microscope is not a beginner’s guide to learning Ruby. I assume 
you already know how to program in Ruby and that you use it daily. There 
are already many great books that teach Ruby basics; the world doesn’t 
need another one.

Although Ruby itself is written in C, a confusing, low-level language, 
no C programming knowledge is required to read this book. Ruby Under a 
Microscope will give you a high-level, conceptual understanding of how Ruby 
works without your having to understand how to program in C. Inside this 
book, you’ll find hundreds of diagrams that make the low-level details of 
Ruby’s internal implementation easy to understand.

N o t e 	 Readers familiar with C will find a few snippets of C code that give a more concrete 
sense of what’s going on inside Ruby. I’ll also tell you where the code derives from, 
making it easier for you to start studying the C code yourself. If you’re not interested 
in the C code details, just skip over these sections.

Using Ruby to Test Itself

It doesn’t matter how beautiful your theory is, it doesn’t matter 
how smart you are. If it doesn’t agree with experiment, it’s wrong. 
—Richard Feynman

Imagine that the entire world functioned like a large computer program. 
To explain natural phenomena or experimental results, physicists like 
Richard Feynman would simply consult this program. (A scientist’s dream 
come true!) But of course, the universe is not so simple.

Fortunately, to discover how Ruby works, all we need to do is read its 
internal C source code: a kind of theoretical physics that describes Ruby’s 
behavior. Just as Maxwell’s equations explain electricity and magnetism, 
Ruby’s internal C source code explains what happens when you pass an 
argument to a method or include a module in a class.

Like scientists, however, we need to perform experiments to be sure our 
hypotheses are correct. After learning about each part of Ruby’s internal 
implementation, we’ll perform an experiment and use Ruby to test itself! 
We’ll run small Ruby test scripts to see whether they produce the expected 
output or run as quickly or as slowly as we expect. We’ll find out if Ruby 
actually behaves the way theory says it should. And since these experiments 
are written in Ruby, you can try them yourself. 
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Which Implementation of Ruby?
Ruby was invented by Yukihiro “Matz” Matsumoto in 1993, and the original, 
standard version of Ruby is often known as Matz’s Ruby Interpreter (MRI). 
Most of this book will discuss how MRI works; essentially, we’ll learn how 
Matz implemented his own language.

Over the years many alternative implementations of Ruby have been 
written. Some, like RubyMotion, MacRuby, and IronRuby, were designed to 
run on specific platforms. Others, like Topaz and JRuby, were built using 
programming languages other than C. One version, Rubinius, was built 
using Ruby itself. And Matz himself is now working on a smaller version 
of Ruby called mruby, designed to run inside another application.

I explore the Ruby implementations JRuby and Rubinius in detail in 
Chapters 10, 11, and 12. You’ll learn how they use different technologies 
and philosophies to implement the same language. As you study these alter-
native Rubies, you’ll gain additional perspective on MRI’s implementation.

Overview
In Chapter 1: Tokenization and Parsing, you’ll learn how Ruby parses 
your Ruby program. This is one of the most fascinating areas of computer 
science: How can a computer language be smart enough to understand the 
code you give it? What does this intelligence really consist of?

Chapter 2: Compilation explains how Ruby uses a compiler to convert 
your program into a different language before running it. 

Chapter 3: How Ruby Executes Your Code looks at the virtual machine 
Ruby uses to run your program. What’s inside this machine? How does it 
work? We’ll look deep inside this virtual machine to find out.

Chapter 4: Control Structures and Method Dispatch continues the 
description of Ruby’s virtual machine, looking at how Ruby implements 
control structures such as if...else statements and while...end loops. It also 
explores how Ruby implements method calls.

Chapter 5: Objects and Classes discusses Ruby’s implementation of 
objects and classes. How are objects and classes related? What would we 
find inside a Ruby object?

Chapter 6: Method Lookup and Constant Lookup examines Ruby 
modules and their relationship to classes. You’ll learn how Ruby finds 
methods and constants in your Ruby code.

Chapter 7: The Hash Table: The Workhorse of Ruby Internals 
explores Ruby’s implementation of hash tables. As it turns out, MRI uses 
hash tables for much of its internal data, not only for data you save in 
Ruby hash objects.

Chapter 8: How Ruby Borrowed a Decades-Old Idea from Lisp reveals 
that one of Ruby’s most elegant and useful features, blocks, is based on an 
idea originally developed for Lisp.

In Chapter 9: Metaprogramming tackles one of the most difficult 
topics for Ruby developers. By studying how Ruby implements metapro-
gramming internally, you’ll learn how to use metaprogramming effectively.
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Chapter 10: JRuby: Ruby on the JVM introduces JRuby, an alternative 
version of Ruby implemented with Java. You’ll learn how JRuby uses the Java 
Virtual Machine (JVM) to run your Ruby programs faster.

Chapter 11: Rubinius: Ruby Implemented with Ruby looks at one of 
the most interesting and innovative implementations of Ruby: Rubinius. 
You’ll learn how to locate—and modify—the Ruby code in Rubinius to see 
how a particular Ruby method works.

Chapter 12: Garbage Collection in MRI, JRuby, and Rubinius con-
cludes with a look at garbage collection (GC), one of the most mysterious 
and confusing topics in computer science. You’ll see how Rubinius and 
JRuby use very different GC algorithms from those used by MRI.

By studying all of these aspects of Ruby’s internal implementation, 
you’ll acquire a deeper understanding of what happens when you use 
Ruby’s complex feature set. Just as Antonie van Leeuwenhoek first saw 
microbes and cells looking through early microscopes in the 1600s, by 
looking inside of Ruby you’ll discover a wide array of interesting struc-
tures and algorithms. Join me on a fascinating behind-the-scenes look at 
what brings Ruby to life!





Your code has a long 
road to take before 
Ruby ever runs it. 



1
T o k e n i z a t i o n  a n d  P a r s i n g 

How many times do you think Ruby reads and trans-
forms your code before running it? Once? Twice? 

The correct answer is three times. Whenever you run a Ruby script—
whether it’s a large Rails application, a simple Sinatra website, or a back-
ground worker job—Ruby rips your code apart into small pieces and then 
puts them back together in a different format three times! Between the time 
you type ruby and the time you start to see actual output on the console, 
your Ruby code has a long road to take—a journey involving a variety of 
different technologies, techniques, and open source tools.

Figure 1-1 shows what this journey looks like at a high level.

tokens AST
nodes

YARV
Instructions

Your 
Ruby Code Tokenize Parse Compile

Figure 1-1: Your code’s journey through Ruby

First, Ruby tokenizes your code, which means it reads the text characters 
in your code file and converts them into tokens, the words used in the Ruby 
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language. Next, Ruby parses these tokens; that is, it groups the tokens into 
meaningful Ruby statements just as one might group words into sentences. 
Finally, Ruby compiles these statements into low-level instructions that it 
can execute later using a virtual machine.

I’ll cover Ruby’s virtual machine, called “Yet Another Ruby Virtual 
Machine” (YARV), in Chapter 3. But first, in this chapter, I’ll describe the 
tokenizing and parsing processes that Ruby uses to understand your code. 
After that, in Chapter 2, I’ll show you how Ruby compiles your code by 
translating it into a completely different language. 

n o t e 	 Throughout most of this book we’ll learn about the original, standard implementa-
tion of Ruby, known as Matz’s Ruby Interpreter (MRI) after Yukihiro Matsumoto, 
who invented Ruby in 1993. There are many other implementations of Ruby avail-
able in addition to MRI, including Ruby Enterprise Edition, MagLev, MacRuby, 
RubyMotion, mruby, and many, many others. Later, in Chapters 10, 11, and 12, 
we’ll look at two of these alternative Ruby implementations: JRuby and Rubinius.

Tokens: The Words That Make Up the Ruby Language
Suppose you write a simple Ruby program and save it in a file called 
simple.rb, shown in Listing 1-1.

10.times do |n|
  puts n
end

Listing 1-1: A very simple Ruby program (simple.rb)

Roa dm a p
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Listing 1-2 shows the output you would see after executing the program 
from the command line.

$ ruby simple.rb
0
1
2
3
--snip--

Listing 1-2: Executing Listing 1-1

What happens after you type ruby simple.rb and press enter? Aside 
from general initialization, processing your command line parameters, 
and so on, the first thing Ruby does is open simple.rb and read in all the 
text from the code file. Next, it needs to make sense of this text: your Ruby 
code. How does it do this?

After reading in simple.rb, Ruby encounters the series of text characters 
shown in Figure 1-2. (To keep things simple, I’m showing only the first line 
of text here.)

0 . t i m e s d o | n |1

Figure 1-2: The first line of text in simple.rb

When Ruby sees these characters, it tokenizes them. That is, it con-
verts them into a series of tokens or words that it understands by stepping 
through the characters one at a time. In Figure 1-3, Ruby starts scanning at 
the first character’s position.

0 . t i m e s d o | n |1

Figure 1-3: Ruby starts to tokenize your code.

The Ruby C source code contains a loop that reads in one character at 
a time and processes it based on what that character is. 

To keep things simple, I’m describing tokenization as an independent 
process. In fact, the parsing engine I describe next calls this C tokenize code 
whenever it needs a new token. Tokenization and parsing are separate pro-
cesses that actually occur at the same time. For now, let’s just continue to 
see how Ruby tokenizes the characters in your Ruby file.

Ruby realizes that the character 1 is the start of a number and contin-
ues to iterate over the characters that follow until it finds a nonnumeric 
character. First, in Figure 1-4, it finds a 0.
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0 . t i m e s d o | n |1

Figure 1-4: Ruby steps to the second text character.

And stepping forward again, in Figure 1-5, Ruby finds a period 
character.

0 . t i m e s d o | n |1

Figure 1-5: Ruby finds a period character.

Ruby actually considers the period character to be numeric because it 
might be part of a floating-point value. In Figure 1-6, Ruby steps to the next 
character, t.

0 . t i m e s d o | n |1

Figure 1-6: Ruby finds the first nonnumeric character.

Now Ruby stops iterating because it has found a nonnumeric charac-
ter. Because there are no more numeric characters after the period, Ruby 
considers the period to be part of a separate token, and it steps back one, as 
shown in Figure 1-7.

0 . t i m e s d o | n |1

Figure 1-7: Ruby steps back one character.

Finally, in Figure 1-8, Ruby converts the numeric characters that it 
found into the first token from your program, called tINTEGER.

tINTEGER . t i m e s d o | n |
10

Figure 1-8: Ruby converts the first two text characters into a tINTEGER token.
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Ruby continues to step through the characters in your code file, con-
verting them into tokens and grouping characters as necessary. The second 
token, shown in Figure 1-9, is a single character: a period.

t i m e s d o | n |tINTEGER
10

.

Figure 1-9: Ruby converts the period character into a token.

Next, in Figure 1-10, Ruby encounters the word times and creates an 
identifier token.

d o | n |tINTEGER
10

. tIDENTIFIER
times

Figure 1-10: Ruby tokenizes the word times.

Identifiers are words in your Ruby code that are not reserved words. 
Identifiers usually refer to variable, method, or class names. 

Next, Ruby sees do and creates a reserved word token, as indicated by 
keyword_do in Figure 1-11.

| n |tINTEGER
10

. tIDENTIFIER
times

keyword_do

Figure 1-11: Ruby creates a reserved word token: keyword_do.

Reserved words are keywords that carry significant meaning in Ruby 
because they provide the structure, or framework, of the language. They 
are called reserved words because you can’t use them as normal identifiers, 
although you can use them as method names, global variable names (such 
as $do), or instance variable names (for example, @do or @@do). 

Internally, the Ruby C code maintains a constant table of reserved 
words. Listing 1-3 shows the first few, in alphabetical order.

alias
and
begin
break
case
class

Listing 1-3: The first few reserved words, listed alphabetically
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T he pa rse r _y y l e x F unc t ion

If you’re familiar with C and are interested in learning more about the detailed way 
in which Ruby tokenizes your code file, see the parse.y file in your version of Ruby. 
The .y extension indicates that parse.y is a grammar rule file—one that contains a 
series of rules for the Ruby parser engine. (I’ll discuss these in the next section.) 
parse.y is an extremely large and complex file with over 10,000 lines of code!

For now, ignore the grammar rules, and search for a C function called parser_
yylex, about two-thirds of the way down the file, around line 6500. This complex C 
function contains the code that actually tokenizes your code. Look closely and you 
should see a very large switch statement that starts with the code shown in Listing 1-4.

u retry:
v last_state = lex_state;
w switch (c = nextc()) {

Listing 1-4: The C code inside Ruby that reads in each character from your code file

The nextc() function w returns the next character in the code file text stream. 
Think of this function as the arrow in the previous diagrams. The lex_state variable 
v keeps information about what state or type of code Ruby is processing at the 
moment. 

The large switch statement inspects each character of your code file and takes 
a different action based on what it is. For example, the code shown in Listing 1-5 
looks for whitespace characters and ignores them by jumping back up to the retry 
label u just above the switch statement in Listing 1-4.

  /* white spaces */
case ' ': case '\t': case '\f': case '\r':
case '\13': /* '\v' */
  space_seen = 1;
--snip--
  goto retry;

Listing 1-5: This C code checks for whitespace characters in your code and ignores them.

Ruby’s reserved words are defined in the file called defs/keywords. If you open 
this file, you’ll see a complete list of all of Ruby’s reserved words (see a partial list 
in Listing 1-3). The keywords file is used by an open source package called gperf to 
produce C code that can quickly and efficiently look up strings in a table—in this 
case, a table of reserved words. You can find the generated C code that looks up 
reserved words in lex.c, which defines a function named rb_reserved_word, called 
from parse.y.

One final detail about tokenization: Ruby doesn’t use the Lex tokenization tool 
that C programmers commonly use in conjunction with a parser generator like Yacc 
or Bison. Instead, the Ruby core team wrote the Ruby tokenization code by hand for 
performance reasons.
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Finally, as shown in Figure 1-12, Ruby converts the remaining charac-
ters to tokens.

tINTEGER
10

.
tIDENTIFIER

times
keyword_do |

tIDENTIFIER
n

|

Figure 1-12: Ruby finishes tokenizing the first line of text.

Ruby continues to step through your code until it has tokenized the 
entire Ruby script. At this point, it has processed your code for the first 
time, ripping it apart and putting it back together again in a completely 
different way. Your code began as a stream of text characters, and Ruby 
converted it to a stream of tokens, words that it will later combine into 
sentences.

Experiment 1-1: Using Ripper to Tokenize Different 
Ruby Scripts
Now that we’ve learned the basic idea behind tokenization, let’s look at how 
Ruby actually tokenizes different Ruby scripts. After all, how else will you 
know that the previous explanation is actually correct? 

As it turns out, a tool called Ripper makes it very easy to see what tokens 
Ruby creates for different code files. Shipped with Ruby 1.9 and Ruby 2.x, 
the Ripper class allows you to call the same tokenization and parsing code 
that Ruby uses to process text from code files. (Ripper is not available in 
Ruby 1.8.)

Listing 1-6 shows how simple using Ripper is.

require 'ripper'
require 'pp'
code = <<STR
10.times do |n|
  puts n
end
STR
puts code

u pp Ripper.lex(code)

Listing 1-6: An example of how to call Ripper.lex (lex1.rb)

After requiring the Ripper code from the standard library, you call it by 
passing some code as a string to the Ripper.lex method u. Listing 1-7 shows 
the output from Ripper.

$ ruby lex1.rb 
10.times do |n|
  puts n
end

u [[[1, 0], :on_int, "10"],
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 [[1, 2], :on_period, "."],
v  [[1, 3], :on_ident, "times"],

 [[1, 8], :on_sp, " "],
 [[1, 9], :on_kw, "do"],
 [[1, 11], :on_sp, " "],
 [[1, 12], :on_op, "|"],
 [[1, 13], :on_ident, "n"],
 [[1, 14], :on_op, "|"],
 [[1, 15], :on_ignored_nl, "\n"],
 [[2, 0], :on_sp, "  "],
 [[2, 2], :on_ident, "puts"],
 [[2, 6], :on_sp, " "],
 [[2, 7], :on_ident, "n"],
 [[2, 8], :on_nl, "\n"],
 [[3, 0], :on_kw, "end"],
 [[3, 3], :on_nl, "\n"]]

Listing 1-7: The output generated by Ripper.lex

Each line corresponds to a single token that Ruby found in your code 
string. On the left, we have the line number (1, 2, or 3 in this short example) 
and the text column number. Next, we see the token itself displayed as a 
symbol, such as :on_int u or :on_ident v. Finally, Ripper displays the text 
characters that correspond to each token.

The token symbols that Ripper displays are somewhat different from 
the token identifiers I used in Figures 1-2 through 1-12 that showed Ruby 
tokenizing the 10.times do code. I used the same names you would find in 
Ruby’s internal parse code, such as tIDENTIFIER, while Ripper used :on_ident 
instead.

Regardless, Ripper will still give you a sense of what tokens Ruby finds 
in your code and how tokenization works.

Listing 1-8 shows another example of using Ripper.

$ ruby lex2.rb
10.times do |n|
  puts n/4+6
end
--snip--
 [[2, 2], :on_ident, "puts"],
 [[2, 6], :on_sp, " "],
 [[2, 7], :on_ident, "n"],
 [[2, 8], :on_op, "/"],
 [[2, 9], :on_int, "4"],
 [[2, 10], :on_op, "+"],
 [[2, 11], :on_int, "6"],
 [[2, 12], :on_nl, "\n"],
--snip--

Listing 1-8: Another example of using Ripper.lex
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This time Ruby converts the expression n/4+6 into a series of tokens in a 
very straightforward way. The tokens appear in exactly the same order they 
did inside the code file.

Listing 1-9 shows a third, slightly more complex example.

$ ruby lex3.rb   
array = []
10.times do |n|
  array << n if n < 5
end
p array
--snip--
 [[3, 2], :on_ident, "array"],
 [[3, 7], :on_sp, " "],

u  [[3, 8], :on_op, "<<"],
 [[3, 10], :on_sp, " "],
 [[3, 11], :on_ident, "n"],
 [[3, 12], :on_sp, " "],
 [[3, 13], :on_kw, "if"],
 [[3, 15], :on_sp, " "],
 [[3, 16], :on_ident, "n"],
 [[3, 17], :on_sp, " "],

v  [[3, 18], :on_op, "<"],
 [[3, 19], :on_sp, " "],
 [[3, 20], :on_int, "5"],
--snip--

Listing 1-9: A third example of running Ripper.lex

As you can see, Ruby is smart enough to distinguish between << and < 
in the following line: array << n if n < 5. The characters << are converted to 
a single operator token u, while the single < character that appears later is 
converted into a simple less-than operator v. Ruby’s tokenize code is smart 
enough to look ahead for a second < character when it finds one <.

Finally, notice that Ripper has no idea whether the code you give it is 
valid Ruby or not. If you pass in code that contains a syntax error, Ripper.lex 
will just tokenize it as usual and not complain. It’s the parser’s job to check 
syntax.

Suppose you forget the | symbol after the block parameter n u, as 
shown in Listing 1-10.

require 'ripper'
require 'pp'
code = <<STR

u 10.times do |n
  puts n
end
STR
puts code
pp Ripper.lex(code) 

Listing 1-10: This code contains a syntax error.
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Running this, you get the output shown in Listing 1-11.

$ ruby lex4.rb  
10.times do |n
  puts n
end
--snip--
[[[1, 0], :on_int, "10"],
 [[1, 2], :on_period, "."],
 [[1, 3], :on_ident, "times"],
 [[1, 8], :on_sp, " "],
 [[1, 9], :on_kw, "do"],
 [[1, 11], :on_sp, " "],
 [[1, 12], :on_op, "|"],
 [[1, 13], :on_ident, "n"],
 [[1, 14], :on_nl, "\n"],
--snip--

Listing 1-11: Ripper does not detect syntax errors.

Parsing: How Ruby Understands Your Code
Once Ruby converts your code into a series of tokens, what does it do next? 
How does it actually understand and run your program? Does Ruby simply 
step through the tokens and execute each one in order?

No. Your code still has a long way to go before Ruby can run it. The 
next step on its journey through Ruby is called parsing, where words or 
tokens are grouped into sentences or phrases that make sense to Ruby. 
When parsing, Ruby takes into account the order of operations, methods, 
blocks, and other larger code structures. 

But how can Ruby actually understand what you’re telling it with your 
code? Like many programming languages, Ruby uses a parser generator. Ruby 
uses a parser to process tokens, but the parser itself 
is generated with a parser generator. Parser gen-
erators take a series of grammar rules as input that 
describe the expected order and patterns in which 
the tokens will appear.

The most widely used and well-known parser 
generator is Yacc (Yet Another Compiler Compiler), 
but Ruby uses a newer version of Yacc called Bison. 
The grammar rule file for Bison and Yacc has a 
.y extension. In the Ruby source code, the gram-
mar rule file is parse.y (introduced earlier). The 
parse.y file defines the actual syntax and grammar 
that you have to use while writing your Ruby code; 
it’s really the heart and soul of Ruby and where the 
language itself is actually defined!

Ruby uses an LALR parser 
generator called Bison. 
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Ruby uses Bison when building Ruby itself, and not to directly process 
tokens. In effect, there are two separate steps to the parsing process, shown 
in Figure 1-13.

Before you run your Ruby program, the Ruby build process uses Bison 
to generate the parser code (parse.c) from the grammar rule file (parse.y). 
Later, at run time, this generated parser code parses the tokens returned by 
Ruby’s tokenizer code. 

Run Time

Grammar
Rules 

(parse.y )

Ruby Build Time

Parser Code
(parse.c)

tokens AST
nodes

Tokenize Parse Compile
Ruby Code
(.rb files)

YARV
Instructions

Generate
Parser
(Bison)

Figure 1-13: The Ruby build process runs Bison ahead of time.

Because the parse.y file and the generated parse.c file also contain 
the tokenization code, Figure 1-13 has a diagonal arrow from parse.c to the 
tokenize process on the lower left. (In fact, the parse engine I’m about 
to describe calls the tokenization code whenever it needs a new token.) 
The tokenization and parsing processes actually occur simultaneously.

Understanding the LALR Parse Algorithm
How does the parser code analyze and process the incoming tokens? 
With an algorithm known as LALR, or Look-Ahead Left Reversed Rightmost 
Derivation. Using the LALR algorithm, the parser code processes the token 
stream from left to right, trying to match their order and the pattern in 
which they appear against one or more of the grammar rules from parse.y. 
The parser code also “looks ahead” when necessary to decide which gram-
mar rule to match.

The best way to become familiar with the way Ruby grammar rules 
work is with an example. To keep things simple for now, we’ll look at an 
abstract example. Later on, I’ll show that Ruby actually works in precisely 
the same way when it parses your code.
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Suppose you want to translate from the Spanish:

Me gusta el Ruby. 		  [Phrase 1]

to the English:

I like Ruby. 

And suppose that to translate Phrase 1, you use Bison to generate a C 
language parser from a grammar file. Using the Bison/Yacc grammar rule 
syntax, you can write the simple grammar shown in Listing 1-12, with the 
rule name on the left and the matching tokens on the right.

SpanishPhrase : me gusta el ruby {
  printf("I like Ruby\n");
}

Listing 1-12: A simple grammar rule matching the Spanish Phrase 1

This grammar rule says the following: If the token stream is equal to me, 
gusta, el, and ruby—in that order—we have a match. If there’s a match, the 
Bison generated parser will run the given C code, and the printf statement 
(similar to puts in Ruby) will print the translated English phrase.

Figure 1-14 shows the parsing process in action.

SpanishPhrase:

Tokens

Grammar Rule

me gusta el ruby

me gusta el ruby

Figure 1-14: Matching tokens with a grammar rule

There are four input tokens at the top, and the grammar rule is under-
neath. It should be clear that there’s a match because each input token cor-
responds directly to one of the terms on the right side of the grammar rule. 
We have a match on the SpanishPhrase rule.

Now let’s improve on this example. Suppose you need to enhance your 
parser to match Phrase 1 and Phrase 2:

Me gusta el Ruby. 		  [Phrase 1]

and:

Le gusta el Ruby.  		  [Phrase 2]

In English, Phrase 2 means “She/He/It likes Ruby.” 
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The modified grammar file in Listing 1-13 can parse both Spanish 
phrases.

SpanishPhrase: VerbAndObject el ruby {
  printf("%s Ruby\n", $1);
};
VerbAndObject: SheLikes | ILike {
  $$ = $1;
};
SheLikes: le gusta {
  $$ = "She likes";
}
ILike: me gusta {
  $$ = "I like";
}

Listing 1-13: These grammar rules match both Phrase 1 and Phrase 2.

As you can see, there are four grammar rules here instead of just 
one. Also, you’re using the Bison directive $$ to return a value from a 
child grammar rule to a parent and $1 to refer to a child’s value from 
a parent.

Unlike with Phrase 1, the parser can’t immediately match Phrase 2 with 
any of the grammar rules.

In Figure 1-15, we can see the el and ruby tokens match the SpanishPhrase 
rule, but le and gusta do not. (Ultimately, we’ll see that the child rule 
VerbAndObject does match le gusta, but never mind that for now.) With four 
grammar rules, how does the parser know which other rules to try to match 
against? And against which tokens?

SpanishPhrase:

Tokens

Grammar Rule

el ruby

?

VerbAndObject

le gusta el ruby

Figure 1-15: The first two tokens don’t match.

This is where the intelligence of the LALR parser comes in. As I men-
tioned earlier, the acronym LALR stands for Look-Ahead LR parser, and it 
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describes the algorithm the parser uses to find matching grammar rules. 
We’ll get to the look ahead part in a minute. For now, let’s start with LR:

•	 L (left) means the parser moves from left to right while processing the 
token stream. In this example, that would be le, gusta, el, and ruby, in 
that order. 

•	 R (reversed rightmost derivation) means the parser takes a bottom-up 
strategy, using a shift/reduce technique, to find matching grammar 
rules. 

Here’s how the algorithm works for Phrase 2. First, the parser takes the 
input token stream, shown again in Figure 1-16.

Tokens

le gusta el ruby

Figure 1-16: The input stream of tokens

Next, it shifts the tokens to the left, creating what I’ll call the grammar 
rule stack, as shown Figure 1-17.

shift
TokensGrammar Rule Stack

le gusta el ruby

Figure 1-17: The parser moves the first token onto the grammar rule stack.

Because the parser has processed only the token le, it places this token 
in the stack alone for the moment. The term grammar rule stack is a bit of an 
oversimplification; while the parser uses a stack, instead of grammar rules, 
it pushes numbers onto its stack to indicate which grammar rule it has just 
parsed. These numbers, or states, help the parser keep track of which gram-
mar rules it has matched as it processes tokens.

Next, as shown in Figure 1-18, the parser shifts another token to 
the left.

gustale
shift

TokensGrammar Rule Stack

el ruby

Figure 1-18: The parser moves another token onto the stack.



Tokenization and Parsing    17

Now there are two tokens in the stack on the left. At this point, the 
parser stops to search the different grammar rules for a match. Figure 1-19 
shows the parser matching the SheLikes rule.

reduceSheLikes

TokensGrammar Rule Stack

el ruby

Figure 1-19: The parser matches the SheLikes rule and reduces.

This operation is called reduce because the parser is replacing the pair 
of tokens with a single matching rule. The parser looks through the avail-
able rules and reduces, or applies the single matching rule.

Now the parser can reduce again because there’s another matching 
rule: VerbAndObject! The VerbAndObject rule matches because its use of the 
OR (|) operator matches either the SheLikes or ILike child rules. 

You can see in Figure 1-20 that the parser replaces SheLikes with 
VerbAndObject.

reduce

TokensGrammar Rule Stack

el rubyVerbAndObject

Figure 1-20: The parser reduces again, matching the VerbAndObject rule.

But think about this: How did the parser know to reduce and not 
continue to shift tokens? Also, if in the real world there are actually many 
matching rules, how does the parser know which one to use? How does 
it decide whether to shift or reduce? And if it reduces, how does it decide 
which grammar rule to reduce with? 

In other words, suppose at this point in the process multiple matching 
rules included le gusta. How would the parser know which rule to apply 
or whether to shift in the el token first before looking for a match? (See 
Figure 1-21.)

gustale

TokensGrammar Rule Stack

el ruby

Figure 1-21: How does the parser know to shift or reduce?
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Here’s where the look ahead portion of LALR comes in. In order to find 
the correct matching rule, the parser looks ahead at the next token. The 
arrow in Figure 1-22 shows the parser looking ahead at the el token.

gustale

TokensGrammar Rule Stack

el ruby

?
Figure 1-22: Looking ahead at the next token in the input stream

Additionally, the parser maintains a state table of possible outcomes 
depending on what the next token is and which grammar rule was just 
parsed. In this case, the table would contain a series of states, describing 
which grammar rules have been parsed so far and which states to move 
to next depending on the next token. (LALR parsers are complex state 
machines that match patterns in the token stream. When you use Bison to 
generate the LALR parser, Bison calculates what this state table should con-
tain based on the grammar rules you provided.)

In this example, the state table would contain an entry indicating that 
if the next token was el, the parser should first reduce using the SheLikes 
rule before shifting a new token.

Rather than waste your time with the details of what a state table looks 
like (you’ll find the actual LALR state table for Ruby in the generated 
parse.c file), let’s continue the shift/reduce operations for Phrase 2, “Le 
gusta el Ruby.” After matching the VerbAndObject rule, the parser would shift 
another token to the left, as shown in Figure 1-23.

Grammar Rule Stack
shift

elVerbAndObject

Tokens

ruby

Figure 1-23: The parser shifts another token onto the stack.

At this point, no rules would match, and the state machine would shift 
another token to the left (see Figure 1-24).

Grammar Rule Stack

shift
el rubyVerbAndObject

Figure 1-24: The parser shifts another token onto the stack.
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Figure 1-25 shows how the parent grammar rule SpanishPhrase would 
match after a final reduce operation.

Grammar Rule Stack

SpanishPhrase reduce and match!

Figure 1-25: The parser matches the SpanishPhrase rule—and the  
entire input stream!

I’ve shown you this Spanish-to-English example because Ruby parses 
your program in exactly the same way! Inside the Ruby parse.y source code 
file, you’ll see hundreds of rules that define the structure and syntax of 
the Ruby language. There are parent and child rules, and the child rules 
return values the parent rules can refer to in exactly the same way our 
SpanishPhrase grammar rules do, using the symbols $$, $1, $2, and so on. The 
only real difference is scale: Our SpanishPhrase grammar example is trivial, 
really. In contrast, Ruby’s grammar is very complex; it’s an intricate series 
of interrelated parent and child grammar rules, which sometimes refer to 
each other in circular, recursive patterns. But this complexity just means 
that the generated state table in parse.c is quite large. The basic LALR algo-
rithm, which describes how the parser processes tokens and uses the state 
table, is the same in our Spanish example as it is in Ruby. 

To get a sense of just how complex the state table is for Ruby, you can 
try using Ruby’s -y option, which displays internal debug information every 
time the parser jumps from one state to another. Listing 1-14 shows a small 
portion of the output generated when you run the 10.times do example from 
Listing 1-1.

$ ruby -y simple.rb
Starting parse
Entering state 0
Reducing stack by rule 1 (line 850):
-> $$ = nterm @1 ()
Stack now 0
Entering state 2
Reading a token: Next token is token tINTEGER ()
Shifting token tINTEGER ()
Entering state 41
Reducing stack by rule 498 (line 4293):
   $1 = token tINTEGER ()
-> $$ = nterm numeric ()
Stack now 0 2
Entering state 109
--snip--

Listing 1-14: Ruby optionally displays debug information, showing how the parser jumps 
from one state to another.
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Some Actual Ruby Grammar Rules
Let’s look at some actual Ruby grammar rules from parse.y. Listing 1-15 con-
tains the simple example Ruby script from Listing 1-1 on page 4.

10.times do |n|
  puts n
end

Listing 1-15: The simple Ruby program from Listing 1-1.

Figure 1-26 shows how Ruby’s parsing process works with this script.

Grammar Rules

program: top_compstmt

top_compstmt: top_stmts opt_terms

top_stmts: ... | top_stmt | ... 

top_stmt: stmt | ...

stmt: ... | expr

expr: ... | arg

arg: ... | primary

primary: ... | method_call brace_block | ...

Ruby Code

10.times do |n|
  puts n
end

Figure 1-26: The grammar rules on the right match the Ruby code on the left.

On the left is the code that Ruby is trying to parse. On the right are the 
actual matching grammar rules from the Ruby parse.y file, shown simplified. 
The first rule, program: top_compstmt, is the root grammar rule that matches 
every Ruby program in its entirety. 

As you go down the list, you see a complex series of child rules that 
also match the entire Ruby script: top statements, a single statement, an 
expression, an argument, and, finally, a primary value. Once Ruby’s parse 
reaches the primary grammar rule, it encounters a rule with two matching 
child rules: method_call and brace_block. Let’s look at method_call first (see 
Figure 1-27).

Grammar Rules

method_call: ... | primary_value '.' operation2 | ...

Ruby Code

10.times

Figure 1-27: 10.times matches the method_call grammar rule.

The method_call rule matches the 10.times portion of the Ruby code—
that is, where we call the times method on the 10 Fixnum object. You can 
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see that the method_call rule matches another primary value, followed by a 
period character, followed by an operation2 rule. 

Figure 1-28 shows that the primary_value rule first matches the value 10.

Grammar Rules

primary_value: primary

primary: literal | ...

Ruby Code

10

Figure 1-28: The value 10 matches the  
primary_value grammar rule.

Then, in Figure 1-29, the operation2 rule matches the method 
name times.

Grammar Rules

operation2: identifier | ...

Ruby Code

times

Figure 1-29: The times method name matches the  
operation2 grammar rule.

How does Ruby parse the contents of the do ... puts ... end block 
that’s passed to the times method? It uses the brace_block rule we saw in 
Figure 1-26. Figure 1-30 shows the definition of the brace_block rule.

Grammar Rules

brace_block: ... | keyword_do opt_block_param compstmt keyword_end | ...

Ruby Code

do |n|
  puts n
end

Figure 1-30: The entire block matches the brace_block rule.

I don’t have space here to go through all the remaining child gram-
mar rules, but you can see how this rule, in turn, contains a series of other 
matching child rules:

•	 keyword_do matches the do reserved keyword.

•	 opt_block_param matches the block parameter |n|.

•	 compstmt matches the contents of the block itself, puts n.

•	 keyword_end matches the end reserved keyword.
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R e a ding a Bison Gr a mm a r Rul e

To give you a taste of the actual Ruby parse.y source code, take a look at 
Listing 1-16, which shows part of the method_call u grammar rule definition.

u method_call        : 
--snip--
      primary_value '.' operation2
      {
      /*%%%*/
          $<num>$ = ruby_sourceline;
      /*% %*/
      }
    opt_paren_args
      {
      /*%%%*/
          $$ = NEW_CALL($1, $3, $5);
          nd_set_line($$, $<num>4);
      /*%
          $$ = dispatch3(call, $1, ripper_id2sym('.'), $3);
          $$ = method_optarg($$, $5);
      %*/
      }

Listing 1-16: Ruby’s actual method_call grammar rule from parse.y

As with the preceding Spanish-to-English example grammar file, you can see 
that there are snippets of complex C code after each of the terms in the grammar 
rule. Listing 1-17 shows one example of this.

      $$ = NEW_CALL($1, $3, $5);
      nd_set_line($$, $<num>4);

Listing 1-17: Ruby calls this C code when the opt_paren_args grammar rule matches.

The Bison-generated parser will execute one of these snippets when there’s 
a match for a rule on the tokens found in the target Ruby script. However, these C 
code snippets also contain Bison directives, such as $$ and $1, that allow the code to 
create return values and to refer to values returned by other grammar rules. We end 
up with a confusing mix of C and Bison directives.

To make things worse, Ruby uses a trick during its build process to divide these 
C/Bison code snippets into separate pieces. Some of these pieces are used by 
Ruby, while others are used only by the Ripper tool from Experiment 1-1. Here’s how 
that trick works:

•	 The C code that appears between the /*%%%*/ line and the /*% line in 
Listing 1-16 is actually compiled into Ruby during the Ruby build process.

•	 The C code between /*% and %*/ in Listing 1-16 is dropped when Ruby is built. 
This code is used only by the Ripper tool, which is built separately during the 
Ruby build process. 



Tokenization and Parsing    23

Experiment 1-2: Using Ripper to Parse Different 
Ruby Scripts
In Experiment 1-1, you learned how to use Ripper to display the tokens that 
Ruby converts your code into, and we’ve just seen how the Ruby grammar 
rules in parse.y are also included in the Ripper tool. Now let’s learn how 
to use Ripper to display information about how Ruby parses your code. 
Listing 1-18 shows how to do it.

require 'ripper'
require 'pp'
code = <<STR
10.times do |n|
  puts n
end
STR
puts code

u pp Ripper.sexp(code)

Listing 1-18: An example of how to call Ripper.sexp

This is exactly the same code from Experiment 1-1, except that we call 
Ripper.sexp u instead of Ripper.lex. Running this gives the output shown in 
Listing 1-19.

[:program,
  [[:method_add_block,
     [:call,
       [:@int, "10", [1, 0]], :".",
       [:@ident, "times", [1, 3]]],

Ruby uses this very confusing syntax to allow the Ripper tool and Ruby itself to 
share the same grammar rules inside parse.y.

What are these snippets actually doing? As you might guess, Ruby uses the 
Ripper code snippets to allow the Ripper tool to display information about what Ruby 
is parsing. (We’ll try that next, in Experiment 1-2.) There’s also some bookkeeping 
code: Ruby uses the ruby_sourceline variable to keep track of which source code line 
corresponds to each portion of the grammar.

But more importantly, the snippets Ruby actually uses at run time when pars-
ing your code create a series of nodes, or temporary data structures, that form an 
internal representation of your Ruby code. These nodes are saved in a tree structure 
called an abstract syntax tree (AST) (more about this in Experiment 1-2). You can see 
one example of creating an AST node in Listing 1-17, where Ruby calls the NEW_CALL 
C macro/function. This call creates a new NODE_CALL node, which represents a method 
call. (In Chapter 2 we’ll see how Ruby eventually compiles this into bytecode that 
can be executed by a virtual machine.)
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     [:do_block,
       [:block_var,
         [:params, [[:@ident, "n", [1, 13]]],
                   nil, nil, nil, nil, nil, nil],
         false],
       [[:command,
          [:@ident, "puts", [2, 2]],
          [:args_add_block, [[:var_ref, [:@ident, "n", [2, 7]]]],
                            false]]]]]]]

Listing 1-19: The output generated by Ripper.sexp

You can see some bits and pieces from the Ruby script in this cryptic 
text, but what do all of the other symbols and arrays mean?

It turns out that the output from Ripper is a textual representation of 
your Ruby code. As Ruby parses your code, matching one grammar rule 
after another, it converts the tokens in your code file into a complex inter-
nal data structure called an abstract syntax tree (AST). (You can see some 
of the C code that produces this structure in “Reading a Bison Grammar 
Rule” on page 22.) The AST is used to record the structure and syntacti-
cal meaning of your Ruby code. 

To see what I mean, look at Figure 1-31, which shows a graphical view of 
part of the output that Ripper generated for us: the puts n statement inside 
the block.

puts n

identifier
puts

args add
block

var ref

identifier
n

command

Figure 1-31: The portion of the AST corresponding to puts n
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This diagram corresponds to the last three lines of the Ripper output, 
repeated here in Listing 1-20.

[[:command,
u    [:@ident, "puts", [2, 2]],

   [:args_add_block, [[:var_ref, [:@ident, "n", [2, 7]]]],
                     false]]]

Listing 1-20: The last three lines of the Ripper.sexp output

As in Experiment 1-1, when we displayed token information from Ripper, 
you can see that the source code file line and column information are dis-
played as integers. For example, [2, 2] u indicates that Ripper found the 
puts call on line 2 at column 2 of the code file. You can also see that Ripper 
outputs an array for each of the nodes in the AST—with [:@ident, "puts", 
[2, 2]] u, for example.

Now your Ruby program is beginning to “make sense” to Ruby. Instead 
of a simple stream of tokens, which could mean anything, Ruby now has a 
detailed description of what you meant when you wrote puts n. You see a 
function call (a command), followed by an identifier node that indicates 
which function to call. 

Ruby uses the args_add_block node because you could pass a block to a 
command/function call like this. Even though you’re not passing a block 
in this case, the args_add_block node is still saved into the AST. (Notice, too, 
how the n identifier is recorded as a :var_ref, or variable reference node, not 
as a simple identifier.)

Figure 1-32 represents more of the Ripper output.

... do |n|
  puts n
end do block

block var

params

identifier
n

puts n

Figure 1-32: The portion of the AST corresponding to the entire block
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You can see that Ruby now understands that do |n| ... end is a block, 
with a single block parameter called n. The puts n box on the right repre-
sents the other part of the AST shown earlier—the parsed version of the 
puts call.

Finally, Figure 1-33 shows the entire AST for the sample Ruby code.

10.times do |n|

  puts n

end

method
add block

call

integer
10

... do |n|
  puts n
end

period
identifier

times

program

Figure 1-33: The AST for the entire Ruby program

Here, method add block means that you’re calling a method, but with a 
block parameter: 10.times do. The call tree node obviously represents the 
actual method call 10.times. This is the NODE_CALL node that we saw earlier in 
the C code snippet. Ruby’s understanding of what you meant with your code 
is saved in the way the nodes are arranged in the AST.

To clarify things, suppose you pass the Ruby expression 2 + 2 to Ripper, 
as shown in Listing 1-21.

require 'ripper'
require 'pp'
code = <<STR
2 + 2
STR
puts code
pp Ripper.sexp(code)

Listing 1-21: This code will display the AST for 2 + 2.
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Running this code gives the output in Listing 1-22.

[:program,
  [[:binary,
     [:@int, "2", [1, 0]],
     :+,
     [:@int, "2", [1, 4]]]]]

Listing 1-22: The output of Ripper.sexp for 2 + 2

As you can see in Figure 1-34 below, the + is represented with an AST 
node called binary.

2 + 2

program

integer
2 plus

integer
2

binary

Figure 1-34: The AST for 2 + 2

But see what happens when I pass the expression 2 + 2 * 3 into Ripper, 
as in Listing 1-23.

require 'ripper'
require 'pp'
code = <<STR
2 + 2 * 3
STR
puts code
pp Ripper.sexp(code)

Listing 1-23: Code to display the AST for 2 + 2 * 3

Listing 1-24 shows that you get a second binary node for the * operator 
at u.
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[:program,
 [[:binary,
   [:@int, "2", [1, 0]],
   :+,

u    [:binary,
     [:@int, "2", [1, 4]],
     :*,
     [:@int, "3", [1, 8]]]]]]

Listing 1-24: The output of Ripper.sexp for 2 + 2 * 3

Figure 1-35 shows what that looks like.

program

binary

integer
plus binary

2 + 2 * 3

2

integer
2 multiply

integer
3

Figure 1-35: The AST for 2 + 2 * 3

Ruby was smart enough to realize that multiplication has a higher pre-
cedence than addition, but what’s really interesting is how the AST tree 
structure captures the information about the order of operations. The 
token stream 2 + 2 * 3 simply indicates what you wrote in your code file. 
But the parsed version that’s saved to the AST structure now contains the 
meaning of your code—that is, all of the information Ruby will need later 
to execute it.
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One final note: Ruby actually contains some debug code that can dis-
play information about the AST node structure. To use it, run your Ruby 
script with the parsetree option (see Listing 1-25).

$ ruby --dump parsetree your_script.rb

Listing 1-25: Display debug information about your code’s AST using the parsetree option.

This will display the same information we’ve just seen, but instead of 
showing symbols, the parsetree option should show the actual node names 
from the C source code. (In Chapter 2, I’ll also use the actual node names.)

Summary
In Chapter 1, we looked at one of the most fascinating areas of computer 
science: how Ruby can understand the text that you give it—your Ruby pro-
gram. In order to do this, Ruby converts your code into two different for-
mats. First, it converts the text in your Ruby program into a series of tokens. 
Next, it uses an LALR parser to convert the input stream of tokens into a 
data structure called an abstract syntax tree. 

In Chapter 2, we’ll see that Ruby converts your code into a third format: 
a series of bytecode instructions that are later used when your program is actu-
ally executed.



The code Ruby actually 
runs looks nothing like 

your original code. 



2
C o m p i l a t i o n

Now that Ruby has tokenized and parsed your code, 
is it ready to run it? Will it finally get to work and iter-
ate through the block 10 times in my simple 10.times do 
example? If not, what else could Ruby possibly have to 
do first?

Starting with version 1.9, Ruby compiles your code before executing 
it. The word compile means to translate your code from one program-
ming language to another. Your programming language is easy for you 
to understand, while usually the target language is easy for the computer to 
understand.

For example, when you compile a C program, the compiler translates 
C code to machine language, a language your computer’s microprocessor 
hardware understands. When you compile a Java program, the compiler 
translates Java code to Java bytecode, a language the Java Virtual Machine 
understands.

Ruby’s compiler is no different. It translates your Ruby code into 
another language that Ruby’s virtual machine understands. The only dif-
ference is that you don’t use Ruby’s compiler directly; unlike in C or Java, 
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Ruby’s compiler runs automatically without you ever knowing. Here in 
Chapter 2, I’ll explain how Ruby does this and what language it translates 
your code into.

No Compiler for Ruby 1.8
The Ruby core team introduced a 
compiler with version 1.9. Ruby 1.8 
and earlier versions of Ruby don’t 
contain a compiler. Instead, Ruby 1.8 
immediately executes your code 
after the tokenizing and parsing 
processes are finished. It does this 
by walking through the nodes in 
the AST tree and executing each 
one. Figure 2-1 shows another way 
of looking at the Ruby 1.8 tokeniz-
ing and parsing processes.

The top of Figure 2-1 shows 
your Ruby code. Below this are the 
different internal formats Ruby con-
verts your Ruby code into. These 
are the tokens and AST nodes we 
saw in Chapter 1—the different 

Machine
Language

C

Code You Write

Interpret

Ruby

Tokens

AST Nodes

Code the
Ruby Core Team

Writes

Figure 2-1: In Ruby 1.8, your code is 
converted into AST nodes and then 
interpreted.
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forms your code takes when you run it using Ruby. The lower section of the 
diagram shows the code the Ruby core team wrote: the C source code for 
the Ruby language and the machine language it is converted into by the C 
compiler.

The dotted line between the two code sections indicates that Ruby 
interprets your code. The Ruby C code, the lower section, reads and exe-
cutes your code, the top section. Ruby 1.8 doesn’t compile or translate your 
code into any form beyond AST nodes. After converting it into AST nodes, 
it proceeds to iterate over the nodes in the AST, taking whatever action 
each node represents as it executes each node. 

The gap in the middle of the diagram shows that your code is never 
completely compiled into machine language. If you were to disassemble 
and inspect the machine language that your CPU actually runs, you would 
not see instructions that directly map to your original Ruby code. Instead, 
you would find instructions that tokenize, parse, and execute your code, 
or, in other words, that implement the Ruby interpreter.

Ruby 1.9 and 2.0 Introduce a Compiler
If you’ve upgraded to Ruby 1.9 or 2.0, Ruby is still not quite ready to run 
your code. It needs to compile it first. 

With Ruby 1.9, Koichi Sasada and the Ruby core team introduced Yet 
Another Ruby Virtual Machine (YARV), which actually executes your Ruby 
code. At a high level, this is the same idea behind the Java Virtual Machine 
( JVM) used by Java and many other languages. (I’ll cover YARV in more 
detail in Chapters 3 and 4.)

When using YARV (as with the JVM), you first compile your code into 
bytecode, a series of low-level instructions that the virtual machine under-
stands. The only differences between YARV and the JVM are the following:

•	 Ruby doesn’t expose the compiler to you as a separate tool. Instead, 
it automatically compiles your Ruby code into bytecode instructions 
internally.

•	 Ruby never compiles your Ruby code all the way to machine language. 
As you can see in Figure 2-2, Ruby interprets the bytecode instruc-
tions. The JVM, on the other hand, can compile some of the bytecode 
instructions all the way into machine language using its “hotspot” or 
just-in-time ( JIT) compiler.

Figure 2-2 shows how Ruby 1.9 and 2.0 handle your code.
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Notice that this time, unlike 
in the process shown in Figure 2-1, 
your code is translated into a third 
format. After parsing the tokens and 
producing the AST, Ruby 1.9 and 
2.0 continue to compile your code 
into a series of low-level instructions 
called YARV instructions.

The primary reason for using 
YARV is speed: Ruby 1.9 and 2.0 
run much faster than Ruby 1.8 
due to the use of YARV instruc-
tions. Like Ruby 1.8, YARV is an 
interpreter—just a faster one. Your 
Ruby code ultimately is still not 
converted directly into machine 
language by Ruby 1.9 or 2.0. There 
is still a gap in Figure 2-2 between 
the YARV instructions and Ruby’s 
C code.

How Ruby Compiles a Simple Script
In this section, we’ll look at the last step along your code’s journey through 
Ruby: how Ruby compiles your code into the instructions that YARV expects. 
Let’s explore how Ruby’s compiler works by stepping through an example 
compilation. Listing 2-1 shows a simple Ruby script that calculates 2 + 2 = 4.

puts 2+2

Listing 2-1: A one-line Ruby program we will compile as an example

Figure 2-3 shows the AST structure that Ruby will create after tokeniz-
ing and parsing this simple program. (This is a more detailed view of the 
AST than you would get from the Ripper tool that we saw in Experiment 1-2 
on page 23.)

N o t e 	 The technical names shown in Figure 2-3 (NODE_SCOPE, NODE_FCALL, and so on) are 
taken from the actual Ruby C source code. To keep things simple, I’m omitting some 
AST nodes—specifically, ones that represent arrays of the arguments to each method 
call, which in this simple example would be arrays of only one element.

Code You Write

Code the
Ruby Core Team

Writes Machine
Language

C

Ruby

Tokens

AST Nodes

YARV
Instructions

Interpret

Figure 2-2: Ruby 1.9 and 2.0 compile the 
AST nodes into YARV instructions before 
interpreting them.
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puts 2+2

NODE_SCOPE

table: [ none ]
 args: [ none ]

NODE_FCALL

method id:
puts

NODE_LIT

2
NODE_LIT

2

receiver args

NODE_CALL

method id:
+

Figure 2-3: The AST Ruby produces after parsing the code in Listing 2-1

Before we cover the details of how Ruby compiles the puts 2+2 script, 
let’s look at one very important attribute of YARV: It’s a stack-oriented virtual 
machine. That means when YARV executes your code, it maintains a stack 
of values—mainly arguments and return values for the YARV instructions. 
(I’ll explain this in more detail in Chapter 3.) Most of YARV’s instructions 
either push values onto the stack or operate on the values that they find on 
the stack, leaving a result value on the stack as well.

In order to compile the puts 2+2 AST structure into YARV instructions, 
Ruby will iterate over the tree recursively from the top down, converting 
each AST node into instructions. Figure 2-4 shows how this works, begin-
ning with NODE_SCOPE.

NODE_SCOPE

table: [ none ]
 args: [ none ]

YARV instructions

Figure 2-4: Ruby starts the compile process at the root of the AST.

NODE_SCOPE tells the Ruby compiler that it is starting to compile a new 
scope, or section of Ruby code, which, in this case, is a whole new program. 
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This scope is indicated on the right with an empty box. (The table and args 
values are both empty, so we’ll ignore them for now.)

Next, the Ruby compiler steps down the AST tree and encounters 
NODE_FCALL, as shown in Figure 2-5.

putself

NODE_FCALL

method id:
puts

YARV instructionsNODE_SCOPE

table: [ none ]
 args: [ none ]

Figure 2-5: To compile a function call, Ruby first creates an instruction to push the  
receiver.

NODE_FCALL represents a function call—in this case, the call to puts. 
(Function and method calls are very important and very common in Ruby 
programs.) Ruby compiles function calls for YARV according to the follow-
ing pattern:

•	 Push receiver.

•	 Push arguments.

•	 Call the method/function.

In Figure 2-5, the Ruby compiler first creates a YARV instruction called 
putself to indicate that the function call uses the current value of the self 
pointer as the receiver. Because I call puts from the top-level scope—that 
is, the top section—of this simple script, self is set to point to the top self 
object. (The top self object is an instance of the Object class that is auto-
matically created when Ruby starts up. One purpose of top self is to serve 
as the receiver for function calls like this one in the top-level scope.)

n o t e 	 In Ruby all functions are actually methods. That is, functions are always associated 
with a Ruby class; there is always a receiver. Inside of Ruby, however, Ruby’s parser 
and compiler distinguish between functions and methods: Method calls have an 
explicit receiver, while function calls assume the receiver is the current value of self.

Next, Ruby needs to create instructions to push the arguments of the 
puts function call. But how? The argument to puts is 2+2, which is the result 
of another method call. Although 2+2 is a simple expression, puts could 
instead be operating on some extremely complex Ruby expression involv-
ing many operators, method calls, and so on. How can Ruby know which 
instructions to create here?
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The answer lies in the structure of the AST. By simply following the tree 
nodes down recursively, Ruby can take advantage of all the parser’s earlier 
work. In this case, it can now just step down to the NODE_CALL node, as shown 
in Figure 2-6.

putself
putobject
putobject
send

NODE_FCALL

NODE_CALL

method id:
+

2
2
<callinfo!mid:+, argc:1, ...

YARV instructions

method id:
puts

Figure 2-6: Next, Ruby writes instructions for calculating 2+2, the argument to puts.

Here Ruby will compile the + method call, which theoretically is the 
process of sending the + message to the 2 integer object. Again, following 
the same receiver, arguments, method call pattern, Ruby performs these 
actions in order:

1.	 Creates a YARV instruction to push the receiver onto the stack (the 
object 2 in this case).

2.	 Creates a YARV instruction to push the argument or arguments onto 
the stack (again, 2 in this example).

3.	 Creates a method call YARV instruction send <callinfo!mid:+, argc:1, 
ARGS_SKIP> that means “send the + message” to the receiver, which is the 
object previously pushed onto the YARV stack (in this case, the first 
Fixnum 2 object). mid:+ means “method id = +” and is the name of the 
method we want to call. The argc:1 parameter tells YARV there is one 
argument to this method call (the second Fixnum 2 object). ARGS_SKIP 
indicates the arguments are simple values (not blocks or arrays of 
unnamed arguments), allowing YARV to skip some work it would have 
to do otherwise.

When Ruby executes the send <callinfo!mid:+... instruction it adds 2+2, 
fetching those arguments from the stack, and leaves the result, 4, as a new 
value on top of the stack. What’s fascinating about this is that YARV’s stack-
oriented nature also helps Ruby compile the AST nodes more easily, as you 
can see when it finishes compiling the NODE_FCALL, as shown in Figure 2-7.

Now Ruby can assume that the return value of the 2+2 operation—
that is, 4—will be left at the top of the stack, just where it needs to be as the 
argument to the puts function call. Ruby’s stack-oriented virtual machine 
goes hand in hand with the way that it recursively compiles the AST 
nodes! As you can see at the right of Figure 2-7, Ruby has added the send 
<callinfo!mid:puts, argc:1 instruction, which calls puts and indicates that 
there is one argument to puts.
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NODE_SCOPE

putself
putobject
putobject
send
send

NODE_FCALL

2
2
<callinfo!mid:+, argc:1, ...
<callinfo!mid:puts, argc:1, ...

YARV instructions

table: [ none ]
 args: [ none ]

method id:
puts

NODE_SCOPE

putself
putobject
putobject
send
send

NODE_FCALL

2
2
<callinfo!mid:+, argc:1, ...
<callinfo!mid:puts, argc:1, ...

YARV instructions

table: [ none ]
 args: [ none ]

method id:
puts

Figure 2-7: Finally, Ruby can write an instruction for the call to puts.

As it turns out, Ruby further modifies these YARV instructions before 
executing them as part of an optimize step. One of its optimizations is to 
replace some YARV instructions with specialized instructions, which are YARV 
instructions that represent commonly used, primitive operations, such as 
size, not, less than, greater than, and so on. One such instruction, opt_plus, is 
used for adding two numbers together. During optimization, Ruby replaces 
send <callinfo!mid:+... with opt_plus, as shown in Figure 2-8.

NODE_SCOPE

putself
putobject
putobject
opt_plus
opt_send_simple

NODE_FCALL

2
2

<callinfo!mid:puts,
argc:1...

YARV instructions

table: [ none ]
 args: [ none ]

method id:
puts

Figure 2-8: Ruby replaces some instructions with specialized instructions.

As you can see in Figure 2-8, Ruby also replaces the second send with 
opt_send_simple, which runs a bit faster when none of the arguments needs 
special treatment, such as expansion.

Compiling a Call to a Block
Next, let’s compile my 10.times do example from Listing 1-1 in Chapter 1 
(see Listing 2-2).

10.times do |n|
  puts n
end

Listing 2-2: A simple script that calls a block
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Notice that this example contains a block parameter to the times 
method. This is interesting because it will give us a chance to see how the 
Ruby compiler handles blocks. Figure 2-9 shows the AST for the 10.times do 
example again, using the actual node names rather than the simplified out-
put from Ripper.

etc.

10.times do |n|
  puts n
end

NODE_SCOPE

NODE_CALL

NODE_LIT

10

receiver

NODE_SCOPE

table: n
 args: 1

... do |n|
  puts n
end

table: [ none ]
 args: [ none ]

method id:
times

NODE_ITER

Figure 2-9: The AST for the call to 10.times, passing a block

This looks very different than puts 2+2, mostly because of the inner 
block shown at the right. (Ruby handles the inner block differently, as 
we’ll see shortly.) 

Let’s break down how Ruby compiles the main portion of the script 
shown on the left of Figure 2-9. As before, Ruby starts with the first 
NODE_SCOPE and creates a new snippet of YARV instructions, as shown in 
Figure 2-10.

NODE_SCOPE
YARV instructions

table: [ none ]
 args: [ none ]

Figure 2-10: Each NODE_SCOPE is compiled into a new snippet of YARV instructions.



40   Chapter 2

Next, Ruby steps down the AST nodes to NODE_ITER, as shown in 
Figure 2-11.

NODE_SCOPE

NODE_ITER

YARV instructions

table: [ none ]
 args: [ none ]

Figure 2-11: Ruby stepping through an AST

At this point, there is still no code generated, but notice in Figure 2-9 
that two arrows lead from NODE_ITER: one to NODE_CALL, which represents the 
10.times call, and another to the inner block. Ruby will first continue down 
the AST and compile the nodes corresponding to the 10.times code. The 
resulting YARV code, following the same receiver-arguments-message pat-
tern we saw in Figure 2-6, is shown in Figure 2-12.

putobject
send

NODE_ITER

NODE_CALL

10
<callinfo!mid:times, argc:0,
block:block in <compiled>>

YARV instructions

method id:
times

Figure 2-12: Ruby compiles the 10.times method call.

Notice that the new YARV instructions shown in Figure 2-12 push the 
receiver (the integer object 10) onto the stack first, after which Ruby gener-
ates an instruction to execute the times method call. But notice, too, the 
block:block in <compiled> argument in the send instruction. This indicates 
that the method call also contains a block argument: my do |n| puts n end 
block. In this example, NODE_ITER has caused the Ruby compiler to include 
this block argument because the AST above shows an arrow from NODE_ITER 
to the second NODE_SCOPE.
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Ruby continues by compiling the inner block, beginning with the sec-
ond NODE_SCOPE shown at right in Figure 2-9. Figure 2-13 shows what the AST 
for that inner block looks like.

This looks simple enough—just a single function call and a single 
argument n. But notice the value for table and args in NODE_SCOPE. These 
values were empty in the parent NODE_SCOPE, but they’re set here in the inner 
NODE_SCOPE. As you might guess, these values indicate the presence of the 
block parameter n. 

etc.
NODE_SCOPE

table: n
 args: 1

... do |n|
  puts n
end

NODE_FCALL

method id:
puts

10.times do |n|
  puts n
end

NODE_ITER

NODE_DVAR
variable id:

n

Figure 2-13: The branch of the AST for the contents of the block

Also notice that the Ruby parser created NODE_DVAR instead of NODE_LIT, 
which we saw earlier in Figure 2-9. This is the case because n is not just a 
literal string; it’s a block parameter passed in from the parent scope. 

From a relatively high level, Figure 2-14 shows how Ruby compiles the 
inner block.
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How Ruby I t e r at e s Thr ough t he AST 

Let’s look more closely at how Ruby actually iterates through the AST structure, con-
verting each node into YARV instructions. The MRI C source code file that imple-
ments the Ruby compiler is called compile.c. To learn how the code in compile.c works, 
we first look for the function iseq_compile_each. Listing 2-3 shows the beginning of 
that function.

/**
  compile each node

  self:  InstructionSequence
  node:  Ruby compiled node
  poped: This node will be poped
 */
static int
iseq_compile_each(rb_iseq_t *iseq, LINK_ANCHOR *ret, NODE * node,
                  int poped)
{

Listing 2-3: This C function compiles each node in the AST.

This function is very long, with a very, very long switch statement that runs to 
thousands of lines! The switch statement branches based on the type of the current 
AST node and generates the corresponding YARV code. Listing 2-4 shows the start 
of the switch statement v.

u type = nd_type(node);
--snip--

v switch (type) {

Listing 2-4: This C switch statement looks at the type of each AST node.

In this statement, node u is a parameter passed into iseq_compile_each, and 
nd_type is a C macro that returns the type from the given node structure.

Now we’ll look at how Ruby compiles function or method call nodes into YARV 
instructions using the receiver-arguments-function call pattern. First, search compile.c 
for the C case statement shown in Listing 2-5.

case NODE_CALL:
case NODE_FCALL:
case NODE_VCALL:{                /* VCALL: variable or call */
  /*
    call:  obj.method(...)
    fcall: func(...)
    vcall: func
  */

Listing 2-5: This case of the switch compiles method calls in your Ruby code.

NODE_CALL represents a real method call (like 10.times), NODE_FCALL is a function call 
(like puts), and NODE_VCALL is a variable or function call. Skipping over some of the C 
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code details (including the optional SUPPORT_JOKE code used for implementing the goto 
statement), Listing 2-6 shows what Ruby does next to compile these AST nodes.

/* receiver */
if (type == NODE_CALL) {

u     COMPILE(recv, "recv", node->nd_recv);
}
else if (type == NODE_FCALL || type == NODE_VCALL) {

v     ADD_CALL_RECEIVER(recv, nd_line(node));
}

Listing 2-6: This C code compiles the receiver value for a method call.

Here, Ruby calls either COMPILE or ADD_CALL_RECEIVER as follows:

•	 In the case of real method calls (like NODE_CALL), Ruby calls COMPILE u to recur-
sively call into iseq_compile_each again, processing the next AST node down the 
tree that corresponds to the receiver of the method call or message. This will 
create YARV instructions to evaluate whatever expression was used to specify 
the target object.

•	 If there is no receiver (NODE_FCALL or NODE_VCALL), Ruby calls ADD_CALL_RECEIVER v, 
which creates a putself YARV instruction.

Next, as shown in Listing 2-7, Ruby creates YARV instructions to push each argu-
ment of the method/function call onto the stack.

/* args */
if (nd_type(node) != NODE_VCALL) {

u     argc = setup_args(iseq, args, node->nd_args, &flag);
}
else {

v     argc = INT2FIX(0);
}

Listing 2-7: This snippet of C code compiles the arguments to every Ruby method call.

For NODE_CALL and NODE_FCALL, Ruby calls into the setup_args function u, which 
will recursively call into iseq_compile_each again as needed in order to compile each 
argument to the method/function call. For NODE_VCALL, there are no arguments, so 
Ruby simply sets argc to 0 v.

Finally, Ruby creates YARV instructions to execute the actual method or function 
call, as shown here:

ADD_SEND_R(ret, nd_line(node), ID2SYM(mid),
           argc, parent_block, LONG2FIX(flag));

This C macro will create the new send YARV instruction, which will cause the 
actual method call to occur when YARV executes it.
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putobject
send

NODE_SCOPE

NODE_SCOPE

table: n
 args: 1

putself 
getlocal
opt_send_simple

2
<callinfo!mid:puts,
argc:1, ...

10
<callinfo!mid:times,
argc:0,
block:block in <compiled>>

YARV instructions

YARV instructions

table: [ none ]
 args: [ none ]

Figure 2-14: How Ruby compiles a call to a block

You can see the parent NODE_SCOPE at the top, along with the YARV code 
from Figure 2-12. Below that I’ve listed the YARV code compiled from the 
inner block’s AST.

The key point here is that Ruby compiles each distinct scope in your 
Ruby program—methods, blocks, classes, or modules, for example—into 
a separate snippet of YARV instructions.

Experiment 2-1: Displaying YARV Instructions
One easy way to see how Ruby compiles your code is with RubyVM:: 
InstructionSequence, which gives you access to Ruby’s YARV engine from 
your Ruby program! Like the Ripper tool, its use is very straightforward, 
as you can see in Listing 2-8.

code = <<END
puts 2+2
END
puts RubyVM::InstructionSequence.compile(code).disasm

Listing 2-8: How to view the YARV instructions for puts 2+2

The challenge lies in understanding what the output actually means. 
For example, Listing 2-9 shows the output for puts 2+2.

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
u 0000 trace            1                                               (   1)

0002 putself          
0003 putobject        2
0005 putobject        2
0007 opt_plus         <callinfo!mid:+, argc:1, ARGS_SKIP>
0009 opt_send_simple  <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>

v 0011 leave            

Listing 2-9: The YARV instructions for puts 2+2
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As you can see in Listing 2-9, the output contains all of the same 
instructions from Figures 2-5 to 2-8 and two new ones: trace u and leave v. 
The trace instruction is used to implement the set_trace_func feature,1 which 
will call a given function for each Ruby statement executed in your pro-
gram. The leave function is like a return statement. The line numbers on 
the left show the position of each instruction in the bytecode array that the 
compiler actually produces.

RubyVM::InstructionSequence makes it easy to explore how Ruby compiles 
different Ruby scripts. For example, Listing 2-10 shows how to compile my 
10.times do example.

code = <<END
10.times do |n|
  puts n
end
END
puts RubyVM::InstructionSequence.compile(code).disasm

Listing 2-10: Displaying the YARV instructions for a call to a block

The output that I get now is shown below in Listing 2-11. Notice that the 
send <callinfo!mid:times YARV instruction shows block:block in <compiled> v, 
which indicates that I’m passing a block to the 10.times method call.

u == disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0006 sp: 0000 cont: 0006
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10

v 0004 send             <callinfo!mid:times, argc:0, block:block in <compiled>>
0006 leave            

w == disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0000 ed: 0011 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0011 sp: 0000 cont: 0011
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] n<Arg>     
0000 trace            256                                             (   1)
0002 trace            1                                               (   2)
0004 putself          
0005 getlocal_OP__WC__0 2
0007 opt_send_simple  <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>
0009 trace            512                                             (   3)
0011 leave                                                            (   2)

Listing 2-11: The YARV instructions for a call to a block and for the block itself

1. For Ruby 2.x, the Ruby core team recommends using TracePoint instead of set_trace_func.
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As you can see, Ruby displays the two YARV instruction snippets sepa-
rately. The first corresponds to the global scope u and the second to the 
inner block scope w.

The Local Table
In Figures 2-3 through 2-14, you may have noticed that each NODE_SCOPE ele-
ment in the AST contained information I labeled table and args. These 
values in the inner NODE_SCOPE structure contain information about the 
block’s parameter n (see Figure 2-9 on page 39).

Ruby generated the information about this block parameter during the 
parsing process. As I discussed in Chapter 1, Ruby parses the block param-
eter along with the rest of my Ruby code using grammar rules. In fact, I 
showed the specific rule for parsing block parameters back in Figure 1-30 
(page 21): opt_block_param.

Once Ruby’s compiler runs, however, the information about the block 
parameter is copied out of the AST and into another data structure called 
the local table, saved nearby the newly generated YARV instructions. Each 
snippet of YARV instructions, each scope in your Ruby program, has its own 
local table.

Figure 2-15 shows the local table attached to the YARV instructions that 
Ruby generated for the sample block code from Listing 2-2.

... do |n|
  puts n
end

putself

getlocal

opt_send_simple

2

<callinfo!mid:puts...

Local Table

[ 2] n<Arg>

YARV instructions

Figure 2-15: A snippet of YARV instructions with a local table

Notice on the right side of Figure 2-15 that Ruby has associated the 
number 2 with the block parameter n. As we’ll see in Chapter 3, the YARV 
instructions that refer to n will use this index 2. The getlocal instruction is 
an example of this. The <Arg> notation indicates that this value is an argu-
ment to the block.

As it turns out, Ruby also saves information about local variables in this 
table, hence the name local table. Figure 2-16 shows the YARV instructions 
and local table Ruby will generate when compiling a method that uses one 
local variable and takes two arguments.
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def add_two(a, b)
  sum = a+b
end

 

getlocal

getlocal

opt_plus

dup 

setlocal

4

3

<callinfo!mid:+...

2

[ 2] sum

[ 3] b<Arg>

[ 4] a<Arg>

YARV instructions Local Table

Figure 2-16: This local table contains one local variable and two arguments.

Here, you can see that Ruby lists all three values in the local table. 
As we’ll see in Chapter 3, Ruby treats local variables and method argu-
ments in the same way. (Notice that the local variable sum does not have 
the <Arg> label.)

Think of the local table as a key to help you understand what the 
YARV instructions do, similar to the legend on a map. As you can see in 
Figure 2-16, local variables have no label, but Ruby uses the following 
labels to describe different types of method and block arguments:

<Arg>	 A standard method or block argument

<Rest>	 An array of unnamed arguments that are passed together using 
a * (splat) operator

<Post>	 A standard argument that appears after the splat array

<Block>	 A Ruby proc object that is passed using the & operator

<Opt=i>	 A parameter defined with a default value. Internally, this 
value is a pointer to YARV instructions that set the default 
value. The local table does not contain the actual default 
values.

Understanding the information displayed by the local table can help 
you understand how Ruby’s complex argument syntax works and how to 
take full advantage of the language. 

To help you understand what I mean, let’s look at how Ruby com-
piles a method call that uses an array of unnamed arguments, as shown 
Listing 2-12.
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def complex_formula(a, b, *args, c)
  a + b + args.size + c
end

Listing 2-12: A method that takes standard arguments and an array of unnamed 
arguments

Here a, b, and c are standard arguments, and args is an array of other 
arguments that appear between b and c. Figure 2-17 shows how the local 
table saves all of this information.

As in Figure 2-16, <Arg> refers to a standard argument. But now Ruby 
uses <Rest> to indicate that value 3 contains the “rest” of the arguments and 
<Post> to indicate that value 2 contains the argument that appears after the 
unnamed array, the last one.

def complex_formula (a, b, *args, c)
  a + b + args.size + c
end

 

getlocal

getlocal

opt_plus

getlocal

opt_size

opt_plus

getlocal

opt_plus

5

4

<callinfo!mid:+...

3

<callinfo!mid:size...

<callinfo!mid:+...

2

<callinfo!mid:+...

[ 2] c<Post>

[ 3] args<Rest>

[ 4] b<Arg>

[ 5] a<Arg>

YARV instructions Local Table

Figure 2-17: Ruby saves information about special arguments in the local table.

Compiling Optional Arguments
As you probably know, you can make an argument optional by specifying 
a default value for it in the argument list. Later, Ruby will use the default 
value if you don’t provide a value for that argument when you call the 
method or block. Listing 2-13 shows a simple example.

def add_two_optional(a, b = 5)
  sum = a+b
end

Listing 2-13: A method that takes an optional argument
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If you provide a value for b, the method will use that value as follows: 

puts add_two_optional(2, 2)
 => 4

But if you don’t, Ruby will assign the default value of 5 to b: 

puts add_two_optional(2)
 => 7

Ruby has a bit more work to do in this situation. Where does the default 
value go? Where does the Ruby compiler put it? Figure 2-18 shows how Ruby 
generates a few extra YARV instructions during the compile process that set 
the default value.

def add_two_optional (a, b = 5)
  sum = a+b
end

 

putobject

setlocal

getlocal

getlocal

opt_plus

dup 

setlocal

5

3

4

3

<callinfo!mid:+...

2

[ 2] sum

[ 3] b<Opt=0>

[ 4] a<Arg>

YARV instructions Local Table

Figure 2-18: Ruby’s compiler generates extra code to handle optional arguments.

Ruby’s compiler generates the bolded YARV instructions, putobject and 
setlocal, to set the value of b to 5 when you call the method. (As we’ll see 
in Chapter 3, YARV will call these instructions if you don’t provide a value 
for b but skip them if you do.) You can also see that Ruby lists the optional 
argument b in the local table as b<Opt=0>. The 0 here refers to YARV instruc-
tions that set the default value.

Compiling Keyword Arguments
In Ruby 2.x, we can specify a name along with a default value for each 
method or block argument. Arguments written this way are known as 
keyword arguments. For example, Listing 2-14 shows the same argument b 
declared using Ruby 2.0’s new keyword argument syntax.
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def add_two_keyword(a, b: 5)
  sum = a+b
end

Listing 2-14: A method that takes a keyword argument

Now to provide a value for b, I need to use its name: 

puts add_two_keyword(2, b: 2)
 => 4

Or, if I don’t specify b at all, Ruby will use the default value: 

puts add_two_keyword(2)
 => 7

How does Ruby compile keyword arguments? Figure 2-19 shows Ruby 
needs to add quite a bit of additional code to the method’s YARV snippet.

def add_two_keyword (a, b: 5)
  sum = a+b
end

 

getlocal
dup 
putobject
opt_send_simple
branchunless
dup 
putobject
opt_send_simple
setlocal
jump
putobject
setlocal
pop
getlocal
getlocal
opt_plus
dup 
setlocal

3

:b
<callinfo!mid:key?...
18

:b
<callinfo!mid:delete...
4
22
5
4

5
4
<callinfo!mid:+...

2

[ 2] sum
[ 3] ?
[ 4] b
[ 5] a<Arg>

YARV instructions Local Table

Figure 2-19: The Ruby compiler generates many more instructions to handle 
keyword arguments.
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The Ruby compiler generates all of the YARV instructions in bold—
13 new instructions—to implement the keyword argument b. In Chapters 3 
and 4, I’ll cover how YARV works in detail and what these instructions actu-
ally mean, but for now, we can guess what’s going on here:

•	 In the local table, we can see a new mystery value shown as [ 3]?.

•	 To the left of Figure 2-19, new YARV instructions call the key? and 
delete methods.

Which Ruby class contains the key? and delete methods? The Hash. 
Figure 2-19 shows evidence that Ruby must implement keyword arguments 
using an internal, hidden hash object. All of these additional YARV instruc-
tions automatically add some logic to my method that checks this hash for 
the argument b. If Ruby finds the value of b in the hash, it uses it. If not, it 
uses the default value of 5. The mystery element [3]? in the local table must 
be this hidden hash object. 

Experiment 2-2: Displaying the Local Table
Along with YARV instructions, RubyVM::InstructionSequence will also dis-
play the local table associated with each YARV snippet or scope. Finding 
and understanding the local table for your code will help you to under-
stand what the corresponding YARV instructions do. In this experiment, 
we’ll look at where the local table appears in the output generated by the 
RubyVM::InstructionSequence object.

Listing 2-15 repeats Listing 2-10 from Experiment 2-1.

code = <<END
10.times do |n|
  puts n
end
END

puts RubyVM::InstructionSequence.compile(code).disasm 

Listing 2-15: Displaying the YARV instructions for a call to a block

And Listing 2-16 repeats the output we saw earlier in Experiment 2-1.

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0006 sp: 0000 cont: 0006
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10
0004 send             <callinfo!mid:times, argc:0, block:block in <compiled>>
0006 leave            
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
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== catch table
| catch type: redo   st: 0000 ed: 0011 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0011 sp: 0000 cont: 0011
|------------------------------------------------------------------------

u local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
v [ 2] n<Arg>     

0000 trace            256                                             (   1)
0002 trace            1                                               (   2)
0004 putself          
0005 getlocal_OP__WC__0 2
0007 opt_send_simple  <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>
0009 trace            512                                             (   3)
0011 leave                                                            (   2)

Listing 2-16: Along with the YARV instructions, RubyVM::InstructionSequence displays the 
local table.

Just above the YARV snippet for the inner scope—the block—we see 
information about its local table at u. This displays the total size of the 
table (size: 2), the argument count (argc: 1), and other information about 
the types of parameters (opts: 0, rest: -1, post: 0).

The second line v shows the actual contents of the local table. In this 
example, we have just one argument, n.

Listing 2-17 shows how to use RubyVM::InstructionSequence in the same 
way to compile my unnamed arguments example from Listing 2-12.

code = <<END
def complex_formula(a, b, *args, c)
  a + b + args.size + c
end
END

puts RubyVM::InstructionSequence.compile(code).disasm 

Listing 2-17: This method uses unnamed arguments with a splat operator.

And Listing 2-18 shows the output.

u == disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
0000 trace            1                                               (   1)
0002 putspecialobject 1
0004 putspecialobject 2
0006 putobject        :complex_formula
0008 putiseq          complex_formula

v 0010 opt_send_simple  <callinfo!mid:core#define_method, argc:3, ARGS_SKIP>
0012 leave            
== disasm: <RubyVM::InstructionSequence:complex_formula@<compiled>>=====

w local table (size: 5, argc: 2 [opts: 0, rest: 2, post: 1, block: -1] s0)
x [ 5] a<Arg>     [ 4] b<Arg>     [ 3] args<Rest> [ 2] c<Post>    

0000 trace            8                                               (   1)
0002 trace            1                                               (   2)
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0004 getlocal_OP__WC__0 5
0006 getlocal_OP__WC__0 4
0008 opt_plus         <callinfo!mid:+, argc:1, ARGS_SKIP>
0010 getlocal_OP__WC__0 3
0012 opt_size         <callinfo!mid:size, argc:0, ARGS_SKIP>
0014 opt_plus         <callinfo!mid:+, argc:1, ARGS_SKIP>
0016 getlocal_OP__WC__0 2
0018 opt_plus         <callinfo!mid:+, argc:1, ARGS_SKIP>
0020 trace            16                                              (   3)
0022 leave                                                            (   2)

Listing 2-18: Displaying the YARV instructions for a call to a block

The top YARV scope, around u, shows the instructions YARV uses to 
define a new method. Notice the call to core#define_method at v, an internal 
C function that YARV uses to create new Ruby methods. This corresponds 
to calling def complex_formula in my script. (I’ll discuss how Ruby implements 
methods in more detail in Chapters 5, 6, and 9.)

Notice the local table for the lower YARV snippet at w. This line now 
shows more information about the unnamed arguments (rest: 2) and the 
last standard argument following them (post: 1). Finally, the line at x 
shows the contents of the local table that I showed back in Figure 2-17.

Summary
In this chapter, we learned how Ruby compiles our code. You may think of 
Ruby as a dynamic scripting language, but, in fact, it uses a compiler just 
like C, Java, and many other programming languages. The obvious dif-
ference is that Ruby’s compiler runs automatically behind the scenes; you 
never need to worry about compiling your Ruby code.

We’ve learned that Ruby’s compiler works by iterating through the AST 
produced by the tokenizing and parsing processes, generating a series of 
bytecode instructions along the way. Ruby translates your code from Ruby 
into a language tailored for the YARV virtual machine, and it compiles 
every scope or section of your Ruby program into a different snippet or set 
of these YARV instructions. Every block, method, lambda, or other scope in 
your program has a corresponding set of bytecode instructions.

We’ve also seen how Ruby handles different types of arguments. We 
were able to use the local table as a key or legend for understanding which 
YARV instructions accessed which arguments or local variables. And we 
saw how Ruby’s compiler generates additional, special YARV instructions 
to handle optional and keyword parameters.

In Chapter 3, I’ll begin to explain how YARV executes the instructions 
produced by the compiler—that is, how YARV executes your Ruby program.



YARV is not just a 
stack machine—it’s a 
double-stack machine!



3
H o w  R u b y  E x e c u t e s  

Y o u r  C o d e

Now that Ruby has tokenized, parsed, and compiled 
your code, it’s finally ready to execute it. But just how 
does it do that? We’ve seen how the Ruby compiler 
creates YARV (Yet Another Ruby Virtual Machine) 
instructions, but how does YARV actually run them? 
How does it track variables and return values and 
arguments? How does it implement if statements and 
other control structures?

Koichi Sasada and the Ruby core team designed YARV to use a stack 
pointer and a program counter—that is, to function like your computer’s 
actual microprocessor. In this chapter, I’ll examine the basics of YARV 
instructions; namely, how they pop arguments off of and push return 
values onto an internal stack. We’ll also see how YARV keeps track of 
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your Ruby call stack along with its own internal stack. I’ll explain how 
Ruby accesses local variables and how it can find variables farther down 
your call stack using dynamic access. We’ll finish with a look at how Ruby 
implements special variables. In Chapter 4 I’ll continue the discussion 
of YARV by examining how it implements control structures and method 
dispatch. 

YARV’s Internal Stack and Your Ruby Stack
As we’ll see in a moment, YARV uses a stack internally to track intermedi-
ate values, arguments, and return values. YARV is a stack-oriented virtual 
machine.

In addition to its own internal stack, YARV keeps track of your Ruby 
program’s call stack, recording which methods call which other methods, 
functions, blocks, lambdas, and so on. In fact, YARV is not just a stack 
machine—it’s a double-stack machine! It has to track the arguments and 
return values not only for its own internal instructions but also for your 
Ruby program.

Figure 3-1 shows YARV’s basic registers and internal stack.
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YARV’s Internal Stack and Your Ruby Stack  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  56

Stepping Through How Ruby Executes a Simple Script  .  .  .  .  .  .  .  .  .  .  58

Executing a Call to a Block  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  61

Taking a Close Look at a YARV Instruction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  63

Experiment 3-1: Benchmarking Ruby 2.0 and Ruby 1.9 vs. Ruby 1.8 . . . . .    65

Local and Dynamic Access of Ruby Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  67

Local Variable Access .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  67

Method Arguments Are Treated Like Local Variables .  .  .  .  .  .  .  .  .  .  .  .  70

Dynamic Variable Access  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  71

Climbing the Environment Pointer Ladder in C  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  74

Experiment 3-2: Exploring Special Variables . . . . . . . . . . . . . . . . . . . . . . .                      75

A Definitive List of Special Variables .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  79

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  81



How Ruby Executes Your Code    57

trace
putself

opt_plus
opt_send_simple <callinfo!mid:puts...
leave

YARV
internal
stack

YARV instructions

2

2

self

rb_control_frame_t

sp

pc

self

type

putobject 2
putobject 2

SP

PC

Figure 3-1: Some of YARV’s internal registers, including the program counter and stack 
pointer

YARV’s internal stack is on the left. 
The SP label is the stack pointer, or the 
location of the top of the stack. On the 
right are the instructions that YARV is 
executing. PC is the program counter, or the 
location of the current instruction. 

You can see the YARV instructions 
that Ruby compiled from the puts 2+2 
example on the right side of Figure 3-1. 
YARV stores both the SP and PC registers 
in a C structure called rb_control_frame_t, 
along with a type field, the current value 
of Ruby’s self variable, and some other 
values not shown here.

At the same time, YARV maintains 
another stack of these rb_control_frame_t 
structures, as shown in Figure 3-2.

This second stack of rb_control_
frame_t structures represents the path 
that YARV has taken through your Ruby 
program, and YARV’s current location. 
In other words, this is your Ruby call 
stack—what you would see if you ran 
puts caller. 

The CFP pointer indicates the control frame pointer. Each stack frame in 
your Ruby program stack contains, in turn, a different value for the self, PC, 
and SP registers, as shown in Figure 3-1. The type field in each rb_control_
frame_t structure indicates the type of code running at this level in your 
Ruby call stack. As Ruby calls into the methods, blocks, or other structures 
in your program, the type might be set to METHOD, BLOCK, or one of a few other 
values.

etc...

rb_control_frame_t

rb_control_frame_t

rb_control_frame_t

rb_control_frame_t

CFP

[EVAL]

[METHOD]

[BLOCK]

[METHOD]

Figure 3-2: YARV keeps track of 
your Ruby call stack using a series 
of rb_control_frame_t structures.
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Stepping Through How Ruby Executes a Simple Script
In order to help you understand this a bit better, here are a couple of 
examples. I’ll begin with the simple 2+2 example from Chapters 1 and 2, 
shown again in Listing 3-1.

puts 2+2

Listing 3-1: A one-line Ruby program that we’ll execute as an example

This one-line Ruby script doesn’t have a Ruby call stack, so I’ll focus on 
the internal YARV stack for now. Figure 3-3 shows how YARV will execute 
this script, beginning with the first instruction, trace.

PC

SP

trace
putself

opt_plus

leave

putobject 2
putobject 2

opt_send_simple <callinfo!mid:puts,
argc:1...

Figure 3-3: On the left is YARV’s internal stack, and on the right is the compiled version of 
my puts 2+2 program.

As you can see in Figure 3-3, YARV starts the program counter (PC) 
at the first instruction, and initially the stack is empty. Now YARV will 
execute the trace instruction, incrementing the PC register, as shown in 
Figure 3-4.

SP

PC

trace
putself

opt_plus

leave

putobject 2
putobject 2

opt_send_simple <callinfo!mid:puts,
argc:1...

Figure 3-4: Ruby executes the first instruction, trace.

Ruby uses the trace instruction to support the set_trace_func feature. If 
you call set_trace_func and provide a function, Ruby will call it each time it 
executes a line of Ruby code.

Next, YARV executes putself and pushes the current value of self onto 
the stack, as shown in Figure 3-5.



How Ruby Executes Your Code    59

SP
self

PC

trace
putself

opt_plus

leave

putobject 2
putobject 2

opt_send_simple <callinfo!mid:puts,
argc:1...

Figure 3-5: putself pushes the top self value onto the stack.

Because this simple script contains no Ruby objects or classes, the 
self pointer is set to the default top self object. This is an instance of the 
Object class that Ruby automatically creates when YARV starts. It serves 
as the receiver for method calls and the container for instance variables in 
the top-level scope. The top self object contains a single, predefined to_s 
method, which returns the string main. You can call this method by running 
the following command in the console:

$ ruby -e 'puts self'
 => main

YARV will use this self value on the stack when it executes the opt_send_
simple instruction: self is the receiver of the puts method because I didn’t 
specify a receiver for this method call.

Next, YARV executes putobject 2. It pushes the numeric value 2 onto the 
stack and increments the PC again, as shown in Figure 3-6.

SP
2

self

PC

trace
putself

opt_plus

leave

putobject 2
putobject 2

opt_send_simple <callinfo!mid:puts,
argc:1...

Figure 3-6: Ruby pushes the value 2 onto the stack, the receiver of the + method.

 This is the first step of the receiver (arguments) operation pattern 
described in “How Ruby Compiles a Simple Script” on page 34. First, 
Ruby pushes the receiver onto the internal YARV stack. In this example, 
the Fixnum object 2 is the receiver of the message/method +, which takes a 
single argument, also a 2. Next, Ruby pushes the argument 2, as shown in 
Figure 3-7.



60   Chapter 3

SP
2

2

self

PC

trace
putself

opt_plus

leave

putobject 2
putobject 2

opt_send_simple <callinfo!mid:puts,
argc:1...

Figure 3-7: Ruby pushes another value 2 onto the stack, the argument of the + method.

Finally, Ruby executes the + operation. In this case, opt_plus is an opti-
mized instruction that will add two values: the receiver and the argument, 
as shown in Figure 3-8.

SP

4
PC

trace
putself

opt_plus

leave

putobject 2
putobject 2

opt_send_simple <callinfo!mid:puts,
argc:1...

self

Figure 3-8: The opt_plus instruction calculates 2 + 2 = 4.

As you can see in Figure 3-8, the opt_plus instruction leaves the result, 4, 
at the top of the stack. Now Ruby is perfectly positioned to execute the puts 
function call: The receiver self is first on the stack, and the single argu-
ment, 4, is at the top of the stack. (I’ll describe how method lookup works 
in Chapter 6.)

Next, Figure 3-9 shows what happens when Ruby executes the puts 
method call. As you can see, the opt_send_simple instruction leaves the return 
value, nil, at the top of the stack. Finally, Ruby executes the last instruction, 
leave, which finishes the execution of our simple, one-line Ruby program. 
Of course, when Ruby executes the puts call, the C code implementing the 
puts function will actually display the value 4 in the console output.

SP
nil PC

trace
putself

opt_plus

leave

putobject 2
putobject 2

opt_send_simple <callinfo!mid:puts,
argc:1...

Figure 3-9: Ruby calls the puts method on the top self object.
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Executing a Call to a Block
Now let’s see how the Ruby call stack works. In Listing 3-2, a slightly more 
complicated example, you see a simple Ruby script that calls a block 10 
times, printing out a string.

10.times do
  puts "The quick brown fox jumps over the lazy dog."
end

Listing 3-2: This example program calls a block 10 times.

Let’s skip over a few steps and start where YARV is about to call the 
times method, as shown in Figure 3-10.

CFP

rb_control_frame_t

[EVAL]

rb_control_frame_t

[TOP]

trace
putobject 
send

leave

10
<callinfo!mid:times, argc:0,
block:block in <compiled>>

Figure 3-10: Every Ruby program starts with these two control frames.

On the left side of the diagram are the YARV instructions that Ruby is 
executing. On the right, you see two control frame structures. 

At the bottom of the stack, you see a control frame with the type set to 
TOP. Ruby always creates this frame first when starting a new program. At 
the top of the stack, at least initially, a frame of type EVAL corresponds to the 
top level or main scope of the Ruby script.

Next, Ruby calls the times message on the Fixnum object 10—the receiver 
of the times message. When it does so, it adds a new level to the control frame 
stack, as shown in Figure 3-11.

[ C function - int_dotimes ]

rb_control_frame_t

[EVAL]

rb_control_frame_t

[CFUNC]

rb_control_frame_t

[TOP]

trace
putobject 
send

leave

10
<callinfo!mid:times, argc:0,
block:block in <compiled>>

CFP

Figure 3-11: Ruby uses the CFUNC frame when you call built-in functions implemented in C.
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This new entry (at the right of Figure 3-11) represents a new level in the 
program’s Ruby call stack, and the CFP pointer has moved up to point at the 
new control frame structure. Also, notice that because the Integer#times 
method is built into Ruby, there are no YARV instructions for it. Instead, 
Ruby will call some internal C code to pop the argument 10 off the stack 
and call the provided block 10 times. Ruby gives this control frame a type 
of CFUNC.

Finally, Figure 3-12 shows what the YARV and control frame stacks will 
look like if we interrupt the program inside the inner block.

CFP

[ C function - int_dotimes ]

trace
putself 

leave

rb_control_frame_t

[EVAL]

rb_control_frame_t

[CFUNC]

rb_control_frame_t

[BLOCK]

rb_control_frame_t

[TOP]

putstring "The quick brown fox..."
opt_send_simple <callinfo!mid:puts,

argc:1...

trace

leave

putobject 10
send <callinfo!mid:times, argc:0,

block:block in <compiled>>

Figure 3-12: The CFP stack when we pause the code from Listing 3-2 inside the block

There will now be four entries, as follows, in the control frame stack on 
the right:

•	 The TOP and EVAL frames that Ruby always starts with

•	 The CFUNC frame for the call to 10.times

•	 A BLOCK frame at the top of the stack that corresponds to the code run-
ning inside the block
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Ta king a Close Look at a YA RV Ins t ruc t ion

As it does with most other things, Ruby implements all YARV instructions, like putobject 
or send, using C code that is then compiled into machine language and executed 
directly by your hardware. Strangely, however, you won’t find the C source code for 
each YARV instruction in a C source file. Instead, the Ruby core team put the YARV-
instruction C code in a single large file called insns.def. Listing 3-3 shows a small 
snippet from insns.def, where Ruby implements the putself YARV instruction internally.

/**
  @c put
  @e put self.
  @j スタックに self をプッシュする。
 */
DEFINE_INSN
putself
()
()
(VALUE val)
{

u   val = GET_SELF();
}

Listing 3-3: The definition of the putself YARV instruction

This doesn’t look like C at all and, in fact, most of it is not. Instead, what 
you see here is a bit of C code (val = GET_SELF()) at u that appears below a call 
to DEFINE_INSN. 

It’s not hard to figure out that DEFINE_INSN stands for define instruction. In fact, 
Ruby processes and converts the insns.def file into real C code during the Ruby build 
process, similar to the way that Bison converts the parse.y file into parse.c, as shown 
in Figure 3-13.

Ruby Build Time

Pre-Process
YARV Instruction

Definitions
(insns.def file)

YARV C Code
(vm.inc file)

Figure 3-13: Ruby compiles the YARV-instruction definition script insns.def into C code during 
the Ruby build process.

continued
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Ruby processes the insns.def file using Ruby: The build process first uses Ruby1 
to generate vm.inc and a few similar files. Then it uses these C source code files to 
compile Miniruby, a small version of Ruby, which later helps compile the complete 
version of Ruby. The other generated C files are related to encodings and C exten-
sion libraries.

Listing 3-4 shows what the snippet for putself looks like in vm.inc once Ruby has 
processed it.

INSN_ENTRY(putself){
{
  VALUE val;
  DEBUG_ENTER_INSN("putself");

u   ADD_PC(1+0);
  PREFETCH(GET_PC());
  #define CURRENT_INSN_putself 1
  #define INSN_IS_SC()     0
  #define INSN_LABEL(lab)  LABEL_putself_##lab
  #define LABEL_IS_SC(lab) LABEL_##lab##_##t
  COLLECT_USAGE_INSN(BIN(putself));
{
#line 282 "insns.def"

v     val = GET_SELF();
#line 408 "vm.inc"
  CHECK_VM_STACK_OVERFLOW(REG_CFP, 1);

w   PUSH(val);
#undef CURRENT_INSN_putself
#undef INSN_IS_SC
#undef INSN_LABEL
#undef LABEL_IS_SC
  END_INSN(putself);}}}

Listing 3-4: The definition of putself is transformed into this C code during the Ruby build 
process.

The single line val = GET_SELF() appears in the middle of the listing at v. Above 
and below this line, Ruby calls a few different C macros to do various things, like 
add 1 to the program counter (PC) register at u and push the val value onto the 
YARV internal stack at w. If you look through vm.inc, you’ll see this same C code 
repeated over and over again for the definition of each YARV instruction.

The vm.inc C source code file, in turn, is included by the vm_exec.c file, which 
contains the primary YARV instruction loop that steps through the YARV instruc-
tions in your program one after another and calls the C code corresponding to 
each one.

1. That is, Ruby is required to build Ruby. This design is based on the assumption that Ruby developers 
have Ruby in their development environments. The public source distribution includes the generated 
vm.inc, so you do not need Ruby if you use it.



How Ruby Executes Your Code    65

Experiment 3-1: Benchmarking Ruby 2.0 and 
Ruby 1.9 vs. Ruby 1.8
The Ruby core team introduced the YARV virtual machine with Ruby 1.9. 
Earlier versions of Ruby executed programs by directly stepping through 
the nodes of the abstract syntax tree (AST). There was no compile step: Ruby 
just tokenized, parsed, and then immediately executed your code. 

Ruby 1.8 worked just fine. In fact, for years it was the most commonly 
used version. Then why did the Ruby core team do all of the extra work 
required to write a compiler and a new virtual machine? Speed. Executing 
a compiled Ruby program using YARV is much faster than walking through 
the AST directly.

How much faster is YARV? Let’s take a look! In this experiment, we’ll 
measure how much faster Ruby 2.0 and 1.9 are compared to Ruby 1.8 by 
executing the very simple Ruby script shown in Listing 3-5.

i = 0
while i < ARGV[0].to_i
  i += 1
end

Listing 3-5: A simple test script for benchmarking Ruby 2.0 and Ruby 1.9 vs. Ruby 1.8

This script receives a count value from the command line via the ARGV 
array and then just iterates in a while loop counting up to that value. This 
Ruby script is very, very simple: By measuring the time it takes to execute 
this script for different values of ARGV[0], we should get a good sense of 
whether executing YARV instructions is actually faster than iterating over 
AST nodes. (There are no database calls or other external code involved.)

We can use the Unix time command to measure how long it takes Ruby 
to iterate one time:

$ time ruby benchmark1.rb 1   
ruby benchmark1.rb 1  0.02s user 0.00s system 92% cpu 0.023 total

ten times:

$ time ruby benchmark1.rb 10
ruby benchmark1.rb 10  0.02s user 0.00s system 94% cpu 0.027 total

and so on.
Figure 3-14 shows a plot of the measured times on a logarithmic scale 

for Ruby 1.8.7, 1.9.3, and 2.0.
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Figure 3-14: Performance of Ruby 1.8.7 vs. Ruby 1.9.3 and Ruby 2.0; time (in seconds) vs. 
number of iterations on a logarithmic scale

Looking at the chart, you can see that for short-lived processes, such 
as loops with a small number of iterations (see the left side of Figure 3-14), 
Ruby 1.8.7 is actually faster than Ruby 1.9.3 and 2.0 because there is no 
need to compile the Ruby code into YARV instructions. Instead, after 
tokenizing and parsing the code, Ruby 1.8.7 immediately executes it. The 
time difference between Ruby 1.8.7 and Ruby 1.9.3 and 2.0 at the left side 
of the chart, about 0.01 seconds, tells us how long it takes Ruby 1.9.3 or 
2.0 to compile the script into YARV instructions. You can also see that 
Ruby 2.0 is actually a bit slower than Ruby 1.9.3 for short loops.

However, after about 11,000 iterations, Ruby 1.9.3 and 2.0 are faster. 
This crossover occurs when the additional speed provided by executing 
YARV instructions begins to pay off and make up for the additional time 
spent compiling. For long-lived processes, such as loops with a large number 
of iterations (see the right side of Figure 3-14), Ruby 1.9 and 2.0 are about 
4.25 times faster! Also, we can see that Ruby 2.0 and 1.9.3 execute YARV 
instructions at exactly the same speed for many iterations.

This speed up doesn’t look like much on the logarithmic chart in 
Figure 3-14, but notice what happens if we redraw the right side of this 
chart using a linear scale instead, as shown in Figure 3-15.
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Figure 3-15: Performance of Ruby 1.8.7 vs. Ruby 1.9.3 vs. Ruby 2.0; time (in seconds) for 
10 or 100 million iterations on a linear scale

The difference is dramatic! Executing this simple Ruby script using 
Ruby 1.9.3 or Ruby 2.0 with YARV is about 4.25 times faster than it is 
using Ruby 1.8.7 without YARV.

Local and Dynamic Access of Ruby Variables
In the previous section, we saw how Ruby maintained an internal stack used 
by YARV as well as your Ruby program’s call stack. But something obvious 
was missing from both of the code examples: variables. Neither script used 
any Ruby variables. A more realistic example program would have used vari-
ables many times. How does Ruby handle variables internally? And where 
are they stored?

Ruby stores all of the values you save in variables on YARV’s stack, 
along with the parameters to and return values from the YARV instruc-
tions. However, accessing these variables is not so simple. Internally, Ruby 
uses two very different methods for saving and retrieving a value you save 
in a variable: local access and dynamic access.

Local Variable Access
Whenever you make a method call, Ruby sets aside some space on the YARV 
stack for any local variables declared inside the method you are calling. 
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Ruby knows how many variables you are using by consulting the local table 
created for each method during the compilation step discussed in “The 
Local Table” on page 46.

For example, suppose we write the silly Ruby function you see in 
Figure 3-16.

SP

Variables
special

def display_string

end

str

svar/cref

  str = "Local access."
  puts str

Figure 3-16: An example Ruby script that uses a local variable

The Ruby code is at the left of the figure; on the right is a diagram 
showing the YARV stack and stack pointer. You can see that Ruby stores the 
variables on the stack just under the stack pointer. (Notice that a space is 
reserved for the str value on the stack, three slots under SP, at SP-3.)

Ruby uses svar/cref to contain one of two things: either a pointer to a 
table of the special variables in the current method (values such as $! for 
last exception message or $& for last regular expression match) or to the current 
lexical scope. In this context, lexical scope indicates which class or module 
you are currently adding methods to. (In Experiment 3-2 we’ll explore 
special variables in more detail, and I’ll discuss lexical scope further in 
Chapter 6.) Ruby uses the first slot—the special variable—to track informa-
tion related to blocks. (More in a moment when we discuss dynamic vari-
able access.)

When the example code saves a value into str, Ruby just needs to write 
the value into that space on the stack, as shown in Figure 3-17.

def display_string

end SP

EPspecial

str

svar/cref

  str = "Local access."
  puts str

Figure 3-17: Ruby saves local variables on its stack near the  
environment pointer (EP).

To implement this internally, YARV uses another pointer similar to the 
stack pointer, called the EP or environment pointer. This points to where the 
local variables for the current method are located on the stack. Initially, EP 
is set to SP-1. Later on, the value of SP will change as YARV executes instruc-
tions, while the EP value will normally remain constant.

Figure 3-18 shows the YARV instructions that Ruby compiled my 
display_string function into.
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putstring
setlocal_OP__WC__0
putself 
getlocal_OP__WC__0
opt_send_simple

"Local access."

special

str

svar/cref

"Local access."
2

2
<callinfo!mid:puts,
argc:1

SP

EP

Figure 3-18: The display_string method compiled into YARV instructions

Ruby uses the setlocal YARV instruction to set the value of a local 
variable. However, instead of setlocal in Figure 3-18, I show an instruction 
called setlocal_OP__WC__0. 

As it turns out, beginning with version 2.0, Ruby uses an optimized 
instruction with this confusing name instead of the simple setlocal. The 
difference is that Ruby 2.0 includes one of the parameters of the instruc-
tion, 0, in the instruction name itself. 

Internally, Ruby 2.0 calls this the operand optimization. (In the opti-
mized instruction name, OP stands for operand and WC for wildcard.) In 
other words, getlocal_OP__WC__0 is equivalent to getlocal *, 0, and setlocal_
OP__WC__0 is the same as setlocal *, 0. The instruction now requires only one 
parameter, as indicated by *. This trick allows Ruby 2.0 to save a bit of time 
because it doesn’t need to pass the 0 argument separately.

But to keep things simple, let’s ignore the operand optimization. 
Figure 3-19 repeats the YARV instructions for my example but shows 
getlocal and setlocal with the second operand listed normally.

putstring
setlocal
putself
getlocal
opt_send_simple

"Local access."
2, 0

2, 0
<callinfo!mid:puts,
argc:1

"Local access."

special

str

svar/cref

SP

EP

Figure 3-19: The compiled version of display_string shown without operand optimization

This a bit easier to understand. As you can see, first the putstring instruc-
tion saves the Local access string on top of the stack, incrementing the SP 
pointer. Then, YARV uses the setlocal instruction to get the value at the top 
of the stack and save it in the space allocated on the stack for the str local 
variable. The two dashed arrows on the left side of Figure 3-19 show the 
setlocal instruction copying the value. This type of operation is called local 
variable access.
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To determine which variable to set, setlocal uses the EP pointer and 
the numerical index provided as the first parameter. In this example, that 
would be address of str = EP-2. We’ll discuss what the second parameter, 0, 
means in “Dynamic Variable Access” on page 71.

Next, for the call to puts str, Ruby uses the getlocal instruction, as 
shown in Figure 3-20.

putstring
setlocal
putself
getlocal
opt_send_simple

"Local access."
2, 0

2, 0
<callinfo!mid:puts,
argc:1

self

"Local access."

special

str

svar/cref

SP

EP

Figure 3-20: Getting the value of a local variable using getlocal

Here, Ruby has pushed the string value back onto the top of the stack, 
where it can be used as an argument for the call to the puts function. Again, 
the first parameter to getlocal, 2, indicates which local variable to access. 
Ruby uses the local table for this snippet at compile time to find out 2 cor-
responds to the variable str.

Method Arguments Are Treated Like Local Variables
Passing in a method argument works the same way as accessing a local vari-
able, as shown in Figure 3-21.

def display_string(str)

end
SP

Variables

Arguments

  puts str

Figure 3-21: Ruby stores method arguments on the stack just like  
local variables.

 Method arguments are essentially the same as local variables. The only 
difference between the two is that the calling code pushes the arguments 
onto the stack before the method call even occurs. In this example there 
are no local variables, but the single argument appears on the stack just like 
a local variable, as shown in Figure 3-22.
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def display_string(str)

end
SP

EPspecial

str

svar/cref

  puts str

Figure 3-22: The calling code saves the argument values before the  
method is called.

Dynamic Variable Access
Now let’s see how dynamic variable access works and what that special value 
is. Ruby uses dynamic access when you use a variable that’s defined in a dif-
ferent scope—for example, when you write a block that references values in 
the surrounding code. Listing 3-6 shows an example.

def display_string
  str = "Dynamic access."
  10.times do
    puts str
  end
end

Listing 3-6: The code inside the block accesses str in the surrounding method.

Here, str is a local variable in display_string. As you can see in 
Figure 3-23, Ruby will save str using the setlocal instruction in just 
the same way we saw in Figure 3-18. 

def display_string

end

SP

special

str

svar/cref

  str = "Dynamic access."
  10.times do

end
    puts str

Figure 3-23: Ruby saves the value of the str local variable on the  
stack as usual.

Next, Ruby will call the 10.times method, passing a block in as an argu-
ment. Let’s step through the process of calling a method with a block. 
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Figure 3-24 shows the same process we saw in Figures 3-10, 3-11, and 3-12 
but with more details about YARV’s internal stack.

def display_string

end
10

SP

special

str

svar/cref

special rb_block_t

svar/cref
  10.times do
  str = "Dynamic access."

end
    puts str

Figure 3-24: When Ruby calls a method passing in a block, it saves a pointer to a new 
rb_block_t structure as the special value in the new stack frame.

Notice the value 10 on the stack: This is the actual receiver of the times 
method. Notice too that Ruby has created a new stack frame with svar/cref 
and special above the value 10 for the C code that implements Integer#times 
to use. Because we passed a block into the method call, Ruby saves a 
pointer to this block in the special variable in the new stack frame. Each 
frame on the YARV stack corresponding to a method call tracks whether 
there was a block argument using this special variable. (I’ll discuss blocks 
and the rb_block_t structure in more detail in Chapter 8.)

Now the Integer#times method yields to or calls the block’s code 10 times. 
Figure 3-25 shows how the YARV stack appears when Ruby is executing the 
code inside the block.

SP

10

special

str

svar/cref

svar/cref

special

special

EP

Previous EP

svar/cref

def display_string

end

  10.times do
  str = "Dynamic access."

end
    puts str

Figure 3-25: How YARV’s stack would appear if we halted execution  
inside the block

Just as we saw in Figures 3-17 through 3-22, Ruby sets EP to point to the 
location of the special value in each stack frame. Figure 3-25 shows one 
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value of EP for the new stack frame used by the block near the top of the 
stack and a second value of EP in the original method’s stack frame near 
the bottom. In Figure 3-25 this second pointer is labeled Previous EP.

Now, what happens when Ruby executes the puts str code inside the 
block? Ruby needs to obtain the value of the local variable str and pass it 
to the puts function as an argument. But notice in Figure 3-25 that str is 
located farther down the stack. It’s not a local variable inside the block; 
rather, it’s a variable in the surrounding method, display_string. How does 
Ruby obtain the value from farther down the stack while executing code 
inside the block?

This is where dynamic variable access comes in and why Ruby needs 
those special values in each stack frame. Figure 3-26 shows how dynamic 
variable access works. 

putself
getlocal 
opt_send_simple

2, 1
...

putstring "Dynamic access."
setlocal 2, 0 
putobject 10
send <callinfo!mid:times,
  argc:0,
  block:block in display_string

etc...

"Dynamic access."

self

special

10

svar/cref

special

str

svar/cref

special

svar/cref

SP

EP

Previous EP

Figure 3-26: Ruby using dynamic variable access to obtain the value of str from farther 
down the stack

The dashed arrows indicate dynamic variable access: The getlocal 
YARV instruction copies the value of str from the lower stack frame (from 
the parent or outer Ruby scope) to the top of the stack, where the block can 
access it. Notice how the EP pointers form a kind of ladder that Ruby can 
climb to access the local variables in the parent scope, the grandparent 
scope, and so on.

In the getlocal 2, 1 call in Figure 3-26, the second parameter, 1, tells 
Ruby where to find the variable. In this example, Ruby will follow the lad-
der of EP pointers one level down the stack to find str. That is, 1 means step 
once from the block’s scope to the surrounding method’s scope.
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Cl imbing t he E n v ironme n t Poin t er  L a dder  in C

Let’s look at the actual C implementation of getlocal. As it does with most YARV 
instructions, Ruby implements getlocal in the insns.def code file, using the code 
shown in Listing 3-8.

/**
  @c variable
  @e Get local variable (pointed by `idx' and `level').
     'level' indicates the nesting depth from the current block.
  @j level, idx で指定されたローカル変数の値をスタックに置く。
     level はブロックのネストレベルで、何段上かを示す。
 */
DEFINE_INSN
getlocal
(lindex_t idx, rb_num_t level)
()
(VALUE val)
{
    int i, lev = (int)level;

u     VALUE *ep = GET_EP();

    for (i = 0; i < lev; i++) {
v         ep = GET_PREV_EP(ep);

    }
w     val = *(ep - idx);

}

Listing 3-8: The C implementation of the getlocal YARV instruction

First, the GET_EP macro u returns the EP from the current scope. (This macro is 
defined in the vm_insnhelper.h file along with a number of other macros related to 

Listing 3-7 shows another example of dynamic variable access.

def display_string
  str = "Dynamic access."
  10.times do
    10.times do
      puts str
    end
  end
end

Listing 3-7: In this example, Ruby would step two levels down the stack to find str using 
dynamic variable access.

If I had two nested blocks, as in Listing 3-7, Ruby would have used 
getlocal 2, 2 instead of getlocal 2, 1.
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YARV instructions.) Next, Ruby iterates over the EP pointers, moving from the current 
to the parent scope and then from the parent to the grandparent scope by repeatedly 
dereferencing the EP pointers. Ruby uses the GET_PREV_EP macro at v (also defined in 
vm_insnhelper.h) to move from one EP to another. The level parameter tells Ruby how 
many times to iterate or how many rungs of the ladder to climb.

Finally, Ruby obtains the target variable using the idx parameter at w, which is 
the index of the target variable. As a result, this line of code gets the value from the 
target variable.

val = *(ep – idx);

This code means the following:

•	 Start from the address of the EP for the target scope ep, obtained previously 
from the GET_PREV_EP iterations.

•	 Subtract idx from this address. The integer value idx gives getlocal the index of 
the local variable that you want to load from the local table. In other words, it 
tells getlocal how far down the stack the target variable is located.

•	 Get the value from the YARV stack at the adjusted address.

Therefore, in the call to getlocal in Figure 3-26, YARV will take the EP from the 
scope one level down on the YARV stack and subtract the index value str (in this 
case, 2) to obtain a pointer to the str variable.

getlocal 2, 1

Experiment 3-2: Exploring Special Variables
In Figures 3-16 through 3-26, I showed you a value called svar/cref in the 
EP-1 position on the stack. What are these two values, and how can Ruby 
save two values in one location on the stack? For that matter, why does it 
do this? Let’s find out.

Usually, the EP-1 slot in the stack will contain the svar value, which is 
a pointer to a table of any special variables defined in this stack frame. In 
Ruby the term special variables refers to values that Ruby automatically cre-
ates as a matter of convenience, based on the environment or on recent 
operations. For example, Ruby sets $* to the ARGV array and $! to the last 
exception raised.

All special variables begin with the dollar sign ($) character, which usu-
ally indicates a global variable. Does that mean that special variables are 
global variables? If so, then why does Ruby save a pointer to them on the 
stack? 
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To answer this question, let’s create a simple Ruby script to match a 
string using a regular expression.

/fox/.match("The quick brown fox jumped over the lazy dog.\n")
puts "Value of $& in the top level scope: #{$&}"

Here I match the word fox in the string using a regex, and then I print 
the matching string using the $& special variable. Here’s the output I get 
running this at the console.

$ ruby regex.rb
Value of $& in the top level scope: fox

Listing 3-9 shows another example, this time searching for the same 
string twice: first in the top-level scope and then again from inside a 
method call.

str = "The quick brown fox jumped over the lazy dog.\n"
u /fox/.match(str)

def search(str)
v   /dog/.match(str)
w   puts "Value of $& inside method: #{$&}"

end
search(str)

x puts "Value of $& in the top level scope: #{$&}"

Listing 3-9: Referring to $& from two different scopes

This is simple Ruby code, but it still may be a bit confusing. Here’s how 
this works:

•	 We search the string in the top scope for fox at u. This matches and 
saves fox into the $& special variable.

•	 We call the search method and search for dog at v. I immediately print 
the match using the same $& variable inside the method at w.

•	 Finally, we return to the top-level scope and print the value of $& 
again at x.

Running this test gives the following output.

$ ruby regex_method.rb
Value of $& inside method: dog
Value of $& in the top level scope: fox
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This is what we expect, but consider the following for a moment. The 
$& variable is obviously not global because it has different values at different 
places in my Ruby script. Ruby preserves the value of $& from the top-level 
scope when executing the search method, which allows me to print the match-
ing word fox from the original search. Ruby provides for this behavior by 
saving a separate set of special variables at each level of the stack using the 
svar value, as shown in Figure 3-27.

str

special

str

svar

svar

special

$& ="dog" etc...

$& ="fox" etc...

Method
Scope

Top-Level
Scope

EP

Previous EP

Figure 3-27: Each stack frame has its own set of special variables.

Notice that Ruby saved the fox string in a table referred to by the svar 
pointer for the top-level scope and saved the dog string in a different table 
for the inner-method scope. Ruby finds the proper special variable table 
using the EP pointer for each stack frame.

Ruby saves actual global variables (variables you define using a dol-
lar sign prefix) in a single, global hash table. Regardless of where you save 
or retrieve the value of a normal global variable, Ruby accesses the same 
global hash table. 

Now for one more test: What if I perform the search inside a block and 
not a method? Listing 3-10 shows this new search.

str = "The quick brown fox jumped over the lazy dog.\n"
/fox/.match(str)

2.times do
  /dog/.match(str)
  puts "Value of $& inside block: #{$&}"
end

puts "Value of $& in the top-level scope: #{$&}"

Listing 3-10: Displaying the value of $& from inside a block
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Here’s the output I get at the console this time.

$ ruby regex_block.rb 
Value of $& inside block: dog
Value of $& inside block: dog
Value of $& in the top-level scope: dog

Notice that now Ruby has overwritten the value of $& in the top scope 
with the matching word dog from the search I performed inside the block! 
This is by design: Ruby considers the top-level and inner-block scope to be 
the same with regard to special variables. This is similar to how dynamic 
variable access works; we expect variables inside the block to have the same 
values as those in the parent scope.

Figure 3-28 shows how Ruby implements this behavior.

special

str

svar

cref

special

$& ="dog" etc...

Block
Scope

Top-Level
Scope

svar

special

Lexical Scope

Previous EP

EP

Figure 3-28: Ruby uses the EP-1 stack position for cref in blocks and for svar  
otherwise.

As you can see in Figure 3-28, Ruby has just a single special variable 
table for the top-level scope. It finds the special variables using the previ-
ous EP pointer, which points to the top-level scope. Inside the block scope 
(because there is no need for a separate copy of the special variables), 
Ruby takes advantage of the EP-1 open slot and saves the value cref there 
instead. Ruby uses the cref value to keep track of which lexical scope this 
block belongs to. Lexical scope refers to a section of code within the syntac-
tical structure of your program and is used by Ruby to look up constant 
values. (See Chapter 6 for more on lexical scope.) Specifically, Ruby uses 
the cref value here to implement metaprogramming API calls, such as eval 
and instance_eval. The cref value indicates whether the given block should 
be executed in a different lexical scope compared to the parent scope. 
(See “instance_eval Creates a Singleton Class for a New Lexical Scope” on 
page 243.)
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A De f ini t i ve  L is t of Speci a l Va r i a bl e s

One place to find an accurate list of all the special variables that Ruby supports is 
the C source itself. For example, Listing 3-11 is a piece of Ruby’s C source code that 
tokenizes your Ruby program, as snipped from the parser_yylex function located in 
parse.y:

u case '$':
lex_state = EXPR_END;
newtok();
c = nextc();

v switch (c) {
w   case '_':            /* $_: last read line string */

    c = nextc();
    if (parser_is_identchar()) {
        tokadd('$');
        tokadd('_');
        break;
    }
    pushback(c);
    c = '_';
    /* fall through */

x   case '~':            /* $~: match-data */
  case '*':            /* $*: argv */
  case '$':            /* $$: pid */
  case '?':            /* $?: last status */
  case '!':            /* $!: error string */
  case '@':            /* $@: error position */
  case '/':            /* $/: input record separator */
  case '\\':           /* $\: output record separator */
  case ';':            /* $;: field separator */
  case ',':            /* $,: output field separator */
  case '.':            /* $.: last read line number */
  case '=':            /* $=: ignorecase */
  case ':':            /* $:: load path */
  case '<':            /* $<: reading filename */
  case '>':            /* $>: default output handle */
  case '\"':           /* $": already loaded files */
    tokadd('$');
    tokadd(c);
    tokfix();
    set_yylval_name(rb_intern(tok()));
    return tGVAR;

Listing 3-11: Consulting parse.y is a good way to find a definitive list of Ruby’s many special 
variables.

Notice at u that Ruby matches a dollar sign character ($). This is part of the 
large C switch statement that tokenizes your Ruby code—the process I discussed 
in “Tokens: The Words That Make Up the Ruby Language” on page 4. This is 

continued
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followed by an inner switch statement at v that matches on the following character. 
Each of these characters and each of the case statements that follow (at w and 
after x) correspond to one of Ruby’s special variables.

Just a bit farther down in the function, more C code (see Listing 3-12) parses 
other special variable tokens that you write in your Ruby code, such as $& and 
related special variables.

u case '&':                /* $&: last match */
case '`':                /* $`: string before last match */
case '\'':               /* $': string after last match */
case '+':                /* $+: string matches last paren. */
  if (last_state == EXPR_FNAME) {
      tokadd('$');
      tokadd(c);
      goto gvar;
  }
  set_yylval_node(NEW_BACK_REF(c));
  return tBACK_REF;

Listing 3-12: These case statements correspond to Ruby’s regex-related special variables.

At u you can see four more case statements corresponding to the special vari-
ables $&, $`, $/, and $+, all related to regular expressions. 

Finally, the code in Listing 3-13 tokenizes $1, $2, and so on, producing the 
special variables that return the nth back reference from the last regular expression 
operation.

u case '1': case '2': case '3':
case '4': case '5': case '6':
case '7': case '8': case '9':
  tokadd('$');

v   do {
      tokadd(c);
      c = nextc();
  } while (c != -1 && ISDIGIT(c));
  pushback(c);
  if (last_state == EXPR_FNAME) goto gvar;
  tokfix();
  set_yylval_node(NEW_NTH_REF(atoi(tok()+1)));
  return tNTH_REF;

Listing 3-13: This C code tokenizes Ruby’s nth back reference special variables: $1, $2, and so 
forth.

The case statements at u match the numerical digits 1 through 9, while the C 
do...while loop at v continues to process digits until an entire number is read in. 
This allows you to create special variables with multiple digits, such as $12.
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Summary
We’ve covered a lot of ground in this chapter. We began by looking at how 
Ruby keeps track of two stacks: an internal stack YARV uses and your Ruby 
call stack. Next, we saw how YARV executed two simple Ruby programs: 
one that calculated 2 + 2 = 4 and another that called a block 10 times. In 
Experiment 3-1 we learned that executing YARV instructions in Ruby 2.0 
and 1.9 is almost four times faster than in Ruby 1.8, which executes your 
program directly from the AST.

We moved on to look at how Ruby saves variables on the internal YARV 
stack using two methods: local and dynamic variable access. We also saw 
how method arguments are handled by Ruby in just the same way as local 
variables. In Experiment 3-2 we finished with a look at how Ruby handles 
special variables.

When you run any Ruby program, you are actually using a virtual 
machine designed specifically to execute Ruby programs. By examining 
how this machine works on a detailed level, we’ve acquired a deeper under-
standing of how the Ruby language works and, for example, what happens 
when you call a method or save a value in a local variable. In Chapter 4 we’ll 
continue to explore this virtual machine by looking at how control struc-
tures work and at YARV’s method dispatch process.



YARV uses its own internal set 
of control structures, like the 
structures you use in Ruby. 



4
C o n t r o l  S t r u c t u r e s  a n d 

M e t h o d  D i s p a t c h

In Chapter 3 I explained how YARV uses a stack while 
executing its instruction set and how it can access 
variables locally or dynamically. Controlling the flow 
of execution is another fundamental requirement for 
any programming language, and Ruby has a rich set 
of control structures, too. How does YARV implement 
control structures?

Like Ruby, YARV has its own control structures, albeit at a much lower 
level. Instead of if or unless statements, YARV uses two low-level instruc-
tions called branchif and branchunless. Instead of using control structures 
such as while...end or until...end loops, YARV has a single low-level function 
called jump that allows it to change the program counter and move through 
your compiled program. By combining the branchif or branchunless instruc-
tion with the jump instruction, YARV can execute most of Ruby’s simple con-
trol structures.



84   Chapter 4

When your code calls a method, YARV uses the send instruction. This 
process is known as method dispatch. You can consider send to be another one 
of Ruby’s control structures—the most complex and sophisticated one of all.

In this chapter we’ll learn more about YARV by exploring how it con-
trols execution flow in your program. We’ll also look at the method dis-
patch process as we learn how Ruby categorizes methods into types, calling 
each method type differently.

How Ruby Executes an if Statement
In order to understand how YARV controls execution flow, let’s see how the 
if...else statement works. The left side of Figure 4-1 shows a simple Ruby 
script that uses both if and else. On the right side of the figure, you can 
see the corresponding snippet of compiled YARV instructions. Reading the 
YARV instructions, you see that Ruby follows a pattern for implementing 
the if...else statement. It goes like this:

1.	 Evaluate condition

2.	 Jump to false code if condition is false

3.	 True code; jump past false code

4.	 False code

Roa dm a p
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0000 trace 
0002 putobject 
0003 setlocal 
0005 trace 
0007 getlocal 
0009 putobject 
0011 opt_lt 
0013 branchunless 
0015 trace 
0017 putself 
0018 putstring 
0020 opt_send_simple
0022 pop 
0023 jump 
0025 trace 
0027 putself 
0028 putstring 
0030 opt_send_simple
0032 pop 
0033 trace 
0035 putself 
0036 putstring 
0038 opt_send_simple
0040 leave

1
0
2, 0
1
2, 0
10
<callinfo!mid:<, argc:1
25
1

"small"
<callinfo!mid:puts, argc:1

33
1

"large"
<callinfo!mid:puts, argc:1

1

"done"
<callinfo!mid:puts, argc:1

 

 

i = 0
if i < 10

else

end
puts "done"

puts "small"

puts "large"

Figure 4-1: How Ruby compiles an if...else statement

This pattern should be a bit easier to follow in the flowchart shown 
in Figure 4-2 on the next page. The branchunless instruction in the center 
of the figure is the key to how Ruby implements if statements. It works as 
follows:

1.	 Ruby evaluates the condition of the if statement, i < 10, using the opt_lt 
(optimized less-than) instruction. This evaluation leaves either a true 
or false value on the stack.

2.	 branchunless jumps down to the else code if the condition is false. That 
is, it “branches unless” the condition is true. Ruby uses branchunless, not 
branchif, for if...else conditions because the positive case is compiled 
to appear right after the condition code. Therefore, YARV needs to 
jump if the condition is false.

3.	 If the condition is true, Ruby does not branch and just continues to 
execute the positive case code. Once it’s finished, it jumps down to the 
instructions following the if...else statement using the jump instruction.

4.	 Whether or not it branches, Ruby continues to execute the 
subsequent code.

YARV implements the unless statement similarly to how it implements 
if, except that the positive and negative code snippets are in reverse order. 
For looping control structures like while...end and until...end, YARV uses 
the branchif instruction instead, but the idea is the same: Calculate the 
loop condition, execute branchif to jump as necessary, and then use jump 
statements to implement the loop.
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0013 branchunless 25

0002 putobject
0003 setlocal 
0007 getlocal 
0009 putobject
0011 opt_lt

Jump if
condition is false.

0
2, 0
2, 0
10

0017 putself 
0018 putstring 
0020 opt_send_simple
0022 pop 
0023 jump

"small"
<callinfo!mid:puts, argc:1

33

0025 trace 
0027 putself 
0028 putstring 
0030 opt_send_simple
0032 pop

1

"large"
<callinfo!mid:puts, argc:1

0033 trace 
0035 putself 
0036 putstring 
0038 opt_send_simple
0040 leave

1

"done"
<callinfo!mid:puts, argc:1

Figure 4-2: This flowchart shows the pattern Ruby uses to compile  
if...else statements.

Jumping from One Scope to Another
One of the challenges YARV has in implementing some control structures 
is that, as with dynamic variable access, Ruby can jump from one scope to 
another. For example, break can be used to exit a simple loop like the one 
in Listing 4-1.
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i = 0
while i<10
  puts i
  i += 1
  break
end

Listing 4-1: break used to exit a simple loop

And it can also be used to exit a block iteration, like the one in Listing 4-2.

10.times do |n|
  puts n
  break
end
puts "continue from here"

Listing 4-2: break used to exit a block

In the first listing, YARV can exit the while loop using simple jump instruc-
tions. But exiting a block like the one in the second listing is not so simple: 
In this case, YARV needs to jump to the parent scope and continue execution 
after the call to 10.times. How does YARV know where to jump to? And how 
does it adjust both its internal stack and your Ruby call stack in order to 
continue execution properly in the parent scope?

To implement jumping from one place to another in the Ruby call stack 
(that is, outside the current scope), Ruby uses the throw YARV instruction. 
This instruction resembles the Ruby throw method: It sends, or throws, the 
execution path back up to a higher scope. For example, Figure 4-3 shows 
how Ruby compiles Listing 4-2, with the block containing a break statement. 
The Ruby code is on the left, and the compiled version is on the right.

10.times do |n|

end
puts "continue from here"

putobject 
send 
pop 
putself 
putstring 
opt_send_simple
leave

putself 
getlocal 
opt_send_simple
pop 
putnil 
throw 
leave

2, 0
<callinfo!mid:puts, argc:1

2

puts n
break

10
<callinfo!mid:times, argc:0

"continue from here"
<callinfo!mid:puts, argc:1

Figure 4-3: How Ruby compiles a break statement used inside a block
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Catch Tables
At the top right of Figure 4-3, the throw 2 in the compiled code for the 
block throws an exception at the YARV instruction level using a catch table, or a 
table of pointers that may be attached to any YARV code snippet. Conceptually, 
a catch table might look like Figure 4-4.

putobject 

send 

pop 

putself 

putstring 

opt_send_simple

leave

BREAK

10

<callinfo!mid:times, argc:0

"continue from here"

<callinfo!mid:puts, argc:1

YARV instructions Catch Table

Figure 4-4: Each snippet of YARV code can contain a catch table.

This catch table contains just a single pointer to the pop statement, 
where execution would continue after an exception. Whenever you use a 
break statement in a block, Ruby compiles the throw instruction into the 
block’s code. And whenever you call a block or write a loop using while, for, 
and so on, Ruby adds the BREAK entry into the parent scope’s catch table. If 
you wrote a nested loop, Ruby would add the BREAK entry to the outer loop 
scope’s catch table.

Later, when YARV executes the throw instruction, it checks to see whether 
there’s a catch table containing a break pointer for the current YARV instruc-
tion sequence, as shown in Figure 4-5.

rb_control_frame_t

CFP

rb_control_frame_t

rb_control_frame_t

YARV instructions Catch
Table Break

pointer?

Figure 4-5: While executing a throw instruction, YARV starts iterating down  
the Ruby call stack.

If it doesn’t find a catch table, Ruby starts to iterate down through the 
stack of rb_control_frame_t structures in search of a catch table containing a 
break pointer, as shown in Figure 4-6.
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CFP
YARV instructions Catch

Table Break
pointer?

rb_control_frame_t

rb_control_frame_t

rb_control_frame_t

Figure 4-6: Ruby continues to iterate down the call stack looking for a catch  
table with a break pointer.

As you can see in Figure 4-7, Ruby continues to iterate until it finds a 
catch table with a break pointer.

YARV instructions Catch
Table Break

pointer?

rb_control_frame_t

rb_control_frame_t

rb_control_frame_t

CFP

Figure 4-7: Ruby keeps iterating until it finds a catch table with a break pointer  
or reaches the end of the call stack.

In this simple example, there is only one level of block nesting, so Ruby 
finds the catch table and break pointer after just one iteration, as shown in 
Figure 4-8.

10.times do |n|

end
puts "continue from here"

  puts n
  break

putself 
getlocal 
opt_send_simple
pop 
putnil 
throw 
leave

2, 0
<callinfo!mid:puts, argc:1

2

putobject 
send 
pop 
putself 
putstring 
opt_send_simple
leave

BREAK

10
<callinfo!mid:times, argc:0

"continue from here"
<callinfo!mid:puts, argc:1

YARV instructions Catch Table

YARV instructions

Figure 4-8: Ruby finds a catch table with a break pointer.
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Once Ruby finds the catch table pointer, it resets both the Ruby call 
stack (the CFP pointer) and the internal YARV stack to reflect the new pro-
gram execution point. YARV continues to execute your code from there—
that is, it resets the internal PC and SP pointers as needed.

NOTE    	 Ruby uses a process similar to raising and rescuing an exception internally in order 
to implement a very commonly used control structure: the break keyword. In other 
words, what in more verbose languages is an exceptional occurrence becomes in Ruby 
a common, everyday action. Ruby has wrapped up a confusing, unusual syntax—
the raising/rescuing of exceptions—into a simple keyword, break, and made it very 
easy to understand and use. (Of course, Ruby needs to use exceptions because of the 
way blocks work. On the one hand, they’re like separate functions or subroutines, but 
on the other, they’re just part of the surrounding code.)

Other Uses for Catch Tables
The return keyword is another ordinary Ruby control structure that also 
uses catch tables. Whenever you call return from inside a block, Ruby raises 
an internal exception that it rescues with a catch table pointer in the same 
way it does when you call break. In fact, break and return are implemented 
with the same YARV instructions with one exception: For return, Ruby 
passes a 1 to the throw instruction (for example, throw 1), while for break, 
it passes a 2 (throw 2). The return and break keywords are really two sides of 
the same coin.

Besides break, Ruby uses the catch table to implement the control struc-
tures rescue, ensure, retry, redo, and next. For example, when you explicitly 
raise an exception in your Ruby code using the raise keyword, Ruby imple-
ments the rescue block using the catch table, but with a rescue pointer. The 
catch table is simply a list of event types that can be caught and handled by 
that sequence of YARV instructions, just as you would use a rescue block in 
your Ruby code.

Experiment 4-1: Testing How Ruby Implements 
for Loops Internally
I had always known that Ruby’s for loop control structure worked essentially 
the same way as a block with the each method of the Enumerable module. That 
is, I knew that this code:

for i in 0..5
   puts i
end
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worked like this code:

(0..5).each do |i|
  puts i
end

But I never suspected that internally Ruby actually implements for loops 
using each! In other words, Ruby has no for loop control structure. Instead, 
the for keyword is really just syntactical sugar for calling each with a range.

To prove this, simply inspect the YARV instructions produced by Ruby 
when you compile a for loop. In Listing 4-3, let’s use the same RubyVM:: 
InstructionSequence.compile method to display the YARV instructions.

code = <<END
for i in 0..5
  puts i
end
END
puts RubyVM::InstructionSequence.compile(code).disasm

Listing 4-3: This code will display how Ruby compiles a for loop.

Running this code gives the output shown in Listing 4-4.

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0006 sp: 0000 cont: 0006
|------------------------------------------------------------------------
local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[ 2] i          
0000 trace            1                                               (   1)
0002 putobject        0..5
0004 send             <callinfo!mid:each, argc:0, block:block in <compiled>>
0006 leave            
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0004 ed: 0015 sp: 0000 cont: 0004
| catch type: next   st: 0004 ed: 0015 sp: 0000 cont: 0015
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] ?<Arg>     
0000 getlocal_OP__WC__0 2                                             (   3)
0002 setlocal_OP__WC__1 2                                             (   1)
0004 trace            256
0006 trace            1                                               (   2)
0008 putself          
0009 getlocal_OP__WC__1 2
0011 opt_send_simple  <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>
0013 trace            512                                             (   3)
0015 leave                              

Listing 4-4: The output generated by Listing 4-3
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Figure 4-9 shows the Ruby code on the left and YARV instructions on 
the right. (I’ve removed some of the technical details, like the trace state-
ments, in order to simplify things a bit.)

putobject
send 
leave

for i in 0..5

end

getlocal 
setlocal 
putself 
getlocal 
opt_send_simple
leave

0..5
<callinfo!mid:each, argc:0

2, 0
2, 1

2, 1
<callinfo!mid:puts, argc:1

  puts i

Figure 4-9: A simplified display of the YARV instructions in Listing 4-4

Notice that there are two separate YARV code blocks: The outer scope 
calls each on the range 0..5, and an inner block makes the puts i call. The 
getlocal 2, 0 instruction in the inner block loads the implied block param-
eter value, and the setlocal instruction that follows saves it into the local 
variable i, located back in the parent scope using dynamic variable access.

In effect, Ruby has automatically done the following:

•	 Converted the for i in 0..5 code into (0..5).each do

•	 Created a block parameter to hold each value in the range

•	 Copied the block parameter, or the iteration counter, back into the 
local variable i each time around the loop

The send Instruction: Ruby’s Most Complex Control Structure
We’ve seen how YARV controls the execution flow of our Ruby program 
using low-level instructions such as branchunless and jump. However, the most 
commonly used and important YARV instruction for controlling Ruby pro-
gram execution flow is the send instruction. The send instruction tells YARV 
to jump to another method and start executing it.

Method Lookup and Method Dispatch
How does send work? How does YARV know which method to call, and how 
does it actually call the method? Figure 4-10 shows a high-level overview of 
the process.

This seems very simple, but the algorithm Ruby uses to find and call 
the target method is actually very complex. First, in method lookup, Ruby 
searches for the method your code actually should call. This involves loop-
ing through the classes and modules that make up the receiver object.
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Method dispatch

YARV
calls send

Method lookup

YARV
executes target 

method

Search for the right
method to call

Actually call the method

Figure 4-10: Ruby uses method lookup to find which  
method to call, and uses method dispatch to call it.

Once Ruby finds the method your code is trying to call, it uses method 
dispatch to actually execute the method call. This involves preparing the 
arguments to the method, pushing a new frame onto YARV’s internal stack, 
and changing YARV’s internal registers in order to actually start executing 
the target method. Like method lookup, method dispatch is a complex pro-
cess because of the way Ruby categorizes your methods.

During the rest of this chapter I’ll discuss the method dispatch process. 
We’ll see how method lookup works in Chapter 6, once we have learned 
more about how Ruby implements objects, classes, and modules.

Eleven Types of Ruby Methods
Internally, Ruby categorizes your methods into 11 different types! During 
the method dispatch process, Ruby determines which type of method your 
code is trying to call. It then calls each type of method differently depend-
ing on its type, as shown in Figure 4-11.

Most methods—including all methods you write with Ruby code in 
your program—are referred to as ISEQ, or instruction sequence methods, by 
YARV’s internal source code because Ruby compiles your code into a series 
of YARV bytecode instructions. But internally, YARV uses 10 other method 
types as well. These other method types are required because Ruby needs 
to call certain methods in a special way in order to speed up method dis-
patch, because these methods are implemented with C code or for various 
internal, technical reasons.
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YARV calls send Switch on 
method type

ISEQ

IVAR

CFUNC

ATTRSET

…and 7 other
internal typesYARV calls send Switch on 

method type

ISEQ

IVAR

CFUNC

ATTRSET

…and 7 other
internal types

Figure 4-11: While executing send, YARV switches on the type of the target method.

Here’s a quick description of all 11 method types. We’ll explore some of 
these in more detail in the following sections.

ISEQ  A normal method that you write using Ruby code, this is the 
most common method type. ISEQ stands for instruction sequence. 

CFUNC  Using C code included directly inside the Ruby executable, 
these are the methods that Ruby implements rather than you. CFUNC 
stands for C function. 

ATTRSET  A method of this type is created by the attr_writer method. 
ATTRSET stands for attribute set.

IVAR  Ruby uses this method type when you call attr_reader. IVAR 
stands for instance variable.

BMETHOD  Ruby uses this method type when you call define_method 
and pass in a proc object. Because the method is represented internally 
by a proc, Ruby needs to handle this method type in a special way.

ZSUPER  Ruby uses this method type when you set a method to be 
public or private in a particular class or module when it was actually 
defined in some superclass. This method is not commonly used.

UNDEF  Ruby uses this method type internally when it needs to 
remove a method from a class. Also, if you remove a method using 
undef_method, Ruby creates a new method of the same name using the 
UNDEF method type. 

NOTIMPLEMENTED  Like UNDEF, Ruby uses this method type 
to mark certain methods as not implemented. This is necessary, for 
example, when you run Ruby on a platform that doesn’t support a 
particular operating system call.

OPTIMIZED  Ruby speeds up some important methods using this 
type, like the Kernel#send method.
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MISSING  Ruby uses this method type if you ask for a method object 
from a module or class using Kernel#method and the method is missing.

REFINED  Ruby uses this method type in its implementation of 
refinements, a new feature introduced in version 2.0.

Now let’s focus on the most important and frequently used method 
types: ISEQ, CFUNC, ATTRSET, and IVAR. 

Calling Normal Ruby Methods
Most methods in your Ruby code are identified by the constant VM_METHOD_
TYPE_ISEQ inside Ruby’s source code. This means that they consist of a 
sequence of YARV instructions. 

You define standard Ruby methods in your code with the def keyword, 
as shown here.

def display_message
  puts "The quick brown fox jumps over the lazy dog."
end
display_message

display_message is a standard method because it’s created using the def 
keyword followed by normal Ruby code. Figure 4-12 shows how Ruby calls 
the display_message method.

CFP

rb_control_frame_t

rb_control_frame_t

[METHOD]

putself

opt_send_simple  <callinfo!mid:puts, argc:1,
putstring "The quick brown fox jumps..."

FCALL|ARGS_SKIP>

opt_send_simple  <callinfo!mid:display_message,
argc:0, FCALL|VCALL|ARGS_SKIP>

Figure 4-12: A normal method is comprised of YARV instructions.

On the left are two snippets of YARV code: the calling code at the bot-
tom and the target method at the top. On the right you can see that Ruby 
created a new stack frame using a new rb_control_frame_t structure, set to 
type METHOD.

The key idea in Figure 4-12 is that both the calling code and the tar-
get method are comprised of YARV instructions. When you call a standard 
method, YARV creates a new stack frame and then starts executing the 
instructions in the target method.

Preparing Arguments for Normal Ruby Methods
When Ruby compiles your code, it creates a table of local variables and 
arguments for each method. Each argument listed in the local table is 
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labeled as standard (<Arg>) or as one of a few different special types, such 
as block, optional, and so on. Ruby records the type of each method’s argu-
ments in this way so it can tell whether any additional work is required when 
your code calls the method. Listing 4-5 shows a single Ruby method that 
uses each type of argument.

def five_argument_types(a, b = 1, *args, c, &d)
  puts "Standard argument #{a.inspect}"
  puts "Optional argument #{b.inspect}"
  puts "Splat argument array #{args.inspect}"
  puts "Post argument #{c.inspect}"
  puts "Block argument #{d.inspect}"
end

five_argument_types(1, 2, 3, 4, 5, 6) do
  puts "block"
end

Listing 4-5: Ruby’s argument types (argument_types.rb)

Listing 4-6 shows the result when we call the example method with the 
numbers 1 through 6 and a block.

$ ruby argument_types.rb
Standard argument 1
Optional argument 2
Splat argument array [3, 4, 5]
Post argument 6
Block argument #<Proc:0x007ff4b2045ac0@argument_types.rb:9>

Listing 4-6: The output generated by Listing 4-5

To make this behavior possible, YARV does some additional processing 
on each type of argument when you call a method:

Block arguments  When you use the & operator in an argument list, 
Ruby needs to convert the provided block into a proc object.

Optional arguments  Ruby adds additional code to the target method 
when you use an optional argument with a default value. This code sets 
the default value into the argument. When you later call a method with 
an optional argument, YARV resets the program counter or PC register 
to skip this added code when a value is provided.

Splat argument array  For these, YARV creates a new array object and 
collects the provided argument values into it. (See the array [3, 4, 5] 
in Listing 4-6.)

Standard and post arguments  Because these need no special treat-
ment, YARV has no additional work to do.
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Then there are keyword arguments. Whenever Ruby calls a 
method that uses keyword arguments, YARV has even more work to do. 
(“Experiment 4-2: Exploring How Ruby Implements Keyword Arguments” 
on page 99 explores this in more detail.)

Calling Built-In Ruby Methods
Many of the methods built into the Ruby language are CFUNC methods 
(VM_METHOD_TYPE_CFUNC in Ruby’s C source code). Ruby implements these using 
C code rather than Ruby code. For example, consider the Integer#times 
method from “Executing a Call to a Block” on page 61. The Integer class 
is included in the Ruby interpreter, and the times method is implemented 
by C code in the file numeric.c.

The classes you use every day have many examples of CFUNC methods, 
such as String, Array, Object, Kernel, and so on. For example, the String#upcase 
method is implemented by C code in string.c, and Struct#each is implemented 
by C code in struct.c.

When Ruby calls a built-in CFUNC method, it doesn’t need to prepare 
the method arguments in the same way it does with normal ISEQ methods; 
it simply creates a new stack frame and calls the target method, as shown in 
Figure 4-13.

[ C function - int_dotimes ]
numeric.c

rb_control_frame_t

rb_control_frame_t

[CFUNC]

opt_send_simple  <callinfo!mid:times, argc:0,
block:block in <compiled>

CFP

Figure 4-13: Ruby implements CFUNC methods using C code in one of Ruby’s C 
source files.

As we saw with ISEQ methods in Figure 4-12, calling a CFUNC 
method involves creating a new stack frame. This time, however, Ruby 
uses a rb_control_frame_t structure with type CFUNC instead.

Calling attr_reader and attr_writer
Ruby uses two special method types, IVAR and ATTRSET, to speed up the 
process of accessing and setting instance variables in your code. Before I 
explain what these method types mean and how method dispatch works 
with them, have a look at Listing 4-7, which retrieves and sets the value of 
an instance variable.
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class InstanceVariableTest
u   def var

    @var
  end

v   def var=(val)
    @var = val
  end
end

Listing 4-7: A Ruby class with an instance variable and accessor methods

In this listing, the class InstanceVariableTest contains an instance vari-
able, @var, and two methods, var u and var= v. Because I wrote these 
methods using Ruby code, both will be standard Ruby methods with the 
type set to VM_METHOD_TYPE_ISEQ. As you can see, they allow you to get or set 
the value of @var.

Ruby actually provides a shortcut for creating these methods: attr_
reader and attr_writer. The following code shows a shorter way of writing 
the same class, using these shortcuts.

class InstanceVariableTest
  attr_reader :var
  attr_writer :var
end

Here, attr_reader automatically defines the same var method, and attr_
writer automatically defines the var= method, both from Listing 4-7.

And here’s an even simpler, more concise way of defining the same two 
methods using attr_accessor.

class InstanceVariableTest
  attr_accessor :var
end

As you can see, attr_accessor is shorthand for calling attr_reader and 
attr_writer together for the same instance variable.

Method Dispatch Optimizes attr_reader and attr_writer
Since Ruby developers use attr_reader and attr_writer so often, YARV uses 
two special method types, IVAR and ATTRSET, to speed up method dispatch 
and make your program run faster.

Let’s begin with the ATTRSET method type. Whenever you define 
a method using attr_writer or attr_accessor, Ruby marks the generated 
method with the VM_METHOD_TYPE_ATTRSET method type internally. When Ruby 
executes the code and calls the method, it uses a C function, vm_setivar, to 
set the instance variable in a fast, optimized manner. Figure 4-14 shows how 
YARV calls the generated var= method to set var. 
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[ C function - vm_setivar ]opt_send_simple  <callinfo!mid:var=, argc:1, ARGS_SKIP> 

Figure 4-14: VM_METHOD_TYPE_ATTRSET methods call vm_setivar directly.

Notice that this figure is similar to Figure 4-13. In both cases, Ruby calls 
an internal C function when executing our code. But notice in Figure 4-14 
that when executing an ATTRSET method, Ruby doesn’t even create a new 
stack frame. It doesn’t need to because the method is so short and simple. 
Also, because the generated var= method will never raise an exception, Ruby 
doesn’t need a new stack frame to display in error messages. The vm_setivar 
C function can very quickly set the value and return.

The IVAR method type works similarly. When you define a method 
using attr_reader or attr_accessor, Ruby marks the generated method with 
the VM_METHOD_TYPE_IVAR method type internally. When it executes IVAR 
methods, Ruby calls an internal C function called vm_getivar to get and 
return the instance variable’s value quickly, as shown in Figure 4-15.

opt_send_simple  <callinfo!mid:var, argc:0, ARGS_SKIP>  [ C function - vm_getivar ]

Figure 4-15: VM_METHOD_TYPE_IVAR methods call vm_getivar directly.

Here, the opt_send_simple YARV instruction on the left calls the vm_getivar 
C function on the right. As in Figure 4-14, when calling vm_setivar, Ruby 
doesn’t need to create a new stack frame or execute YARV instructions. It 
simply returns the value of var immediately.

Experiment 4-2: Exploring How Ruby Implements 
Keyword Arguments
Beginning with Ruby 2.0, you can specify labels for method arguments. 
Listing 4-8 shows a simple example.

u def add_two(a: 2, b: 3)
  a+b
end

v puts add_two(a: 1, b: 1)
 => 2 

Listing 4-8: A simple example of using keyword arguments

We use the labels a and b for the keyword arguments to add_two u. 
When we call the function v, we get the result 2. I hinted in Chapter 2 that 
Ruby uses a hash to implement keyword arguments. Let’s prove this is the 
case using Listing 4-9. 
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class Hash
u   def key?(val)
v     puts "Looking for key #{val}"

    false
  end
end

def add_two(a: 2, b: 3)
  a+b
end

puts add_two (a: 1, b: 1)

Listing 4-9: Demonstrating that Ruby uses a hash to implement keyword arguments

We override the key? method u of the Hash class, which displays a 
message v and then returns false. Here’s the output we get when we 
run Listing 4-9.

Looking for key a
Looking for key b
5 

As you can see, Ruby is calling Hash#key? twice: once to find the key a 
and a second time to find the key b. For some reason, Ruby has created 
a hash even though we never used a hash in the code. Also, Ruby is now 
ignoring the values we pass into add_two. Instead of 2, we get 5. It looks like 
Ruby is using the default values for a and b, not the values we provided. Why 
did Ruby create a hash, and what does it contain? And why did Ruby ignore 
my parameter values when I overrode Hash#key??

To learn how Ruby implements keyword arguments and to explain the 
results we see running Listing 4-9, we can examine the YARV instructions 
generated by Ruby’s compiler for add_two. Running Listing 4-10 displays the 
YARV instructions that correspond to Listing 4-9.

code = <<END
def add_two(a: 2, b: 3)
  a+b
end

puts add_two(a: 1, b: 1)
END

puts RubyVM::InstructionSequence.compile(code).disasm

Listing 4-10: Displaying the YARV instructions for the code in Listing 4-9

Figure 4-16 shows a simplified version of the output generated by 
Listing 4-10.
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def add_two(a: 2, b: 3)  
  a+b
end

puts add_two(a: 1, b: 1) 

putself 
putself 
putspecialobject 1
putobject [:a, 1, :b, 1]
opt_send_simple <callinfo!

mid:core#hash_from_ary, argc:1
opt_send_simple <callinfo!mid:add_two, argc:1
opt_send_simple <callinfo!mid:puts, argc:1

Figure 4-16: Part of the output generated by Listing 4-10

On the right of Figure 4-16, you can see that Ruby first pushes an 
array onto the stack: [:a, 1, :b, 1]. Next, it calls the internal C function 
hash_from_ary, which we can guess will convert the [:a, 1, :b, 1] array into a 
hash. Finally, Ruby calls the add_two method to add the numbers and the puts 
method to display the result.

Now let’s look at the YARV instructions for the add_two method itself, 
shown in Figure 4-17.

0000 getlocal 2, 0
0002 dup 
0003 putobject :a
0005 opt_send_simple <callinfo!mid:key?...
0007 branchunless 18
0009 dup 
0010 putobject :a
0012 opt_send_simple <callinfo!mid:delete...
0014 setlocal 4, 0
0016 jump 22
0018 putobject 2
0020 setlocal 4, 0
0022 dup 

etc...

[ 2] ?
[ 3] b
[ 4] adef add_two(a: 2, b: 3)  

  a+b
end

puts add_two(a: 1, b: 1) 

Local TableYARV instructions

Figure 4-17: The YARV instructions compiled from the beginning of the add_two method

What are these YARV instructions doing? The Ruby method add_two 
didn’t contain any code similar to this! (All add_two does is add a and b 
together and return the sum.)

To find out, let’s walk through Figure 4-17. On the left side, we see the 
Ruby add_two method, and on the right, the YARV instructions for add_two. 
On the far right, you see the local table for add_two. Notice that there are 
three values listed there: [ 2] ?, [ 3] b, and [ 4] a. It should be clear that 
a and b correspond to the two arguments to add_two, but what does [ 2] ? 
mean? This appears to be some sort of mystery value.

The mystery value is the hash we saw created in Figure 4-16! In order to 
implement keyword arguments, Ruby has created this third, hidden argu-
ment to add_two. 
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The YARV instructions in Figure 4-17 show that getlocal 2, 0 followed 
by dup places this hash onto the stack as a receiver. Next, putobject :a puts 
the symbol :a onto the stack as a method parameter, and opt_send_simple 
<callinfo!mid:key? calls the key? method on the receiver, which is the hash.

These YARV instructions are equivalent to the following line of Ruby 
code. Ruby is querying the hidden hash object to see whether it contains 
the key :a.

hidden_hash.key?(:a)

Reading the rest of the YARV instructions from Figure 4-17, we see that 
if the hash contains the key, Ruby calls the delete method, which removes 
the key from the hash and returns the corresponding value. Next, setlocal 4, 
0 saves this value into the a argument. If the hash didn’t contain the key :a, 
Ruby would call putobject 2 and setlocal 4, 0 to save the default value 2 into 
the argument.

To summarize, all of the YARV instructions shown in Figure 4-17 imple-
ment the snippet of Ruby code shown in Listing 4-11.

if hidden_hash.key?(:a)
  a = hidden_hash.delete(:a)
else
  a = 2
end

Listing 4-11: The YARV instructions shown in Figure 4-17 are equivalent to this Ruby code.

Now we can see that Ruby stores the keyword arguments and their values 
in the hidden hash argument. When the method starts, it first loads each 
argument’s value from the hash or uses the default value if there is none. 
The behavior indicated by the Ruby code in Figure 4-14 explains the results 
we saw when running Listing 4-9. Remember that we changed the Hash#key? 
method to always return false. If hidden_hash.key? always returns false, Ruby 
will ignore the value of each argument and use the default value instead, 
even if a value was provided.

One last detail about keyword arguments: Whenever you call any 
method and use keyword arguments, YARV checks to see whether the 
keyword arguments you provide are expected by the target method. 
Ruby raises an exception if there is an unexpected argument, as shown 
in Listing 4-12.
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def add_two(a: 2, b: 3)
  a+b
end

puts add_two(c: 9)
 => unknown keyword: c (ArgumentError)

Listing 4-12: Ruby throws an exception if you pass an unexpected keyword argument.

Because the argument list for add_two didn’t include the letter c, Ruby 
throws an exception when we try to call the method with c. This special 
check happens during the method dispatch process.

Summary
This chapter began with a look at how YARV controls the execution flow of 
your Ruby program using a series of low-level control structures. By display-
ing the YARV instructions produced by Ruby’s compiler, we saw some of 
YARV’s control structures and learned how they work. In Experiment 4-1, we 
discovered that Ruby implements for loops internally using the each method 
with a block.

We also learned that internally Ruby categorizes methods into 11 types. 
We saw that Ruby creates a standard ISEQ method when you write a method 
using the def keyword and that Ruby labels its own built-in methods as 
CFUNC methods because they are implemented using C code. We learned 
about the ATTRSET and IVAR method types and saw how Ruby switches on 
the type of the target method during the method dispatch process. 

Finally, in Experiment 4-2, we looked at how Ruby implements keyword 
arguments, and we discovered along the way that Ruby uses a hash to track 
the argument labels and default values.

In Chapter 5 we’ll switch gears and explore objects and classes. We’ll 
return to YARV internals again in Chapter 6 when we look at how the method 
lookup process works and discuss the concept of lexical scope.



Every Ruby object is the 
combination of a class 

pointer and an array of 
instance variables.



5
O b j e c t s  a n d  C l a s s e s

We learn early on that Ruby is an object-oriented 
language, descended from languages like Smalltalk 
and Simula. Every value is an object, and all Ruby pro-
grams consist of a set of objects and the messages sent 
between them. Typically, we learn about object-oriented programming by 
looking at how to use objects and what they can do: how they can group 
together data values and behavior related to those values; how each class 
should have a single responsibility or purpose; and how different classes 
can be related to each other through encapsulation or inheritance.

But what are Ruby objects? What information does an object contain? 
If we were to look at a Ruby object through a microscope, what would we 
see? Are there any moving parts inside? And what about Ruby classes? 
What exactly is a class?

I’ll answer these questions in this chapter by exploring how Ruby works 
internally. By looking at how Ruby implements objects and classes, you’ll 
learn how to use them and how to write object-oriented programs using Ruby.
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Inside a Ruby Object
Ruby saves each of your custom objects 
in a C structure called RObject, which 
looks like Figure 5-1 in Ruby 1.9 
and 2.0.

At the top of the figure is a pointer 
to the RObject structure. (Internally, 
Ruby always refers to any value with a 
VALUE pointer.) Below this pointer, the 
RObject structure contains an inner 
RBasic structure and information spe-
cific to custom objects. The RBasic 
section contains information that all 
objects use: a set of Boolean values 
called flags that store a variety of inter-
nal technical values, and a class pointer 
called klass. The class pointer indicates 

If I could slice open a Ruby object, 
what would I see? 

Roa dm a p
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which class an object is an instance of. 
In the RObject section, Ruby saves an array 
of instance variables that each object con-
tains, using numiv, the instance variable 
count, and ivptr, a pointer to an array of 
values.

If we were to define the Ruby object 
structure in technical terms, we could say

Every Ruby object is the com-
bination of a class pointer and 
an array of instance variables.

At first glance, this definition doesn’t 
seem very useful because it doesn’t help 
us understand the meaning or purpose 
behind objects or how to use them in a 
Ruby program. 

Inspecting klass and ivptr
To understand how Ruby uses RObject in programs, we’ll create a simple 
Ruby class and then inspect an instance of this class using IRB. For example, 
suppose I have the simple Ruby class shown in Listing 5-1.

class Mathematician
  attr_accessor :first_name
  attr_accessor :last_name
end

Listing 5-1: A simple Ruby class

Ruby needs to save the class pointer in RObject because every object 
must track the class you used to create it. When you create an instance of a 
class, Ruby internally saves a pointer to that class inside RObject, as shown in 
Listing 5-2.

$ irb
> euler = Mathematician.new

u  => #<Mathematician:0x007fbd738608c0>

Listing 5-2: Creating an object instance in IRB

By displaying the class name #<Mathematician at u, Ruby displays the 
value of the class pointer for the euler object. The hex string that follows is 
actually the VALUE pointer for the object. (This will differ for every instance 
of Mathematician.)

Ruby also uses the instance variable array to track the values you save in 
an object, as shown in Listing 5-3.

RObject

numiv

ivptr

RBasic

flags

klass

VALUE

Figure 5-1: The RObject structure
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> euler.first_name = 'Leonhard'
 => "Leonhard" 
> euler.last_name  = 'Euler'
 => "Euler" 
> euler

u  => #<Mathematician:0x007fbd738608c0 @first_name="Leonhard", @last_name="Euler"> 

Listing 5-3: Inspecting instance variables in IRB

As you can see, in IRB Ruby also displays the instance variable array for 
euler at u. Ruby needs to save this array of values in each object because 
every object instance can have different values for the same instance vari-
ables, as shown at u in Listing 5-4.

> euclid = Mathematician.new
> euclid.first_name = 'Euclid'
> euclid

u  => #<Mathematician:0x007fabdb850690 @first_name="Euclid">

Listing 5-4: A different instance of the Mathematician class

Visualizing Two Instances of One Class
Let’s look at Ruby’s C structures in a bit more detail. When you run the 
Ruby code shown in Figure 5-2, Ruby creates one RClass structure and two 
RObject structures.

class Mathematician

end

euler = Mathematician.new
euler.first_name = 'Leonhard'
euler.last_name = 'Euler'

euclid = Mathematician.new
euclid.first_name = 'Euclid'

RClass
Mathematician

RObject
euler

RObject
euclid

  attr_accessor :first_name
  attr_accessor :last_name

Figure 5-2: Creating two instances of one class

I’ll discuss how Ruby implements classes with the RClass structure in the 
next section. For now, let’s look at Figure 5-3, which shows how Ruby saves 
the Mathematician information in the two RObject structures.
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RClass

Mathematician

RObject

numiv: 2

ivptr

klass

RObject

numiv: 1

ivptr

klass

Leonhard

Euler

Euclid

Figure 5-3: Visualizing two instances of one class

As you can see, each klass value points to the Mathematician RClass struc-
ture, and each RObject structure has a separate array of instance variables. 
Both arrays contain VALUE pointers—the same pointer that Ruby uses to 
refer to the RObject structure. (Notice that one of the objects contains two 
instance variables, while the other contains only one.)

Generic Objects
Now you know how Ruby saves custom classes, like the Mathematician class, in 
RObject structures. But remember that every Ruby value—including basic data 
types such as integers, strings, and symbols—is an object. The Ruby source 
code internally refers to these built-in types as “generic” types. How does 
Ruby store these generic objects? Do they also use the RObject structure? 

The answer is no. Internally, Ruby uses a different C structure, not 
RObject, to save values for each of its generic data types. For example, Ruby 
saves string values in RString structures, arrays in RArray structures, regular 
expressions in RRegexp structures, and so on. Ruby uses RObject only to save 
instances of custom object classes that you create and a few custom object 
classes that Ruby creates internally. However, all of these different struc-
tures share the same RBasic information that we saw in RObject, as shown in 
Figure 5-4.

Since the RBasic structure contains the class pointer, each of these 
generic data types is also an object. Each is an instance of some Ruby class, 
as indicated by the class pointer saved inside RBasic.
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RString

String info...

RBasic

flags

klass

RArray

Array info...

RBasic

flags

klass

RRegexp

Regex info...

RBasic

flags

klass

VALUE VALUE VALUE

Figure 5-4: Different Ruby object structures all use the RBasic structure. 

Simple Ruby Values Don’t Require  
a Structure at All
As a performance optimization, 
Ruby saves small integers, symbols, 
and a few other simple values with-
out any structure at all, placing 
them right inside the VALUE pointer, 
as shown in Figure 5-5.

These VALUEs are not pointers at 
all; they’re values themselves. For 
these simple data types, there is no 
class pointer. Instead, Ruby remem-
bers the class using a series of bit 
flags saved in the first few bits of the 
VALUE. For example, all small integers 
have the FIXNUM_FLAG bit set, as shown 
in Figure 5-6.

Whenever the FIXNUM_FLAG is set, 
Ruby knows that this VALUE is really 
a small integer, an instance of the 
Fixnum class, and not a pointer to a value structure. (A similar bit flag indi-
cates whether the VALUE is a symbol, and values such as nil, true, and false 
also have their own flags.)

It’s easy to see that integers, strings, and other generic values are all 
objects by using IRB, as you can see in Listing 5-5.

Integer value 1

VALUE

FIXNUM_FLAG

Figure 5-6: FIXNUM_FLAG indicates this is 
an instance of the Fixnum class.

Integer value Flags

VALUE

Figure 5-5: Ruby saves integers in the 
VALUE pointer.
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$ irb
> "string".class
 => String 
> 1.class
 => Fixnum
> :symbol.class
 => Symbol 

Listing 5-5: Inspecting classes for some generic values

Here, we see that Ruby saves a class pointer or the equivalent bit flag for 
all values by calling the class method on each. In turn, the class method 
returns the class pointer, or at least the name of the class that each klass 
pointer refers to.

Do Generic Objects Have Instance Variables?
Let’s go back to our definition of a Ruby object:

Every Ruby object is the combination of a class pointer and an 
array of instance variables. 

What about instance variables for generic objects? Do integers, strings, 
and other generic data values have instance variables? That would seem 
odd, but if integers and strings are objects, this must be true! And if it is true, 
where does Ruby save these values if it doesn’t use the RObject structure?

Using the instance_variables method, shown in Listing 5-6, you can see 
that each of these basic values can also contain an array of instance variables, 
strange as that may seem.

$ irb
> str = "some string value"
 => "some string value" 
> str.instance_variables
 => [] 
> str.instance_variable_set("@val1", "value one")
 => "value one" 
> str.instance_variables
 => [:@val1] 
> str.instance_variable_set("@val2", "value two")
 => "value two" 
> str.instance_variables
 => [:@val1, :@val2] 

Listing 5-6: Saving instance variables in a Ruby string object

Repeat this exercise using symbols, arrays, or any Ruby value, and you’ll 
find that every Ruby value is an object and every object contains a class 
pointer and an array of instance variables.
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Re ading the RBa sic and RObjec t C Struc ture Definitions

Listing 5-7 shows the definitions of the RBasic and RObject C structures. (You can find 
this code in the include/ruby/ruby.h header file.)

struct RBasic {
u   VALUE flags;
v   const VALUE klass;

};

#define ROBJECT_EMBED_LEN_MAX 3
struct RObject {

w   struct RBasic basic;
  union {
    struct {

x       long numiv;
y       VALUE *ivptr;
z       struct st_table *iv_index_tbl;
{     } heap;
|     VALUE ary[ROBJECT_EMBED_LEN_MAX];

  } as;
};

Listing 5-7: The definitions of the RBasic and RObject C structures

At the top, you see the definition of RBasic. This definition contains the two val-
ues: flags u and klass v. Below, you see the RObject definition. Notice that it con-
tains a copy of the RBasic structure at w. Following this, the union keyword contains 
a structure called heap at {, followed by an array called ary at |.

The heap structure at { contains the following values:

•	 First, the value numiv at x tracks the number of instance variables contained in 
this object.

•	 Next, ivptr at y is a pointer to an array containing the values of this object’s 
instance variables. Notice that the names, or IDs, of the instance variables are 
not stored here; only the values are stored.

•	 iv_index_tbl at z points to a hash table that maps between the name, or ID, 
of each instance variable and its location in the ivptr array. This value is actu-
ally stored in the RClass structure for this object’s class; this pointer is simply 
a cache, or shortcut, that Ruby uses to obtain that hash table quickly. (The 
st_table type refers to Ruby’s implementation of hash tables, which I’ll discuss 
in Chapter 7.)

The last member of the RObject structure, ary at |, occupies the same memory 
space as all previous values because of the union keyword at the top. Using this ary 
value, Ruby can save all of the instance variables right inside the RObject structure—
if they’ll fit. This eliminates the need to call malloc to allocate extra memory to hold 
the instance variable value array. (Ruby also uses this sort of optimization for the 
RString, RArray, RStruct, and RBignum structures.)
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Where Does Ruby Save Instance Variables for Generic Objects?
Internally, Ruby uses a bit of a hack to save instance variables for generic 
objects—that is, for objects that don’t use an RObject structure. When you 
save an instance variable in a generic object, Ruby saves it in a special hash 
called generic_iv_tbl. This hash maintains a map between generic objects 
and pointers to other hashes that contain each object’s instance variables. 
Figure 5-7 shows how this would look for the str string example in Listing 5-6.

RString

"some string value"

@val1 => "value one" @val2 => "value two"

generic_iv_tbl

str => hash etc... etc...

Figure 5-7: generic_iv_tbl stores instance variables for generic objects.

Experiment 5-1: How Long Does It Take to Save a 
New Instance Variable?
To learn more about how Ruby saves instance variables internally, let’s mea-
sure how long it takes Ruby to save one in an object. To do this, I’ll create a 
large number of test objects, as shown in Listing 5-8.

ITERATIONS = 100000
u GC.disable
v obj = ITERATIONS.times.map { Class.new.new }

Listing 5-8: Creating test objects using Class.new

Here, I’m using Class.new at v to create a unique class for each new 
object in order to make sure they’re all independent. I’ve also disabled gar-
bage collection at u to avoid skewing the results with GC operations. Then, 
in Listing 5-9, I add instance variables to each.

Benchmark.bm do |bench|
  20.times do |count|
    bench.report("adding instance variable number #{count+1}") do
      ITERATIONS.times do |n|
        obj[n].instance_variable_set("@var#{count}", "value")
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      end
    end
  end
end

Listing 5-9: Adding instance variables to each test object

Listing 5-9 iterates 20 times, repeatedly saving one more new instance 
variable to each of the objects. Figure 5-8 shows the time that it takes 
Ruby 2.0 to add each variable: The first bar on the left is the time it takes to 
save the first instance variable in all the objects, and each subsequent bar is 
the additional time taken to save one more instance variable in each object.

201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.20

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Instance Variable Count

Ti
m

e 
to

 A
dd

 a
n 

In
sta

nc
e 

Va
ria

bl
e 

(in
 s

ec
on

ds
 ×

 1
00

,0
00

)

Figure 5-8: Time to add one more instance variable (in seconds x 100,000) vs. instance 
variable count

Figure 5-8 shows a strange pattern. Sometimes it takes Ruby longer to 
add a new instance variable. What’s going on here?

The reason for this behavior has to do with the ivptr array where Ruby 
stores the instance variables, as shown in Figure 5-9.

RObject

ivptr Leonhard Euler

Figure 5-9: Two instance variables saved in an object
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In Ruby 1.8 this array is a hash table containing both the variable names 
(the hash keys) and the values, which will automatically expand to accom-
modate any number of elements.

Ruby 1.9 and later save memory by storing the values in a simple array. 
The instance variable names are saved in the object’s class instead, because 
they’re the same for all instances of a class. As a result, Ruby 1.9 and 2.0 
need to either preallocate a large array to handle any number of instance 
variables or repeatedly increase the size of this array as you save more 
variables. 

In fact, as you can see in Figure 5-8, Ruby 1.9 and 2.0 repeatedly 
increase the array size. For example, suppose you have seven instance 
variables in a given object, as shown in Figure 5-10.

RObject

ivptr 1 2 3 4 5 6 7

Figure 5-10: Seven instance variables in an object

When you add the eighth variable—bar  8 in Figure 5-8—Ruby 1.9 
and 2.0 increase the array size by three, anticipating that you will soon add 
more variables, as shown in Figure 5-11.

RObject

ivptr 1 2 3 4 5 6 7 8

Figure 5-11: Adding an eighth value allocates extra space.

Allocating more memory takes extra time, which is why bar 8 is higher. 
Now if you add two more instance variables, Ruby 1.9 and 2.0 won’t need to 
reallocate memory for this array because the space will already be available. 
This explains the shorter times for bars 9 and 10.

What’s Inside the RClass Structure?
Every object remembers its class by sav-
ing a pointer to an RClass structure. 
What information does each RClass 
structure contain? What would we see 
if we could look inside a Ruby class? 
Let’s build a model of the information 
that must be present in RClass. This 
model will give us a technical definition 
of what a Ruby class is, based on what 
we know classes can do.

Two objects, one class 
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Every Ruby developer knows how to write a class: You type the class key-
word, specify a name for the new class, and then type in the class’s methods. 
Listing 5-10 shows a familiar example.

class Mathematician
  attr_accessor :first_name
  attr_accessor :last_name
end

Listing 5-10: The same simple Ruby class we saw in Listing 5-1

attr_accessor is shorthand for defining get and set methods for 
an attribute. (The methods defined by attr_accessor also check for nil 
values). Listing 5-11 shows a more verbose way of defining the same 
Mathematician class.

class Mathematician
  def first_name
    @first_name
  end
  def first_name=(value)
    @first_name = value
  end
  def last_name
    @last_name
  end
  def last_name=(value)
    @last_name = value
  end
end

Listing 5-11: The same class written without attr_accessor

It appears that this class—and every Ruby class—is just a group of method 
definitions. You can assign behavior to an object by adding methods to its 
class, and when you call a method on an object, Ruby looks for the method 
in the object’s class. This leads to our first definition of a Ruby class:

A Ruby class is a group of method definitions. 

Therefore, the RClass structure for Mathematician must save a list of all 
the methods defined in the class, as shown in Figure 5-12.

Notice in Listing 5-11 that I’ve also created two instance variables:  
@first_name and @last_name. We saw earlier how Ruby stores these values in 
each RObject structure, but you may have noticed that only the values of 
these variables are stored in RObject, not their names. (Ruby 1.8 does store 
the names in RObject.) Ruby must store the attribute names in RClass, which 
makes sense because the names will be the same for every Mathematician 
instance. 
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RClass

first_name

first_name=

last_name

last_name=

method table:

Figure 5-12: Ruby classes contain a method table.

Let’s redraw RClass again and include a table of attribute names this 
time, as shown in Figure 5-13.

RClass

first_name

first_name=

last_name

last_name=

@first_name

@last_name

method table: attribute names:

Figure 5-13: Ruby classes also contain a table of attribute names.

Now our definition of a Ruby class is as follows:

A Ruby class is a group of method definitions and a table of 
attribute names. 

At the beginning of this chapter, I mentioned that every value in Ruby 
is an object. This might be true for classes, too. Let’s prove this using IRB.

> p Mathematician.class
 => Class

As you can see, Ruby classes are all instances of the Class class; therefore, 
classes are also objects. Now to update our definition of a Ruby class again:

A Ruby class is a Ruby object that also contains method definitions 
and attribute names. 



118   Chapter 5

Because Ruby classes are objects, we know that the RClass structure 
must also contain a class pointer and an instance variable array, the values 
that we know every Ruby object contains, as shown in Figure 5-14.

RClass

RClass
Classfirst_name

first_name=

last_name

last_name=

@first_name

@last_name

method table:

klass

class pointer:

@value1

@value2

instance-level
attribute names:

class-level
instance variables:

Figure 5-14: Ruby classes also contain a class pointer and instance variables.

As you can see, I’ve added a pointer to the Class class, which is in theory 
the class of every Ruby class object. However, in Experiment 5-2 on page 127, 
I’ll show that this diagram is in fact not accurate—that klass actually points 
to something else! I’ve also added a table of instance variables. 

No  t e 	 These are the class-level instance variables. Don’t confuse these with the table of attri-
bute names for the object-level instance variables.

This is rapidly getting out of control! The RClass structure seems to be 
much more complex than the RObject structure. But don’t worry—we’re 
getting close to an accurate picture of the RClass structure. Next we need 
to consider two more important types of information contained in each 
Ruby class.

Inheritance
Inheritance is an essential feature of object-oriented programming. Ruby 
implements single inheritance by allowing us to optionally specify one 
superclass when we create a class. If we don’t specify a superclass, Ruby 
assigns the Object class as the superclass. For example, we could rewrite the 
Mathematician class using a superclass like this:

class Mathematician < Person
--snip--

Now every instance of Mathematician will include the same methods 
that instances of Person have. In this example, we might want to move the 
first_name and last_name accessor methods into Person. We could also move 
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the @first_name and @last_name attributes into the Person class. Every instance 
of Mathematician will contain these methods and attributes, even though we 
moved them to the Person class.

The Mathematician class must contain a reference to the Person class (its 
superclass) so that Ruby can find any methods or attributes defined in 
the superclass.

Let’s update our definition again, assuming that Ruby tracks the super-
class using another pointer similar to klass:

A Ruby class is a Ruby object that also contains method definitions, 
attribute names, and a superclass pointer. 

And let’s redraw the RClass structure to include the new superclass 
pointer, as shown in Figure 5-15.

RClass

RClass
Classfirst_name

first_name=

last_name

last_name=

@first_name

@last_name

method table:

klass

class pointer:

@value1

@value2

instance-level
attribute names:

class-level
instance variables:

super

superclass:
RClass

Person

Figure 5-15: Ruby classes also contain a superclass pointer.

At this point, it is critical to understand the difference between the 
klass pointer and the super pointer. The klass pointer indicates which class 
the Ruby class object is an instance of. This will always be the Class class:

> p Mathematician.class
 => Class

Ruby uses the klass pointer to find the methods of the Mathematician 
class object, such as the new method that every Ruby class implements. 
However, the super pointer records the class’s superclass:

> p Mathematician.superclass
 => Person
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Ruby uses the super pointer to help find methods contained in each 
Mathematician instance, such as first_name= or last_name. As we’ll see next, 
Ruby also uses the super pointer when getting or setting class variables.

Class Instance Variables vs. Class Variables
One confusing bit of Ruby syntax is the concept of class variables. You might 
think that these are simply the instance variables of a class (the class-level 
instance variables from Figure 5-14), but class instance variables and class 
variables are distinctly different.

To create a class instance variable, you simply create an instance vari-
able using the @ symbol, but in the context of a class rather than an object. 
For example, Listing 5-12 shows how we could use an instance variable of 
Mathematician to indicate a branch of mathematics this class corresponds to. 
We create the @type instance variable at u.

class Mathematician
u   @type = "General"

  def self.type
    @type
  end
end

puts Mathematician.type
 => General

Listing 5-12: Creating a class-level instance variable

In contrast, to create a class variable, you would use the @@ notation. 
Listing 5-13 shows the same example, with the class variable @@type u 
created.

class Mathematician
u   @@type = "General"

  def self.type
    @@type
  end
end

puts Mathematician.type
 => General

Listing 5-13: Creating a class variable

What’s the difference? When you create a class variable, Ruby creates 
a single value for you to use in that class and in any subclasses you might 
define. On the other hand, using a class instance variable causes Ruby to cre-
ate a separate value for each class or subclass.
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Let’s review Listing 5-14 to see how Ruby handles these two types of 
variables differently. First, I define a class instance variable called @type in 
the Mathematician class and set its value to the string General. Next, I create 
a second class called Statistician, which is a subclass of Mathematician, and 
change the value of @type to the string Statistics.

class Mathematician
  @type = "General"
  def self.type
    @type
  end
end

class Statistician < Mathematician
  @type = "Statistics"
end

puts Statistician.type
u  => Statistics

puts Mathematician.type
v  => General

Listing 5-14: Each class and subclass has its own instance variables.

Notice that the values of @type in Statistician at u and Mathematician at v 
are different. Each class has its own separate copy of @type.

However, if I use a class variable instead, Ruby shares that value between 
Mathematician and Statistician, as demonstrated in Listing 5-15.

class Mathematician
  @@type = "General"
  def self.type
    @@type
  end
end

class Statistician < Mathematician
  @@type = "Statistics"
end

puts Statistician.type
u  => Statistics

puts Mathematician.type
v  => Statistics

Listing 5-15: Ruby shares class variables among a class and all of its subclasses.

Here, Ruby shows the same value for @@type in Statistician at u and in 
Mathematician at v.
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Internally, however, Ruby actually saves 
both class variables and class instance 
variables in the same table inside the 
RClass structure. Figure 5-16 shows how the 
Mathematician class would save the @type and 
@@type values if you created both of them. 
The extra @ symbol in the name allows Ruby 
to distinguish between the two types of 
variables.

Getting and Setting Class Variables
It’s true: Ruby saves both class variables and class instance variables in the 
same table. However, the ways Ruby gets or sets these two types of variables 
are quite different.

When you get or set a class instance variable, Ruby looks up the variable 
in the RClass structure corresponding to the target class and either saves or 
retrieves the value. Figure 5-17 shows how Ruby saves the class instance vari-
ables from Listing 5-14.

RClass: Mathematician

class-level
instance variables:class Mathematician

  @type = "General"

end

RClass: Statistician

"General"

etc...

"Statistics"

etc...

class-level
instance variables:class Statistician

  @type = "Statistics"

end

Figure 5-17: Ruby saves class instance variables in the RClass  
structure of the target class.

RClass

@type

@@type

class-level
instance variables:

Figure 5-16: Ruby saves class 
variables and class instance 
variables in the same table.
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At the top of the figure, you can see a line of code that saves a class 
instance variable in Mathematician. Below that is a similar line of code that 
saves a value in Statistician. In both cases, Ruby saves the class instance 
variable in the RClass structure for the current class.

Ruby uses a more complex algorithm for class variables. To produce the 
behavior we saw in Listing 5-15, Ruby needs to search through all the super-
classes to see whether any of them define the same class variable. Figure 5-18 
shows an example.

 
class var
present?

class var
present?

super

RClass: Mathematician

class-level
instance variables:

"General"

RClass: Statistician

class-level
instance variables:class Statistician  

   @@type = "Statistics"

end

Figure 5-18: Before saving it, Ruby checks whether the class variable exists in the  
target class or any of its superclasses.

When you save a class variable, Ruby looks in the target class and 
all of its superclasses for an existing variable. It will find @@type in the 
highest superclass. In Figure 5-18 you can see Ruby checks both the 
Statistician and Mathematician classes when saving the @@type class vari-
able in Statistician. Because I already saved the same class variable in 
Mathematician (Listing 5-15), Ruby will use that and overwrite it with the 
new value, as shown in Figure 5-19. 
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RClass: Mathematician

class-level
instance variables:

"Statistics"

RClass: Statistician

class-level
instance variables:

super

class Statistician  

   @@type = "Statistics"

end

Figure 5-19: Ruby uses the class variable copy found in the highest superclass.

Constants
We have one more feature of Ruby classes to cover: constants. As you may 
know, Ruby allows you to define constant values inside a class, like this:

class Mathematician < Person
  AREA_OF_EXPERTISE = "Mathematics"
  --snip--

Constant values must start with a capital letter, and they are valid 
within the scope of the current class. (Curiously, Ruby allows you to change 
a constant value, but it will display a warning when you do so.) Let’s add a 
constant table to our RClass structure, because Ruby must save these values 
inside each class, as shown in Figure 5-20.

Now we can write a complete, technical definition of a Ruby class:

A Ruby class is a Ruby object that also contains method definitions, 
attribute names, a superclass pointer, and a constants table. 

Granted, this isn’t as concise as the simple definition we had for a Ruby 
object, but each Ruby class contains much more information than each 
Ruby object. Ruby classes are obviously fundamental to the language.
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RClass

RClass
Classfirst_name

first_name=

last_name

last_name=

@first_name

@last_name

method table:

klass

class pointer:

@value1

@value2

instance-level
attribute names:

class-level
instance variables:

super

superclass:
RClass

Person

AREA_OF_EXPERTISE

etc...

constant table:

Figure 5-20: Ruby classes also contain a constants table.

The Actual RClass Structure
Having built up a conceptual model for what information must be stored in 
RClass, let’s look at the actual structure that Ruby uses to represent classes, 
as shown in Figure 5-21.

As you can see, Ruby uses two separate structures to represent each 
class: RClass and rb_classext_struct. But these two structures act as one 
large structure because each RClass always contains a pointer (ptr) to a cor-
responding rb_classext_struct. You might guess that the Ruby core team 
decided to use two different structures because there are so many different 
values to save, but in fact they probably created rb_classext_struct to save 
internal values that they didn’t want to expose in the public Ruby C exten-
sion API.

Like RObject, RClass has a VALUE pointer (shown on the left of Figure 5-21). 
Ruby always accesses classes using these VALUE pointers. The right side of the 
figure shows the technical names for the fields:

•	 flags and klass are the same RBasic values that every Ruby value contains.

•	 m_tbl is the method table, a hash whose keys are the names, or IDs, of 
each method and whose values are pointers to the definition of each 
method, including the compiled YARV instructions.

•	 iv_index_tbl is the attribute names table, a hash that maps each instance 
variable name to the index of the attribute’s value in each RObject 
instance variable array.

•	 super is a pointer to the RClass structure for this class’s superclass.
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RClass

RBasic

VALUE

rb_classext_struct

Method table

Instance-level
attribute names

Class pointer

Superclass pointer

Class-level
instance variables

Constants table

Used by
Module#prepend

Used to implement
refinements

m_tbl

iv_index_tbl

flags

klass

ptr

super

iv_tbl

const_tbl

origin

refined_class

allocator Used to allocate memory
for new objects

Figure 5-21: How Ruby actually represents a class

•	 iv_tbl contains the class-level instance variables and class variables, 
including both their names and values.

•	 const_tbl is a hash containing all of the constants (names and values) 
defined in this class’s scope. You can see that Ruby implements iv_tbl 
and const_tbl in the same way: Class-level instance variables and con-
stants are almost the same thing.

•	 Ruby uses origin to implement the Module#prepend feature. I’ll discuss 
what prepend does and how Ruby implements it in Chapter 6.

•	 Ruby uses the refined_class pointer to implement the new experimental 
refinements feature, which I’ll discuss further in Chapter 9.

•	 Finally, Ruby uses allocator internally to allocate memory for new 
instances of this class.
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R e a ding t he RCl a ss C S t ruc t ur e De f ini t ion

Now for a quick look at the actual RClass structure definition, as shown in Listing 5-16.

typedef struct rb_classext_struct rb_classext_t;
struct RClass {
    struct RBasic basic;
    rb_classext_t *ptr;
    struct st_table *m_tbl;
    struct st_table *iv_index_tbl;
};

Listing 5-16: The definition of the RClass C structure

Like the RObject definition we saw in Listing 5-7, this structure definition—including 
all of the values shown in Figure 5-21—can be found in the include/ruby/ruby.h file.

The rb_classext_struct structure definition, on the other hand, can be found in 
the internal.h C header file, as shown in Listing 5-17.

struct rb_classext_struct {
    VALUE super;
    struct st_table *iv_tbl;
    struct st_table *const_tbl;
    VALUE origin;
    VALUE refined_class;
    rb_alloc_func_t allocator;
};

Listing 5-17: The definition of the rb_classext_struct C structure

Again, you can see the values from Figure 5-21. Notice that the st_table C 
type appears four times in Listings 5-16 and 5-17; this is Ruby’s hash table data struc-
ture. Internally, Ruby saves much of the information for each class using hash tables: 
the attribute names table, the method table, the class-level instance variable table, 
and the constants table.

Experiment 5-2: Where Does Ruby Save Class 
Methods?
We’ve seen how each RClass structure saves all methods defined in a certain 
class. In this example, Ruby stores information about the first_name method 
inside the RClass structure for Mathematician using the method table:

class Mathematician
  def first_name
    @first_name
  end
end
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But what about class methods? It’s common in Ruby to save methods in 
a class directly, using the syntax shown in Listing 5-18.

class Mathematician
  def self.class_method
    puts "This is a class method."
  end
end

Listing 5-18: Defining a class method using def self

Alternatively, you can use the syntax shown in Listing 5-19.

class Mathematician
  class << self
    def class_method
      puts "This is a class method."
    end
  end
end

Listing 5-19: Defining a class method using class << self

Are they saved in the RClass structure along with the normal methods 
for each class, perhaps with a flag to indicate they are class methods and 
not normal methods? Or are they saved somewhere else? Let’s find out!

It’s easy to see where class methods are not saved. They are obviously 
not saved in the RClass method table along with normal methods, because 
instances of Mathematician cannot call them, as demonstrated here:

> obj = Mathematician.new
> obj.class_method
 => undefined method `class_method' for
#< Mathematician:0x007fdd8384d1c8 (NoMethodError)

Now, keeping in mind that Mathematician is also a Ruby object, recall the 
following definition:

A Ruby class is a Ruby object that also contains method defini-
tions, attribute names, a superclass pointer, and a constants table. 

We assume that Ruby should save methods for Mathematician just as it saves 
them for any object: in the method table for the object’s class. In other words, 
Ruby should get Mathematician’s class using the klass pointer and save the 
method in the method table in that RClass structure, as shown in Figure 5-22.
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RClass
klass

RClass
m_tbl

ClassMathematician

"class_method"

etc...

Figure 5-22: Shouldn’t Ruby save class methods in the method table for the class’s class?

But Ruby doesn’t actually do this, as you can discover by creating another 
class and trying to call the new method:

> class AnotherClass; end
> AnotherClass.class_method
 => undefined method `class_method' for AnotherClass:Class (NoMethodError)

If Ruby had added the class method to the method table in the Class 
class, all classes in your application would have the method. Obviously 
this isn’t what we intended by writing a class method, and thankfully Ruby 
doesn’t implement class methods this way.

Then where do the class methods go? For a clue, use the method 
ObjectSpace.count_objects, shown in Listing 5-20:

$ irb
u > ObjectSpace.count_objects[:T_CLASS]
v  => 859 

> class Mathematician; end
 => nil 
> ObjectSpace.count_objects[:T_CLASS]

w  => 861 

Listing 5-20: Using ObjectSpace.count_objects with :T_CLASS

ObjectSpace.count_objects at u returns the number of objects of a given 
type that exist. In this test, I’m passing the :T_CLASS symbol to get the count 
of class objects that exist in my IRB session. Before I create Mathematician, 
there are 859 classes at v. After I declare Mathematician, there are 861 at w—
two more. That’s odd. I declared one new class, but Ruby actually created 
two! What is the second one for and where is it?

It turns out that whenever you create a new class, internally Ruby cre-
ates two classes! The first class is your new class: Ruby creates a new RClass 
structure to represent your class, as described above. But internally Ruby 
also creates a second, hidden class called the metaclass. Why? To save any 
class methods that you might later create for your new class. In fact, Ruby 
sets the metaclass to be the class of your new class: It sets the klass pointer 
of your new RClass structure to point to the metaclass.
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Without writing C code, there’s no easy way to see the metaclass or the 
klass pointer value, but you can obtain the metaclass as a Ruby object like this:

class Mathematician
end

p Mathematician
 => Mathematician

p Mathematician.singleton_class
 => #<Class:Mathematician>

The first print statement displays the object’s class, while the second dis-
plays the object’s metaclass. The odd #<Class:Mathematician> syntax indicates 
that the second class is the metaclass for Mathematician. This is the second 
RClass structure that Ruby automatically created for me when I declared the 
Mathematician class. And this second RClass structure is where Ruby saves my 
class method, as shown in Figure 5-23.

RClass

m_tbl

RBasic
klass

first_name=

first_name

RClass

m_tbl

RBasic
klass

class_method

#<Class:Mathematician>Mathematician

last_name=

last_name

RObject
klass

euler

RClass

m_tbl

RBasic

klass

first_name=

first_name

RClass

m_tbl

RBasic

klass

class_method

#<Class:Mathematician>Mathematician

last_name=

last_name

RObject

klass

euler

Figure 5-23: An object, its class, and its metaclass

If we now display the methods for the metaclass, we’ll see all 
the methods of the Class class, along with the new class method for 
Mathematician:

p obj.singleton_class.methods
 => [ ... :class_method, ...  ]
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Summary
In this chapter we’ve seen how Ruby represents objects and classes inter-
nally: Ruby uses the RObject structure to represent instances of any custom 
classes you define in your code and of some classes predefined by Ruby 
itself. The RObject structure is remarkably simple, containing just a pointer 
to the object’s class and a table of instance variable values, along with a 
count of the variables. The simplicity of its structure leads us to a very simple 
definition of a Ruby object:

Every Ruby object is the combination of a class pointer and an 
array of instance variables.

This definition is powerful and useful because everything in Ruby is 
an object: Whenever you use a value in your Ruby program, regardless of 
what it is, remember that it will be an object and will therefore have a class 
pointer and instance variables.

We also saw that Ruby uses special C structures to represent instances 
of many commonly used, built-in Ruby classes called ”generic” objects. For 
example, Ruby uses the RString structure to represent an instance of the 
String class, RArray for an instance of the Array class, or RRegexp for an 
instance of the Regexp class. While these structures are different, Ruby 
also saves a class pointer and an array of instance variables for each of these 
generic objects. Finally, we saw that Ruby saves some simple values, such as 
small integers and symbols, without using a C structure at all. Ruby saves 
these values right inside the VALUE pointers that otherwise would point to 
the structure holding the value.

While Ruby objects are simple, we learned in this chapter that Ruby 
classes aren’t quite so simple. The RClass structure working with the 
rb_classext_struct structure saves a large set of information. Learning 
this forced us to write a more complex definition for Ruby classes:

A Ruby class is a Ruby object that also contains method definitions, 
attribute names, a superclass pointer, and a constants table.

Looking inside RClass and rb_classext_struct, we saw that Ruby classes 
are also Ruby objects, which therefore also contain instance variables and 
a class pointer. We looked at the difference between a class’s instance vari-
ables and class variables and learned that Ruby saves both of these variable 
types in the same hash table. We discovered how classes also contain a 
series of hash tables that store their methods, the names of the object-level 
instance variables, and constants defined within the class. Finally, we saw 
how each Ruby class records its superclass using the super pointer.



Inside of Ruby, 
modules are classes.
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As we saw in Chapter 5, classes play an important role 
in Ruby, holding method definitions and constant 
values, among other things. We also learned how 
Ruby implements inheritance using the super pointer 
in each RClass structure.

In fact, as your program grows, you might imagine it organized by class 
and superclass, creating a kind of giant tree structure. At the base is the 
Object class (or, actually, the internal BasicObject class). This class is Ruby’s 
default superclass, and all of your classes appear somewhere higher up in 
the tree, branching out in different directions. In this chapter we’ll study 
how Ruby uses this superclass tree to look up methods. When you write 
code that calls a method, Ruby looks through this tree in a very precise 
manner. We’ll step through a concrete example to see the method lookup 
process in action.
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Later in this chapter we’ll learn another way to visualize your Ruby 
code. Every time you create a new class or module, Ruby adds a new scope 
to a different tree, a tree based on the syntactical structure of your pro-
gram. The trunk of this tree is the top-level scope, or the beginning of your 
Ruby code file where you start typing. As you define more and more highly 
nested modules and classes, this tree would grow higher and higher as well. 
We’ll learn how this syntax, or namespace, tree allows Ruby to find constant 
definitions, just as the superclass tree allows Ruby to find methods.

But before we get to method and constant lookup, let’s get started with 
a look at Ruby modules. What are modules? How are they different from 
classes? What happens when you include a module into a class?
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How Ruby Implements Modules
As you may know, modules are very similar to classes in Ruby. You can create 
a module just as you create a class—by typing the module keyword followed 
by a series of method definitions. But while modules are similar to classes, 
they are handled differently by Ruby in three important ways:

•	 Ruby doesn’t allow you to create objects directly from modules. In prac-
tice this means that you can’t call the new method on a module because 
new is a method of Class, not of Module.

•	 Ruby doesn’t allow you to specify a superclass for a module.

•	 In addition, you can include a module into a class using the include 
keyword.

But what are modules exactly? How does Ruby represent them internally? 
Does it use an RModule structure? And what does it mean to “include” a mod-
ule into a class?

Modules Are Classes
As it turns out, internally Ruby implements modules as classes. When you 
create a module, Ruby creates another RClass/rb_classext_struct structure 
pair, just as it would for a new class. For example, suppose we define a new 
module like this.

module Professor
end

Internally, Ruby would create a class, not a module! Figure 6-1 shows 
how Ruby represents a module internally.
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RClass: module

m_tbl

RBasic

flags

klassVALUE

ptr

Method table

Class pointer

rb_classext_struct

super

iv_tbl

const_tbl

Superclass pointer

Class-level
instance variables

Constants table

origin
Used by
Module#prepend

Figure 6-1: The portion of Ruby’s class structures that’s used for modules

In this figure I show Ruby’s RClass structure again. However, I’ve 
removed some of the values from the diagram because modules don’t use 
all of them. Most importantly, I removed iv_index_tbl because you can’t 
create object instances of a module—in other words, you can’t call the new 
method on a module. This means there are no object-level attributes to 
keep track of. I also removed the refined_class and allocator values because 
modules don’t use them either. I’ve left the super pointer because modules 
do have superclasses internally even though you aren’t allowed to specify 
them yourself.

A technical definition of a Ruby module (ignoring the origin value for 
now) might look like this:

A Ruby module is a Ruby object that also contains method defini-
tions, a superclass pointer, and a constants table. 

Including a Module into a Class
The real magic behind modules happens when you include a module into a 
class, as shown in Listing 6-1.

module Professor
end
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class Mathematician < Person
  include Professor
end

Listing 6-1: Including a module into a class

When we run Listing 6-1, Ruby creates a copy of the RClass structure 
for the Professor module and uses it as the new superclass for Mathematician. 
Ruby’s C source code refers to this copy of the module as an included class. 
The superclass of the new copy of Professor is set to the original superclass 
of Mathematician, which preserves the superclass, or ancestor chain. Figure 6-2 
summarizes this somewhat confusing state of affairs.

RClass
super

When you include a module,
Ruby inserts a copy of the module

into your class’s superclass linked list:

RClass
super

RClass
super

RClass
super

Mathematician

Person

Another
Superclass

Object

RClass
super

Included
class

RClass
super

Professor

copy

Ruby saves your class’s ancestors
using a linked list of super pointers:

Figure 6-2: Including a module into a class

You can see the Mathematician class at the top-left corner of Figure 6-2. 
Below it and along the left side, you see its superclass chain: Mathematician’s 
superclass is Person, whose superclass is Another Superclass, and so on. The 
super pointer in each RClass structure (actually, each rb_classext_struct 
structure) points down to the next superclass.

Now to the Professor module on the right side of Figure 6-2. When 
we include this module into the Mathematician class, Ruby changes the 
super pointer of Mathematician to point to a copy of Professor and the super 
pointer of this copy of Professor to point to Person, the original superclass 
of Mathematician.
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NOTE    	 Ruby implements extend in exactly the same way, except the included class becomes 
the superclass of the target class’s class, or metaclass. Thus, extend allows you to add 
class methods to a class.

Ruby’s Method Lookup Algorithm
Whenever you call a method, whenever you “send a message to a receiver” 
to use object-oriented programming jargon, Ruby needs to determine 
which class implements that method. Sometimes this is obvious: The 
receiver’s class might implement the target method. However, this isn’t 
often the case. It might be that some other module or class in your system 
implements the method. Ruby uses a very precise algorithm to search 
through the modules and classes in your program in a particular order to 
find the target method. An understanding of this process is essential for 
every Ruby developer, so let’s take a close look at it. 

The flowchart in Figure 6-3 gives you a graphical picture of Ruby’s 
method lookup algorithm.

method 
found?

look through 
method table in 

current class

set current 
class to 

superclass of 
current class

call method

set current 
class to 
receiver

found

not
found

Figure 6-3: Ruby’s method lookup algorithm

This algorithm is remarkably simple, isn’t it? As you can see, Ruby simply 
follows the super pointers until it finds the class or module that contains 
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the target method. You might imagine that Ruby would have to distinguish 
between modules and classes using some special logic—that it would have 
to handle the case where there are multiple included modules, for example. 
But no, it’s just a simple loop on the super pointer linked list.

A Method Lookup Example
In a moment we’ll walk through this algorithm to be sure we understand it 
thoroughly. But first, let’s set up an example we can use that has a class, a 
superclass, and a module. This will allow us to see how classes and modules 
work together inside of Ruby.

Listing 6-2 shows the Mathematician class with the accessor methods 
first_name and last_name.

class Mathematician
  attr_accessor :first_name
  attr_accessor :last_name
end

Listing 6-2: A simple Ruby class, repeated from Listing 5-1

Now let’s introduce a superclass. In Listing 6-3, at u we set Person as the 
superclass of Mathematician.

class Person
end

u class Mathematician < Person
  attr_accessor :first_name
  attr_accessor :last_name
end

Listing 6-3: Person is the superclass of Mathematician.

We’ll move the name attributes to the Person superclass because not only 
mathematicians have names. We end up with the code shown in Listing 6-4.

class Person
  attr_accessor :first_name
  attr_accessor :last_name
end

class Mathematician < Person
end

Listing 6-4: Now the name attributes are in the Person superclass.

Finally, we’ll include the Professor module into the Mathematician class 
at u. Listing 6-5 shows the completed example.
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class Person
  attr_accessor :first_name
  attr_accessor :last_name
end

module Professor
  def lectures; end
end

class Mathematician < Person
u   include Professor

end

Listing 6-5: Now we have a class that includes a module and has a superclass.

The Method Lookup Algorithm in Action
Now that we have our example set up, we’re ready to see how Ruby finds a 
method we call. Every time you call any method in one of your programs, 
Ruby follows the same process we’re about to see here.

To kick things off, let’s call a method. Using this code, we create a new 
mathematician object and set its first name:

ramanujan = Mathematician.new
ramanujan.first_name = "Srinivasa"

To execute this code, Ruby needs to find the first_name= method. Where 
is this method? How does Ruby find it exactly?

First, Ruby gets the class from the ramanujan object via the klass pointer, 
as shown in Figure 6-4.

RObject
klass

RClass
m_tbl

Mathematician

ramanujan

Figure 6-4: Ruby first looks for the first_name= method in the object’s class.

Next, Ruby checks to see whether Mathematician implements first_name= 
directly by looking through its method table, as shown in Figure 6-5.

[ empty ]
RClass

m_tbl

Mathematician

Figure 6-5: Ruby first looks for first_name= in the class’s  
method table.
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Because we’ve moved all of the methods down into the Person super-
class, the first_name= method is no longer there. Ruby continues through 
the algorithm and gets the superclass of Mathematician using the super 
pointer, as shown in Figure 6-6.

RClass
super

RClass
m_tbl

Copy of
Professor moduleMathematician

lectures

Figure 6-6: The superclass of Mathematician is the copy of the Professor module.

Remember, this is not the Person class; it’s the included class, which is 
a copy of the Professor module. This copy refers to the same method table 
as the original module, which Ruby now searches. Recall from Listing 6-5 
that Professor contains only the single method lectures. Ruby won’t find the 
first_name= method.

NOTE    	 Notice that because Ruby inserts modules above the original superclass in the super-
class chain, methods in an included module override methods present in a superclass. 
In this case, if Professor also had a first_name= method, Ruby would call it and not 
the method in Person.

Because Ruby doesn’t find first_name= in Professor, it continues to iterate 
over the super pointers, but this time it uses the super pointer in Professor, as 
shown in Figure 6-7.

RClass
super

RClass
m_tbl

Copy of
Professor module first_name=

Person

first_name

last_name=

last_name

Figure 6-7: The Person class is the superclass of the included copy of the Professor module.

Note that the superclass of the Professor module—or more precisely, 
the superclass of the included copy of the Professor module—is the Person 
class. This was the original superclass of Mathematician. Finally, Ruby sees the 
first_name= method in the method table for Person. Because it has identified 
which class implements first_name=, Ruby can now call the method using the 
method dispatch process we learned about in Chapter 4.

Multiple Inheritance in Ruby
What is most interesting here is that internally, Ruby implements module 
inclusion using class inheritance. Essentially, there is no difference between 
including a module and specifying a superclass. Both procedures make new 
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methods available to the target class, and both use the class’s super pointer 
internally. Including multiple modules into a Ruby class is equivalent to 
specifying multiple superclasses.

Still, Ruby keeps things simple by enforcing a single list of ancestors. 
While including multiple modules does create multiple superclasses inter-
nally, Ruby maintains them in a single list. The result? As a Ruby developer, 
you get the benefits of multiple inheritance (adding new behavior to a class 
from as many different modules as you would like) while keeping the sim-
plicity of the single inheritance model.

Ruby benefits from this simplicity as well! By enforcing this single list 
of superclass ancestors, its method lookup algorithm can be very simple. 
Whenever you call a method on an object, Ruby simply has to iterate through 
the superclass linked list until it finds the class or module that contains the 
target method.

The Global Method Cache
Depending on the number of superclasses in the chain, method lookup 
can be time consuming. To alleviate this, Ruby caches the result of a 
lookup for later use. It records which class or module implemented the 
method that your code called in two caches: a global method cache and 
an inline method cache.

Let’s learn about the global method cache first. Ruby uses the global 
method cache to save a mapping between the receiver and implementer 
classes, as shown in Table 6-1.

Table 6-1: An Example of What the Global Method Cache Might Contain

klass defined_class

Fixnum#times Integer#times

Object#puts BasicObject#puts

etc... etc...

The left column in Table 6-1, klass, shows the receiver class; this is the 
class of the object you call a method on. The right column, defined_class, 
records the result of the method lookup. This is the implementer class, or 
the class that implements the method Ruby was looking for.

Let’s take the first row of Table 6-1 as an example; it reads Fixnum#times 
and Integer#times. In the global method cache, this information means 
that Ruby’s method lookup algorithm started to look for the times method 
in the Fixnum class but actually found it in the Integer class. In a similar way, 
the second row of Table 6-1 means that Ruby started to look for the puts 
method in the Object class but actually found it in the BasicObject class.

The global method cache allows Ruby to skip the method lookup pro-
cess the next time your code calls a method listed in the first column of the 
global cache. After your code has called Fixnum#times once, Ruby knows that 
it can execute the Integer#times method, regardless of from where in your 
program you call times.
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The Inline Method Cache
Ruby uses another type of cache, called an inline method cache, to speed up 
method lookup even more. The inline cache saves information alongside 
the compiled YARV instructions that Ruby executes (see Figure 6-8).

putobject 10 
send      <callinfo!mid:times, argc:0,
          block:block in <compiled>> Integer#times

Figure 6-8: The YARV instructions on the left should call the implementation of 
Integer#times on the right.

On the left side of this figure, we see the compiled YARV instructions 
that correspond to the code 10.times do... end. First, putobject 10 pushes 
the Fixnum object 10 onto YARV’s internal stack. This is the receiver of the 
times method call. Next, send calls the times method, as indicated by the text 
between the angle brackets. 

The rectangle on the right side of the figure represents the Integer#times 
method, which Ruby found using its method lookup algorithm (after look-
ing up the times method among the Fixnum class and its superclasses). Ruby’s 
inline cache enables it to save the mapping between the times method 
call and the Integer#times implementation right in the YARV instructions. 
Figure 6-9 shows how the inline cache might look.

putobject 10 

send Integer#times Integer#times

Figure 6-9: The inline cache saves the result of method lookup next to the send 
instruction that needs to call the method.

If Ruby executes this line of code again, it will immediately execute 
Integer#times without having to call the method lookup algorithm.

Clearing Ruby’s Method Caches
Because Ruby is a dynamic language, you can define new methods when 
you like. In order for you to be able to do so, Ruby must clear the global and 
inline method caches, because the results of method lookups might change. 
For example, if we add a new definition of the times method to the Fixnum 
or Integer classes, Ruby would need to call the new times method, not the 
Integer#times method that it was previously using.

In effect, whenever you create or remove (undefine) a method, include 
a module into a class, or perform a similar action, Ruby clears the global 
and inline method caches, forcing a new call to the method lookup code. 
Ruby also clears the cache when you use refinements or employ other types 
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of metaprogramming. In fact, clearing the cache happens quite frequently 
in Ruby. The global and inline method caches might remain valid for only a 
short time.

Including Two Modules into One Class
While Ruby’s method lookup algorithm may be simple, the code that it 
uses to include modules is not. As we saw above, when you include a mod-
ule into a class, Ruby inserts a copy of the module into the class’s ancestor 
chain. This means that if you include two modules, one after the other, the 
second module appears first in the ancestor chain and is found first by Ruby’s 
method lookup logic.

For example, suppose we include two modules into Mathematician, as 
shown in Listing 6-6.

class Mathematician < Person
  include Professor
  include Employee
end

Listing 6-6: Including two modules into one class

Now Mathematician objects have methods from the Professor module, the 
Employee module, and the Person class. But which methods does Ruby find 
first and which methods override which?

Figures 6-10 and 6-11 show the order of precedence. Because we include 
the Professor module first, Ruby inserts the included class corresponding 
to the Professor module as a superclass first.

RClass
super

RClass
super

Mathematician

Person

RClass
super

Included
class

RClass
super

Professor

copy

Figure 6-10: In Listing 6-6 we include the Professor module first.

Now, when we include the Employee module, the included class for the 
Employee module is inserted above the included class for the Professor mod-
ule, as shown in Figure 6-11.
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RClass
super

RClass
super

Mathematician

Included class
for Professor

RClass
super

Included class
for Employee

RClass
super

Employee

copy

RClass
superPerson

Figure 6-11: In Listing 6-6 we include the Employee module second, after including 
Professor.

Because Employee appears above Professor in the superclass chain, as 
shown along the left side of Figure 6-11, methods from Employee override 
methods from Professor, which in turn override methods from Person, the 
actual superclass.

Including One Module into Another
Modules don’t allow you to specify superclasses. For example, we can’t write 
the following:

module Professor < Employee
end

But we can include one module into another, as shown in Listing 6-7.

module Professor
  include Employee
end

Listing 6-7: One module including another module

What if we include Professor, a module with other modules included 
into it, into Mathematician? Which methods will Ruby find first? As shown in 
Figure 6-12, when we include Employee into Professor, Ruby creates a copy of 
Employee and sets it as the superclass of Professor.
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RClass

super

Professor

RClass
super

Included class
for Employee

RClass
super

Employee

copy

Figure 6-12: When you include one module  
into another, Ruby sets it as the superclass  
of the target module.

Modules can’t have a superclass in your code, but they can inside Ruby 
because Ruby represents modules with classes internally! 

Finally, when we include Professor into Mathematician, Ruby iterates over 
the two modules and inserts them both as superclasses of Mathematician, as 
shown in Figure 6-13.

RClass
super

RClass
super

Mathematician

Person

RClass
super

RClass
super

Included
class #2

for Employee

Included class
for Professor

RClass
super

Professor

RClass
super

Included class
for Employee

RClass
super

Employee

copy

copy copy

Figure 6-13: Including two modules into a class at the same time

Now Ruby will find the methods in Professor first and Employee second.

A Module#prepend Example
In Figure 6-2 we saw how Ruby includes a module into a class. Specifically, 
we saw how Ruby inserts a copy of the module’s RClass structure into the 
superclass chain for the target class, between the class and its superclass.
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Beginning with version 2.0, Ruby now allows you to “prepend” a mod-
ule into a class. We’ll use the Mathematician class to explain, as shown in 
Listing 6-8.

class Mathematician
u   attr_accessor :name

end

poincaré = Mathematician.new
poincaré.name = "Henri Poincaré"

v p poincaré.name
 => "Henri Poincaré"

Listing 6-8: A simple Ruby class with a name attribute

First, we define the Mathematician class with just the single attribute name 
at u. Then, we create an instance of Mathematician, set its name, and display 
it at v.

Now suppose we make all of our mathematicians professors by includ-
ing the Professor module into the Mathematician class again, as shown at u in 
Listing 6-9.

module Professor
end

class Mathematician
  attr_accessor :name

u   include Professor
end

Listing 6-9: Including the Professor module into the Mathematician class

Figure 6-14 shows the superclass chain for Mathematician and Professor.

RClass
super

RClass
super

Mathematician

Included class
for Professor

RClass
superObject

Figure 6-14: Professor is a superclass  
of Mathematician.
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If we decide to display the title Prof. in front of each mathematician’s 
name, we can just add that behavior to the Mathematician class, as shown in 
Listing 6-10.

module Professor
end

class Mathematician
  attr_writer :name
  include Professor

u   def name
    "Prof. #{@name}"
  end
end

Listing 6-10: An ugly way to display the Prof. title before each mathematician’s name

But this is a very ugly solution: The Mathematician class has to do the work 
of displaying the professor title at u. What if other classes include Professor? 
Shouldn’t they display the Prof. title also? If Mathematician contains the code 
for showing Prof., then any other classes that include Professor would be 
missing this code.

It makes more sense to include the code for displaying the title in 
the Professor module, as shown in Listing 6-11. This way every class that 
includes Professor will be able to display the title Prof. along with its 
class name.

module Professor
u   def name

    "Prof. #{super}"
  end
end

class Mathematician
  attr_accessor :name

v   include Professor
end

poincaré = Mathematician.new
poincaré.name = "Henri Poincaré"

w p poincaré.name
 => "Henri Poincaré"

Listing 6-11: How can we get Ruby to call the module’s name method?

At u we define a name method inside Professor that will display the Prof. 
title before the actual name (assuming that name is defined in a superclass). 
At v we include Professor into Mathematician. Finally, at w we call the name 
method, but we get the name Henri Poincaré without the Prof. title. What 
went wrong?
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The problem, as shown in Figure 6-14, is that Professor is a super-
class of Mathematician, not the other way around. This means when I 
call poincaré.name at w in Listing 6-11, Ruby finds the name method from 
Mathematician, not from Professor. Figure 6-15 shows visually what Ruby’s 
method lookup algorithm finds when I call poincaré.name.

RClass
super

RClass
super

Mathematician

Included class
for Professor

RClass
superObject

 
def name
  "Prof. #{super}" 
end

attr_accessor :name  

Figure 6-15: Ruby calls the attr_accessor method before finding  
the name method from Professor.

When we call name at w in Listing 6-11, Ruby finds the first name method 
that it sees in the superclass chain starting from the top and moving down. 
As you can see in Figure 6-15, the first name method is the simple attr_accessor 
method in Mathematician.

However, if we prepend Professor instead of including it, we get the 
behavior we were hoping for, as shown in Listing 6-12.

module Professor
  def name
    "Prof. #{super}"
  end
end

class Mathematician
  attr_accessor :name

u   prepend Professor
end

poincaré = Mathematician.new
poincaré.name = "Henri Poincaré"

v p poincaré.name
 => "Prof. Henri Poincaré"

Listing 6-12: Using prepend, Ruby finds the module’s name method first.

The only difference here is the use of prepend at u.
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How Ruby Implements Module#prepend
When you prepend a module to a class, Ruby places it before the class in 
the superclass chain, as shown in Figure 6-16.

def name
  "Prof. #{super}" 
end

RClass
super

RClass
super

Included class
for Professor

Mathematician

RClass
superObject

attr_accessor :name  

Figure 6-16: Using prepend, Ruby places the module before the  
target class in the superclass chain.

But there is something odd here. When we call name on a mathematician 
object, how does Ruby find the module’s method? That is, at v in Listing 6-12, 
we’re calling name on the Mathematician class, not on the Professor module. 
Ruby should find the simple attr_accessor method, not the version from the 
module, but that’s not the case. Does Ruby look backward up the superclass 
chain to find the module? If so, how does it do this when the super pointers 
point down?

The secret is that internally Ruby uses a trick to make it seem as if 
Mathematician is the superclass of Professor when it’s not, as shown in Figure 6-17. 
Prepending a module is like including a module. Mathematician is at the top 
of the superclass chain, and moving down the chain, we see that Ruby still 
sets the included class for Professor to be the superclass of Mathematician. 

But below Professor in Figure 6-17 we see something new, the origin class 
for Mathematician. This is a new copy of Mathematician that Ruby creates to 
make prepend work. 

When you prepend a module, Ruby creates a copy of the target class 
(called the origin class internally) and sets it as the superclass of the prepended 
module. Ruby uses the origin pointer that we saw in the rb_classext_struct 
structure in Figures 6-1 and 6-2 to track this new origin copy of the class. 
In addition, Ruby moves all of the methods from the original class to the 
origin class, which means that those methods may now be overridden by 
methods with the same name in the prepended module. In Figure 6-17 you 
can see that Ruby moved the attr_accessor method down from Mathematician 
to the origin class.
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RClass
super

RClass
super

Included class
for Professor

Mathematician
“origin” class

RClass
superObject

RClass

super

Mathematician origin

def name

  "Prof. #{super}" 
end

attr_accessor :name  

Figure 6-17: Ruby creates a copy of the target class and sets it as  
the superclass of the prepended module.

Experiment 6-1: Modifying a Module After 
Including It
Following a suggestion by Xavier Noria, this experiment will explore what 
happens when you modify a module once it’s been included into a class. 
We’ll use the same Mathematician class and the Professor module but with dif-
ferent methods, as shown in Listing 6-13.

module Professor
  def lectures; end
end

class Mathematician
u   attr_accessor :first_name

  attr_accessor :last_name
v   include Professor

end

Listing 6-13: Another example of including a module into a class



152   Chapter 6

This time the Mathematician class contains the accessor methods at u for 
@first_name and @last_name, and we’ve included the Professor module again 
at v. If we inspect the methods of a mathematician object, as shown in 
Listing 6-14, we should see the attribute methods, such as first_name= and 
the lectures method from Professor.

fermat = Mathematician.new
fermat.first_name = 'Pierre'
fermat.last_name = 'de Fermat'

p fermat.methods.sort
 => [ ... :first_name, :first_name=, ... :last_name, :last_name=, :lectures ... ]

Listing 6-14: Inspecting the methods of a mathematician object

No surprise; we see all the methods.

Classes See Methods Added to a Module Later
Now let’s add some new methods to the Professor module after including it 
into the Mathematician class. Does Ruby know that the new methods should 
be added to Mathematician as well? Let’s find out by running Listing 6-15 
right after Listing 6-14 finishes.

module Professor
  def primary_classroom; end
end

p fermat.methods.sort
u  => [ ... :first_name, :first_name=, ... :last_name, :last_name=, :lectures,

... :primary_classroom, ... ]

Listing 6-15: Adding a new method to Professor after including it into Mathematician

As you can see, at u we get all the methods, including the new 
primary_classroom method that was added to Professor after it was included 
into Mathematician. No surprise here either. Ruby is one step ahead of us.

Classes Don’t See Submodules Included Later
Now for one more test. What if we reopen the Professor module and include 
yet another module into it using Listing 6-16?

module Employee
  def hire_date; end
end

module Professor
  include Employee
end

Listing 6-16: Including a new module into Professor after it was included into Mathematician
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This is getting confusing, so let’s review what we did in Listings 6-13 
and 6-16:

•	 In Listing 6-13 we included the Professor module into the Mathematician 
class.

•	 Then, in Listing 6-16 we included the Employee module into the Professor 
module. Therefore, the methods of the Employee module should now be 
available on a mathematician object.

Let’s see whether Ruby works as expected:

p fermat.methods.sort
 => [ ... :first_name, :first_name=, ... :last_name, :last_name=, :lectures ... ]

It didn’t work! The hire_date method is not available in the fermat object. 
Including a module into a module already included into a class does not 
affect that class. 

As we’ve learned how Ruby implements modules, this fact shouldn’t 
be too hard to understand. Including Employee into Professor changes the 
Professor module, not the copy of Professor that Ruby created when we 
included it into Mathematician, as shown in Figure 6-18.

RClass
super

Professor

RClass
super

Included class
for Employee

RClass
super

Employee

RClass
super

Mathematician

RClass
super

Included class
for Professor

(copied earlier)

copy

Figure 6-18: The Employee module is included into the original Professor module,  
not the included copy used by Mathematician.

Included Classes Share the Method Table with the Original Module
But what about the primary_classroom method we added in Listing 6-15? How 
was Ruby able to include the primary_classroom method into Mathematician 
even though we added it to Professor after we included Professor into 
Mathematician? Figure 6-18 shows that Ruby created a copy of the Professor 
module before we added the new method to it. But how does the fermat 
object get the new method?
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As it turns out, when you include a module, Ruby copies the RClass 
structure, not the underlying method table, as shown in Figure 6-19.

RClass
super

RClass

Mathematician

Superclass

Included
class Professor

lectures
super

RClass
super
m_tbl

RClass
super
m_tbl

Method table
(not copied)

primary_classroom

copy

Figure 6-19: Ruby doesn’t copy the method table when you include a module.

Ruby doesn’t copy the method table for Professor. Instead, it simply sets 
m_tbl in the new copy of Professor, the “included class,” to point to the same 
method table. This means that modifying the method table by reopening 
the module and adding new methods will change both the module and any 
classes into which it was already included.

A Close Look at How Ruby Copie s Modul e s

By looking at Ruby’s C source code directly, you’ll gain a precise understanding 
of how Ruby copies modules when you include them and why Ruby behaves as 
you’ll see in this experiment. You’ll find the C function that Ruby uses to make a 
copy of a module in the class.c file. Listing 6-17 shows a portion of the function 
rb_include_class_new.

VALUE
u rb_include_class_new(VALUE module, VALUE super)

{
v     VALUE klass = class_alloc(T_ICLASS, rb_cClass);

    --snip--
w     RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module);

    RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module);
x     RCLASS_M_TBL(klass) = RCLASS_M_TBL(RCLASS_ORIGIN(module));
y     RCLASS_SUPER(klass) = super;

    --snip--
    return (VALUE)klass;
}

Listing 6-17: A portion of the rb_include_class_new C function, from class.c
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At u Ruby passes in module (the target module to copy) and super (the super-
class to use for the new copy of module). By specifying a particular superclass, Ruby 
inserts the new copy into the superclass chain at a particular place. If you search 
class.c for rb_include_class_new, you’ll find that Ruby calls it from another C function, 
include_modules_at, which handles the complex internal logic that Ruby uses to 
include modules.

At v Ruby calls class_alloc to create a new RClass structure and saves a refer-
ence to it in klass. Notice the first parameter to class_alloc is the value T_ICLASS, 
which identifies the new class as an included class. Ruby uses T_ICLASS throughout its 
C source code when dealing with included classes.

At w Ruby copies a series of pointers from the original module’s RClass structure 
over to the new copy using three C macros that operate on RClass.

•	 RCLASS_IV_TBL gets or sets a pointer to the instance variable table.

•	 RCLASS_CONST_TBL gets or sets a pointer to the constant variable table.

•	 RCLASS_M_TBL gets or sets a pointer to the method table.

For example, RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module) sets the instance 
variable table pointer in klass (the new copy) to the instance variable pointer from 
module (the target module to copy). Now klass and module use the same instance 
variables. In the same way, klass shares constant and method tables with module. 
Because they share the same method table, adding a new method to module also 
adds it to klass. This explains the behavior we saw in Experiment 6-1: Adding a 
method to a module also adds it to each class that includes that module.

Also note at x Ruby uses RCLASS_ORIGIN(module), not module. Normally 
RCLASS_ORIGIN(module) is the same as module; however, if you have earlier used 
prepend in module, then RCLASS_ORIGIN(module) instead returns the origin class for 
module. Recall that when you call Module#prepend, Ruby makes a copy (the origin 
class) of the target module and inserts the copy into the superclass chain. By using 
RCLASS_ORIGIN(module), Ruby gets the original module’s method table, even if you 
prepended it with a different module.

Finally, at y Ruby sets the superclass pointer of klass to the specified superclass 
and returns it.

Constant Lookup
We’ve learned about Ruby’s method lookup algorithm and how it searches 
through the superclass chain to find the right method to call. Now we’ll 
turn our attention to a related process: Ruby’s constant lookup algorithm, 
or the process Ruby uses to find a constant value that you refer to in your code.

Clearly method lookup is central to the language, but why study con-
stant lookup? As Ruby developers, we don’t use constants very often in our 
code—certainly not as often as we use classes, modules, variables, and blocks.
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One reason is that constants, like modules and classes, are central to 
the way Ruby works internally and to the way we use Ruby. Whenever you 
define a module or class, you also define a constant. And whenever you refer 
to or use a module or class, Ruby has to look up the corresponding constant.

The second reason has to do with the way Ruby finds a constant that 
you refer to in your code. As you may know, Ruby finds constants defined 
in a superclass, but it also finds constants in the surrounding namespace 
or syntactical scope of your program. Studying how Ruby handles syntacti-
cal scope leads us to some important discoveries about how Ruby works 
internally.

Let’s begin by reviewing how constants work in Ruby.

Finding a Constant in a Superclass
One way that Ruby searches for the definition of a constant you refer to 
is by using the superclass chain just as it would look for a method defini-
tion. Listing 6-18 shows an example of one class finding a constant in its 
superclass.

class MyClass
u   SOME_CONSTANT = "Some value..."

end

v class Subclass < MyClass
  p SOME_CONSTANT
end

Listing 6-18: Ruby finds constants you define in a superclass.

In Listing 6-18 we define MyClass with a single constant, SOME_CONSTANT 
at u. Then we create Subclass and set MyClass as a superclass at v. When we 
print the value of SOME_CONSTANT, Ruby uses the same algorithm it uses to find 
a method, as shown in Figure 6-20.

class Subclass < MyClass 
  p SOME_CONSTANT 
end

class MyClass
   SOME_CONSTANT = "Some value..." 
end

RClass: MyClass

SOME_CONSTANT

etc...

constants:

RClass: Subclass

MyClass

superclass:

Figure 6-20: Ruby searches for constants using the superclass chain,  
just as it does with methods.
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Here, on the right, you see the code from Listing 6-18 and, on the left, 
the RClass structures that correspond to each of the two classes we created. 
At the top left of the figure, you see MyClass, which contains the value of 
SOME_CONSTANT in its constants table. Below that is Subclass. When we refer 
to SOME_CONSTANT from inside Subclass, Ruby uses the super pointer to find 
MyClass and the value of SOME_CONSTANT.

How Does Ruby Find a Constant in the Parent Namespace?
Listing 6-19 shows another way to define a constant.

u module Namespace
v   SOME_CONSTANT = "Some value..."
w   class Subclass
x     p SOME_CONSTANT

  end
end

Listing 6-19: Using a constant defined in the surrounding namespace

Using idiomatic Ruby style, we create a module called Namespace at u. 
Then, inside this module, we declare the same SOME_CONSTANT value at v. 
Next, we declare Subclass inside Namespace at w, and we’re able to refer to 
and print the value of SOME_CONSTANT, just as in Listing 6-18.

But how does Ruby find SOME_CONSTANT in Listing 6-19 when we display it 
at x? Figure 6-21 shows the problem.

module Namespace 

  class Subclass
    p SOME_CONSTANT 
  end

end

RClass: Namespace module

SOME_CONSTANT

etc...

constants:

RClass: Subclass

Object

superclass:

?

  SOME_CONSTANT = "Some value..." 

Figure 6-21: How does Ruby find constants in the surrounding namespace?
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On the left side of this figure are two RClass structures, one for the 
Namespace module and one for Subclass. Notice that Namespace is not a super-
class of Subclass; the super pointer in Subclass refers to the Object class, Ruby’s 
default superclass. Then how does Ruby find SOME_CONSTANT when we refer to 
it inside of Subclass? Somehow Ruby allows you to search up the “namespace 
chain” to find constants. This behavior is called using lexical scope to find 
a constant.

Lexical Scope in Ruby
Lexical scope refers to a section of code within the syntactical structure of 
your program, rather than within the superclass hierarchy or some other 
scheme. For example, suppose we use the class keyword to define MyClass, 
as shown in Listing 6-20.

class MyClass
  SOME_CONSTANT = "Some value..."
end

Listing 6-20: Defining a class with the class keyword

This code tells Ruby to create a new copy of the RClass structure, but 
it also defines a new scope or syntactical section of your program. This 
is the area between the class and end keywords, as shown with shading in 
Figure 6-22.

class MyClass

 SOME_CONSTANT = "Some value..."

end

Figure 6-22: The class keyword creates  
a class and a new lexical scope.

Think of your Ruby program as a series of scopes, one for each module 
or class that you create and another for the default, top-level lexical scope. 
To keep track of where this new scope lies inside your program’s lexical 
structure, Ruby attaches a couple of pointers to the YARV instruction snip-
pet corresponding to the code it compiles inside this new scope, as shown 
in Figure 6-23.
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nd_clss

nd_next

class MyClass

  SOME_CONSTANT =

    "Some value..."

end

RClass: MyClass

SOME_CONSTANT

etc...

constants:

top level

Lexical Scope:

Figure 6-23: For each snippet of compiled code, Ruby uses pointers to track  
the parent lexical scope and the current class or module.

This figure shows the lexical scope information attached to the right 
side of the Ruby code. There are two important values here:

•	 First, the nd_next pointer is set to the parent or surrounding lexical 
scope—the default or top-level scope in this case.

•	 Next, the nd_clss pointer indicates which Ruby class or module corre-
sponds to this scope. In this example, because we just defined MyClass 
using the class keyword, Ruby sets the nd_clss pointer to the RClass 
structure corresponding to MyClass.

Creating a Constant for a New Class or Module
Whenever you create a class or module, Ruby automatically creates a corre-
sponding constant and saves it in the class or module for the parent lexical 
scope. 

Let’s return to the “namespace” example from Listing 6-19. Figure 6-24 
shows what Ruby does internally when you create MyClass inside Namespace.

RClass: Namespace 
module

SOME_CONSTANT

MyClass

constants:

RClass: MyClass

top level

nd_clss

nd_next

module Namespace

  SOME_CONSTANT =

    "Some value..."

end

  class MyClass
  end

Lexical Scope:

Figure 6-24: When you declare a new class, Ruby creates a new RClass  
structure and defines a new constant set to the new class’s name.
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The dashed arrows in this figure show what actions Ruby takes when 
you create a new class or module:

•	 First, Ruby creates a new RClass structure for the new module or class, 
as shown at the bottom.

•	 Then, Ruby creates a new constant using the new module or class name 
and saves it inside the class corresponding to the parent lexical scope. 
Ruby sets the value of the new constant to be a reference or pointer to 
the new RClass structure. In Figure 6-24 you can see that the MyClass 
constant appears in the constants table for the Namespace module.

The new class also gets its own new lexical scope, as shown in Figure 6-25.

top level

RClass: MyClass

Lexical Scope:

RClass: Namespace 
module

SOME_CONSTANT

MyClass

constants:
nd_clss

nd_next

module Namespace

  SOME_CONSTANT =

    "Some value..."

nd_clss

nd_next

  class MyClass

  end

end

Figure 6-25: A new class also gets its own lexical scope, shown here as the second  
shaded rectangle.

This figure shows a new shaded rectangle for the new scope. Its nd_clss 
pointer is set to the new RClass structure for MyClass, and its nd_next pointer 
is set to the parent scope that corresponds to the Namespace module.

Finding a Constant in the Parent Namespace Using Lexical Scope
In Listing 6-21 let’s return to the example from Listing 6-19, which prints 
the value of SOME_CONSTANT.

module Namespace
  SOME_CONSTANT = "Some value..."
  class Subclass

u     p SOME_CONSTANT
  end
end

Listing 6-21: Finding a constant in the parent lexical scope (repeated from Listing 6-19)
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In Figure 6-20 we saw how Ruby iterates over super pointers to find a 
constant from a superclass. But in Figure 6-21 we saw that Ruby couldn’t use 
super pointers to find SOME_CONSTANT in this example because Namespace is not a 
superclass of MyClass. Instead, as Figure 6-26 shows, Ruby can use the nd_next 
pointers to iterate up through your program’s lexical scopes in search of 
constant values.

top level

RClass: MyClass

RClass: Namespace 
module

SOME_CONSTANT

MyClass

constants:
nd_clss

nd_next

module Namespace

   SOME_CONSTANT =

     "Some value..."

nd_clss

nd_next

class MyClass

end

end

  p SOME_CONSTANT  

Lexical Scope:

Figure 6-26: Ruby can find SOME_CONSTANT in the parent lexical scope using the  
nd_next and nd_clss pointers.

By following the arrows in this figure, you can see how the p SOME_CONSTANT 
command at u in Listing 6-21 works:

•	 First, Ruby looks for the value of SOME_CONSTANT in the current 
scope’s class, MyClass. In Figure 6-26 the current scope contains the 
p SOME_CONSTANT code. You can see how Ruby finds the current scope’s 
class on the right using the nd_clss pointer. Here, MyClass has no con-
stants table.

•	 Next, Ruby finds the parent lexical scope using the nd_next pointer, 
moving up Figure 6-26.

•	 Ruby repeats the process, searching the current scope’s class using 
the nd_clss pointer. This time the current scope’s class is the Namespace 
module, at the top right of Figure 6-26. Now Ruby finds SOME_CONSTANT 
in Namespace’s constants table.
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Ruby’s Constant Lookup Algorithm
The flowchart in Figure 6-27 summarizes how Ruby iterates over the lexical 
scope chain while looking for constants.

constant 
found?

look through 
constant table 
for cref’s class

set cref parent 
lexical scope

done

set cref to 
current lexical 

scope

found

not
found

Figure 6-27: Part of Ruby’s constant lookup algorithm

Notice that this figure is very similar to Figure 6-3. Ruby iterates over 
the linked list formed by the nd_next pointers in each lexical scope while 
looking for a constant, just as it iterates over the super pointers while look-
ing for a method. Ruby uses superclasses to find methods and parent lexical 
scopes to find constants.

However, this is just part of Ruby’s constant lookup algorithm. As we saw 
earlier in Figure 6-20, Ruby also looks through superclasses for constants.

Experiment 6-2: Which Constant Will Ruby Find First?
We’ve just learned that Ruby iterates over a linked list of lexical scopes in 
order to look up constant values. However, we saw earlier in Figure 6-20 
that Ruby also uses the superclass chain to look up constants. Let’s use 
Listing 6-22 to see how this works in more detail.

class Superclass
u   FIND_ME = "Found in Superclass"

end
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module ParentLexicalScope
v   FIND_ME = "Found in ParentLexicalScope"

  module ChildLexicalScope

    class Subclass < Superclass
      p FIND_ME
    end

  end
end

Listing 6-22: Does Ruby search the lexical scope chain first? Or does it search the super-
class chain first? (find-constant.rb)

Notice here that I’ve defined the constant FIND_ME twice—at u and at v. 
Which constant will Ruby find first? Will Ruby first iterate over the lexical 
scope chain and find the constant at v? Or will it iterate over the superclass 
chain and find the constant value at u?

Let’s find out! When we run Listing 6-22, we get the following:

$ ruby find-constant.rb
"Found in ParentLexicalScope"

You can see that Ruby looks through the lexical scope chain first.
Now let’s comment out the second definition at v in Listing 6-22 and 

try the experiment again:

module ParentLexicalScope
v   #FIND_ME = "Found in ParentLexicalScope"

When we run the modified Listing 6-22, we get the following:

$ ruby find-constant.rb
"Found in Superclass"

Because now there is only one definition of FIND_ME, Ruby finds it by iter-
ating over the superclass chain.

Ruby’s Actual Constant Lookup Algorithm
Unfortunately, things aren’t quite so simple; there are some other quirks in 
Ruby’s behavior with regard to constants. Figure 6-28 is a simplified flow-
chart showing Ruby’s entire constant lookup algorithm.
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for each scope’s 
class, check for 

autoload

search through
lexical scope chain

search through
superclass chain

for each superclass,
check for autoload

call
const_missing

Figure 6-28: A high-level summary of Ruby’s  
constant lookup algorithm

At the top, you can see that Ruby begins by iterating up the lexical 
scope chain, as we saw in Listing 6-22. Ruby always finds constants, includ-
ing classes or modules, that are defined in a parent lexical scope. However, 
as Ruby iterates up the scope chain, it looks to see whether you used the 
autoload keyword, which instructs it to open and read in a new code file if 
a given constant is undefined. (The Rails framework uses autoload to allow 
you to load models, controllers, and other Rails objects without having to 
use require explicitly.)

If Ruby loops through the entire lexical scope chain without finding 
the given constant or a corresponding autoload keyword, it then iterates 
up the superclass chain, as we saw in Listing 6-18. This allows you to load 
constants defined in a superclass. Ruby once again honors any autoload key-
word that might exist in any of those superclasses, loading an additional file 
if necessary.

Finally, if all else fails and the constant still isn’t found, Ruby calls the 
const_missing method on your module if you provided one.
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Summary
In this chapter we’ve learned two very different ways to look at your Ruby 
program. On the one hand, you can organize your code by class and super-
class, and on the other, you can organize it by lexical scope. We saw how 
internally Ruby uses different sets of C pointers to keep track of these two 
trees as it executes your program. The super pointers found in the RClass 
structures form the superclass tree, while the nd_next pointers from the lexi-
cal scope structures form the namespace or lexical scope tree.

We studied two important algorithms that use these trees: how Ruby 
looks up methods and constants. Ruby uses the class tree to find the methods 
that your code (and Ruby’s own internal code) calls. Similarly, Ruby uses 
both the lexical scope tree and the superclass hierarchy to find constants 
that your code refers to. Understanding the method and constant lookup 
algorithms is essential. They allow you to design your program and organize 
your code using these two trees in a way that is appropriate for the problem 
you are trying to solve.

At first glance, these two organizational schemes seem completely 
orthogonal, but in fact they are closely related by the way Ruby’s classes 
behave. When you create a class or module, you add both to the superclass 
and lexical scope hierarchy, and when you refer to a class or superclass, you 
instruct Ruby to look up a particular constant using the lexical scope tree.



Ruby stores much of 
its own internal data 

in hash tables. 



7
T h e  H a s h  T a b l e : 

T h e   W o r k h o r s e  o f 
R u b y   I n t e r n a l s

Experiment 5-1 showed us how in Ruby 1.9 and 2.0 
the ivptr member of the RObject structure pointed to a 
simple array of instance variable values. We learned 
that adding a new value was usually very fast but that 
Ruby was somewhat slower while saving every third or 
fourth instance variable because it had to allocate a 
larger array. 

Taking a broader look across Ruby’s C source code base, we find that 
this technique is unusual. Instead, Ruby often uses a data structure called 
a hash table. Unlike the simple array we saw in Experiment 5-1, hash tables 
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can automatically expand to accommodate more values; the client of a hash 
table doesn’t need to worry about how much space is available or about allo-
cating more memory for it.

Among other things, Ruby uses a hash table to hold the data you save in 
the hash objects you create in your Ruby script. Ruby also saves much of its 
internal data in hash tables. Every time you create a method or a constant, 
Ruby inserts a new value in a hash table, and Ruby saves many of the special 
variables we saw in Experiment 3-2 in hash tables. Additionally, Ruby saves 
instance variables for generic objects, such as integers or symbols, in hash 
tables. Thus, the hash table is the workhorse of Ruby internals. 

In this chapter I’ll begin by explaining how hash tables work: what 
happens inside the table when you save a new value with a key and what 
happens when you later retrieve that value using the same key. I’ll also 
explain how hash tables automatically expand to accommodate more val-
ues. Finally, we’ll look at how hash functions work in Ruby.
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Hash Tables in Ruby
Hash tables are a commonly used, well-
known, age-old concept in computer 
science. They organize values into 
groups, or bins, based on an integer 
value calculated from each value—a 
hash. When you need to find a value, 
you can figure out which bin it’s in by 
recalculating its hash value, thus speed-
ing up the search.

Saving a Value in a Hash Table
Figure 7-1 shows a single hash object and its hash table.

st_table

type

num_bins

num_entries

bins

0 1 2 3 4 5 6 7 8 9 10

RHash

tbl

Figure 7-1: A Ruby hash object with an empty hash table

On the left is the RHash (short for Ruby hash) structure. On the right, 
you see the hash table used by this hash, represented by the st_table struc-
ture. This C structure contains the basic information about the hash table, 
including the number of entries saved in the table, the number of bins, 
and a pointer to the bins. Each RHash structure contains a pointer to a cor-
responding st_table structure. The empty bins on the lower right are there 
because Ruby 1.8 and 1.9 initially create 11 bins for a new, empty hash. 
(Ruby 2.0 and later work somewhat differently; see “Hash Optimization in 
Ruby 2.x” on page 187.)

The best way to understand how a hash table works is by stepping 
through an example. Suppose I add a new key/value to a hash called my_hash:

my_hash[:key] = "value"

While executing this line of code, Ruby creates a new structure called 
an st_table_entry that it will save into the hash table for my_hash, as shown in 
Figure 7-2.

Every time you write a method, Ruby 
creates an entry in a hash table.
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type

num_bins

num_entries

bins

RHash

tbl

st_table_entry

:key => "value"

0 1 2 3 4 5 6 7 8 9 10

st_table

Figure 7-2: A Ruby hash object containing a single value

Here you can see Ruby saved the new key/value pair under the third 
bucket, number 2. Ruby did this by taking the given key—in this example, 
the symbol :key—and passing it to an internal hash function that returns a 
pseudorandom integer:

some_value = internal_hash_function(:key)

Next, Ruby takes the hash value—in this example, some_value—and 
calculates the modulus by the number of bins, which is the remainder after 
dividing by the number of bins.

some_value % 11 = 2

NO  T E 	 In Figure 7-2, I assume that the actual hash value for :key divided by 11 leaves a 
remainder of 2. Later in this chapter, I’ll explore in more detail the hash functions 
that Ruby actually uses. 

Now let’s add a second element to the hash:

my_hash[:key2] = "value2"

This time let’s imagine that the hash value of :key2 divided by 11 yields 
a remainder of 5.

internal_hash_function(:key2) % 11 = 5

Figure 7-3 shows that Ruby places a second st_table_entry structure 
under bin number 5, the sixth bin.
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st_table

type

num_bins

num_entries

bins

RHash

tbl

st_table_entry

:key => "value"

st_table_entry

:key2 => "value2"

0 1 2 3 4 5 6 7 8 9 10

Figure 7-3: A Ruby hash object containing two values

Retrieving a Value from a Hash Table
The benefit of using a hash table becomes clear when you ask Ruby to 
retrieve the value for a given key. For example:

p my_hash[:key]
 => "value"

If Ruby had saved all of the keys and values in an array or linked list, it 
would have to iterate over all the elements in that array or list, looking for 
:key. This might take a very long time, depending on the number of elements. 
But using a hash table, Ruby can jump straight to the key it needs to find by 
recalculating the hash value for that key. 

To recalculate the hash value for a particular key, Ruby simply calls the 
hash function again:

some_value = internal_hash_function(:key)

Then, it redivides the hash value by the number of bins to get the 
remainder, or the modulus.

some_value % 11 = 2
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At this point, Ruby knows to look in bin number 2 for the entry with 
the key of :key. Ruby can later find the value for :key2 by repeating the same 
hash calculation.

internal_hash_function(:key2) % 11 = 5

NO  T E 	 The C library used by Ruby to implement hash tables was written in the 1980s by 
Peter Moore from the University of California, Berkeley. Later, it was modified by 
the Ruby core team. You can find Moore’s hash table code in the C code files st.c and 
include/ruby/st.h. All of the function and structure names in that code use the 
naming convention st_. The definition of the RHash structure that represents every 
Ruby Hash object is in the include/ruby/ruby.h file. Along with RHash, this file con-
tains all of the other primary object structures used in the Ruby source code: RString, 
RArray, and so on.

Experiment 7-1: Retrieving a Value from Hashes of 
Varying Sizes
This experiment will create hashes of wildly different sizes, from 1 to 
1 million elements, and then measure how long it takes to find and return 
a value from each of these hashes. Listing 7-1 shows the experiment code.

require 'benchmark'

u 21.times do |exponent|

  target_key = nil

v   size = 2**exponent
  hash = {}

w   (1..size).each do |n|
    index = rand

x     target_key = index if n > size/2 && target_key.nil?
y     hash[index] = rand

  end

  GC.disable

  Benchmark.bm do |bench|
    bench.report("retrieving an element
                  from a hash with #{size} elements 10000 times") do
      10000.times do

z         val = hash[target_key]
      end
    end
  end
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  GC.enable
end

Listing 7-1: Measuring how long it takes to retrieve an element from hashes of wildly 
different sizes

At u the outer loop iterates over powers of two, calculating different 
values for size at v. These sizes will vary from 1 to about 1 million. Next, 
the inner loop at w inserts that number of elements into a new empty 
hash at .

After disabling garbage collection to avoid skewing the results, 
Experiment 7-1 uses the benchmark library to measure how long it takes 
to retrieve a value 10,000 times from each hash at z. The line of code at x 
saves one of the random key values to use below at z as target_key.

The results in Figure 7-4 show that Ruby can find and return a value 
from a hash containing over 1 million elements just as fast as it can return 
one from a small hash. 
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Figure 7-4: Time to retrieve 10,000 values (ms) vs. hash size for Ruby 2.0 

Clearly Ruby’s hash function is very fast, and once Ruby identifies the 
bin containing the target key, it can very quickly find the corresponding value 
and return it. What’s remarkable here is that the chart is more or less flat.
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How Hash Tables Expand to Accommodate More Values
If there are millions of st_table_entry structures, why does distributing 
them among 11 bins help Ruby search quickly? Because even if the hash 
function is fast, and even if Ruby distributes the values evenly among the 
11 bins in the hash table, Ruby still has to search among almost 100,000 
elements in each bin to find the target key if there are 1 million elements 
overall.

Something else must be going on here. It seems that Ruby must add 
more bins to the hash table as more and more elements are added. Let’s 
look again at how Ruby’s internal hash table code works. Continuing with 
the example from Figures 7-1 through 7-3, suppose I keep adding more and 
more elements to my hash.

my_hash[:key3] = "value3"
my_hash[:key4] = "value4"
my_hash[:key5] = "value5"
my_hash[:key6] = "value6"

As we add more elements, Ruby continues to create more st_table_entry 
structures and add them to different bins.

Hash Collisions
Eventually two or more elements might be saved into the same bin. 
When this happens, we have a hash collision. This means that Ruby is no 
longer able to uniquely identify and retrieve a key based solely on the 
hash function. 

Figure 7-5 shows the linked list Ruby uses to track the entries in each 
bin. Each st_table_entry structure contains a pointer to the next entry in the 
same bin. As you add more entries to the hash, the linked lists get longer 
and longer.
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Figure 7-5: A hash table containing 44 values
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To retrieve a value, Ruby needs to iterate over the linked list and com-
pare each key with the target. This isn’t a serious problem as long as the 
number of entries in a single bin doesn’t grow too large. For integers or 
symbols, which are typically used as hash keys, this is a simple numerical 
comparison. However, if you use a more complex data type, such as a cus-
tom object, Ruby calls the eql? method on the keys to check whether each 
key in the list is the target. As you might guess, eql? returns true if two values 
are equal and false if they are not.

Rehashing Entries
To keep these linked lists from growing out of control, Ruby measures the 
density, or average number of entries per bin. In Figure 7-5 you can see that 
the average number of entries per bin is about 4. This means that the hash 
value modulus 11 has started to return repeated values for different keys 
and hash values; thus, there have been some hash collisions.

Once the density exceeds 5, a constant value in Ruby’s C source code, 
Ruby allocates more bins and then rehashes, or redistributes, the existing 
entries across the new bin set. If we keep adding more key/value pairs, for 
example, Ruby eventually discards the array of 11 bins and allocates an 
array of 19 bins, as shown in Figure 7-6.
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Figure 7-6: A hash table containing 65 values

In this figure the bin density has dropped to about 3.
By monitoring bin density, Ruby guarantees that the linked lists remain 

short and that retrieving a hash element is always fast. After calculating the 
hash value, Ruby just needs to step through one or two elements to find the 
target key.
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How Doe s Ruby R e h a sh E n t r ie s in a H a sh Ta bl e?

You can find the rehash function (the code that loops through the st_table_entry 
structures and recalculates which bin to put the entry into) in the st.c source file. To 
keep things simple, Listing 7-2 shows the version of rehash from Ruby 1.8.7. While 
Ruby 1.9 and 2.0 work largely the same way, their C rehash code is somewhat more 
complex.

static void
rehash(table)
    register st_table *table;
{
    register st_table_entry *ptr, *next, **new_bins;
    int i, old_num_bins = table->num_bins, new_num_bins;
    unsigned int hash_val;

u     new_num_bins = new_size(old_num_bins+1);
    new_bins = (st_table_entry**)Calloc(new_num_bins,
                                        sizeof(st_table_entry*));

v     for(i = 0; i < old_num_bins; i++) {
        ptr = table->bins[i];
        while (ptr != 0) {
            next = ptr->next;

w             hash_val = ptr->hash % new_num_bins;
x             ptr->next = new_bins[hash_val];

            new_bins[hash_val] = ptr;
            ptr = next;
        }
    }

y     free(table->bins);
    table->num_bins = new_num_bins;
    table->bins = new_bins;
}

Listing 7-2: The C code inside Ruby 1.8.7 that rehashes a hash table

In this listing, the new_size method call at u returns the new bin count. Once 
Ruby has the new bin count, it allocates the new bins and then iterates over all the 
existing st_table_entry structures (all the key/value pairs in the hash) beginning at v. 
For each st_table_entry Ruby recalculates the bin position using the same modulus 
formula at w: hash_val = ptr->hash % new_num_bins. Then, Ruby saves each entry in 
the linked list for that new bin at x. Finally, Ruby updates the st_table structure and 
frees the old bins at y.
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Experiment 7-2: Inserting One New Element into 
Hashes of Varying Sizes
One way to test whether this rehashing, or redistribution, of entries really 
occurs is to measure the amount of time Ruby takes to save one new element 
into existing hashes of different sizes. As we add more elements to the same 
hash, we should eventually see evidence that Ruby is taking extra time to 
rehash the elements.

The code for this experiment is shown in Listing 7-3.

require 'benchmark'

u 100.times do |size|

  hashes = []
v   10000.times do

    hash = {}
    (1..size).each do
      hash[rand] = rand
    end
    hashes << hash
  end

  GC.disable

  Benchmark.bm do |bench|
    bench.report("adding element number #{size+1}") do
      10000.times do |n|

w         hashes[n][size] = rand
      end
    end
  end

  GC.enable
end

Listing 7-3: Adding one more element to hashes of different sizes

At u the outer loop iterates over hash sizes from 0 to 100, and at v the 
inner loop creates 10,000 hashes of the given size. After disabling garbage 
collection, this experiment uses the benchmark library to measure how 
long it takes Ruby to insert a single new value at w into all 10,000 hashes of 
the given size.

The results are surprising! Figure 7-7 shows the results for Ruby 1.8.
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Figure 7-7: Time to add 10,000 key/value pairs vs. hash size (Ruby 1.8)

Interpreting these data values from left to right, we see the following:

•	 It takes about 7 ms to insert the first element into an empty hash 
(10,000 times).

•	 As the hash size increases from 2 to 3 and then up to about 60 or 65, 
the amount of time required to insert a new element slowly increases.

•	 It takes around 11 to 12 ms to insert each new key/value pair into a 
hash that contains 64, 65, or 66 elements (10,000 times).

•	 A huge spike! Inserting the 67th key/value pair takes over twice as 
much time: about 26 ms instead of 11 ms for 10,000 hashes!

•	 After inserting the 67th element, the time required to insert additional 
elements drops to about 10 ms or 11 ms and then slowly increases again 
from there.



The Hash Table: The Workhorse of Ruby Internals   179

What’s going on here? Well, Ruby spends the extra time required 
to insert that 67th key/value pair reallocating the bin array from 11 to 
19 bins and then reassigning the st_table_entry structures to the new 
bin array.

Figure 7-8 shows the same graph for Ruby 2.0. This time the bin density 
threshold is different. Instead of taking extra time to reallocate the elements 
into bins on the 67th insert, Ruby 2.0 does it when the 57th element is 
inserted. Later Ruby 2.0 performs another reallocation after the 97th ele-
ment is inserted.
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Figure 7-8: Time required to add 10,000 key/value pairs vs. hash size (Ruby 2.0) 

The two smaller spikes on the 1st and 7th insert in this figure are curi-
ous. While not as pronounced as the spikes at the 57th and 97th elements, 
these smaller spikes are nonetheless noticeable. As it turns out, Ruby 2.0 
contains another optimization that speeds up hash access even more for 
small hashes that contain less than 7 elements. I’ll discuss this further in 
“Hash Optimization in Ruby 2.x” on page 187.
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W he r e Do t he M agic Numbe rs 57 a nd 67 Come F rom?

To see where these magic numbers come from (57, 67, and so on), look at the top 
of the st.c code file for your version of Ruby. You should find a list of prime numbers 
like the ones shown in Listing 7-4.

/*
Table of prime numbers 2^n+a, 2<=n<=30.
*/
static const unsigned int primes[] = {

u   8 + 3,
v   16 + 3,
w   32 + 5,

  64 + 3,
  128 + 3,
  256 + 27,
  512 + 9,
--snip--

Listing 7-4: Ruby uses an algorithm based on prime numbers to determine the number of buckets 
required in each hash table.

This C array lists some prime numbers that occur near powers of 2. Peter Moore’s 
hash table code uses this table to decide how many bins to use in the hash table. For 
example, the first prime number in the list above is 11 at u, which is why Ruby hash 
tables start with 11 bins. Later, as the number of elements increases, the number of 
bins increases to 19 at v, then to 37 at w, and so on.

Ruby always sets the number of hash table bins to a prime number in order to 
make it more likely that the hash values will be evenly distributed among the bins. 
Mathematically, prime numbers help here because they are less likely to share a 
common factor with the hash values, should a poor hash function return not entirely 
random values. Remember Ruby divides the hash values by the number of bins 
while calculating which bin to place the value into. If the hash values and bin count 
shared a factor, or even worse if the hash values were multiples of the bin count, the 
bin number (modulus) might always be the same. This would lead to the table entries 
being unevenly distributed among the bins.

Elsewhere in the st.c file, you should see this C constant:

#define ST_DEFAULT_MAX_DENSITY 5

This constant defines the maximum allowed density, or the average number of 
elements per bin. 

Finally, you should see the code that decides when to perform a bin realloca-
tion by finding where the constant ST_DEFAULT_MAX_DENSITY is used in st.c. For Ruby 1.8, 
you’ll find this code:

if (table->num_entries/(table->num_bins) > ST_DEFAULT_MAX_DENSITY) {
  rehash(table);
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How Ruby Implements Hash Functions
Now for a closer look at the actual 
hash function Ruby uses to assign 
keys and values to bins in hash tables. 
This function is central to the way 
the hash object is implemented—if 
it works well, Ruby hashes are fast, 
but a poor hash function can cause 
severe performance problems. 
Furthermore, Ruby uses hash tables 
internally to store its own informa-
tion, in addition to the data values 
you save in hash objects. Clearly 
having a good hash function is very 
important!

Let’s review how Ruby uses hash values. Remember that when you save 
a new element in a hash—a new key/value pair—Ruby assigns that element 
to a bin inside the internal hash table used by that hash object, as shown in 
Figure 7-9.

Ruby calculates the modulus of the key’s hash value based on the num-
ber of bins.

bin_index = internal_hash_function(key) % bin_count

Using the same example values we used earlier, this formula becomes:

2 = hash(:key) % 11

Hash functions allow Ruby to find which 
bin contains a given key and value.

Ruby 1.8 rehashes from 11 to 19 bins when the value num_entries/11 is greater 
than 5—that is, when it equals 66. As this check is performed before a new ele-
ment is added, the condition becomes true when you add the 67th element because 
num_entries would then be 66.

For Ruby 1.9 and Ruby 2.0, you’ll find this code instead:

if ((table)->num_entries >
    ST_DEFAULT_MAX_DENSITY * (table)->num_bins) {
  rehash(table);

You can see that Ruby 2.0 rehashes for the first time when num_entries is greater 
than 5*11, or when you insert the 57th element.
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Figure 7-9: A Ruby hash object containing a single value (repeated from Figure 7-2)

This formula works well because Ruby’s hash values are basically ran-
dom integers for any given input data. To get a feel for how Ruby’s hash 
function works, call the hash method, as shown in Listing 7-5.

$ irb
> "abc".hash
 => 3277525029751053763
> "abd".hash
 => 234577060685640459
> 1.hash
 => -3466223919964109258
> 2.hash
 => -2297524640777648528

Listing 7-5: Displaying the hash value for different Ruby objects

Here, even similar values have very different hash values. And if we call 
hash again, we always get the same integer value for the same input data.

> "abc".hash
 => 3277525029751053763
> "abd".hash
 => 234577060685640459
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Here’s how Ruby’s hash function actually works for most Ruby objects:

•	 When you call hash, Ruby finds the default implementation in the Object 
class. You can override this if you want to.

•	 The C code used by the Object class’s implementation of the hash 
method gets the C pointer value for the target object—that is, the 
actual memory address of that object’s RValue structure. This is essen-
tially a unique ID for that object.

•	 Ruby passes the pointer value through a complex C function (the hash 
function), which scrambles the bits in the value, producing a pseudo
random integer in a repeatable way.

In the case of strings and arrays, Ruby actually iterates through all of 
the characters in the string or the elements in the array and calculates a 
cumulative hash value. This guarantees that the hash will always be the 
same for any instance of a string or array and that it will change if any of 
the values in the string or array change. Integers and symbols are another 
special case. Ruby just passes their values right to the hash function.

To calculate hashes from values, Ruby 1.9 and 2.0 use a hash function 
called MurmurHash, which was invented by Austin Appleby in 2008. The 
name Murmur comes from the machine language operations used in the 
algorithm: multiply and rotate. (To learn how the Murmur algorithm actually 
works, read its C code in the st.c Ruby source code file. Or read Austin’s web 
page on Murmur: http://sites.google.com/site/murmurhash/.)

Ruby 1.9 and 2.0 initialize MurmurHash using a random seed value 
that is reinitialized each time you restart Ruby. This means that if you stop 
and restart Ruby, you’ll get different hash values for the same input data. It 
also means that if you try this yourself, you’ll get different values than those 
above, but the hash values will always be the same within the same Ruby 
process.

Experiment 7-3: Using Objects as Keys in a Hash
Because hash values are evenly distributed, once Ruby divides them by the 
bin count, say 11, the remaining values (the modulus values) are random 
numbers between 0 and 10. This means that the st_table_entry structures 
are evenly distributed over the available bins as they are saved in the hash 
table, which ensures that Ruby will be able to quickly find any given key. 
The number of entries per bin will always be small.

But what if Ruby’s hash function didn’t return random integers but 
rather returned the same integer for every input data value? What would 
happen?

In that case, every time you added a key/value to a hash, it would always 
be assigned to the same bin. Ruby would end up with all of the entries in 
a single long list under that one bin, with no entries in any other bin, as 
shown in Figure 7-10.

http://sites.google.com/site/murmurhash/
http://sites.google.com/site/murmurhash/
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Figure 7-10: A hash table created with a very poor hash function

If you tried to retrieve a value from this hash, Ruby would have to look 
through this long list, one element at a time, to find the requested key. In 
this scenario, loading a value from the hash would be very, very slow.

To prove this is the case—and to illustrate just how important Ruby’s 
hash function really is—we’ll use objects with poor hash functions as keys 
in a hash. We’ll repeat Experiment 7-1 here, but we’ll use instances of a 
class I defined as the key values instead of random numbers. Listing 7-6 
shows the code from Experiment 7-1, updated in two places.

require 'benchmark'

u class KeyObject
  def eql?(other)
    super
  end
end

21.times do |exponent|

  target_key = nil

  size = 2**exponent
  hash = {}
  (1..size).each do |n|

v     index = KeyObject.new
    target_key = index if n > size/2 && target_key.nil?
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    hash[index] = rand
  end

  GC.disable

  Benchmark.bm do |bench|
    bench.report("retrieving an element
                   from a hash with #{size} elements 10000 times") do
      10000.times do
        val = hash[target_key]
      end
    end
  end

  GC.enable

end

Listing 7-6: Measuring how long it takes to retrieve an element from hashes of wildly 
different sizes. This is the same as Listing 7-1, but using instances of KeyObject as keys.

At u we define an empty class called KeyObject. Note that I implemented 
the eql? method; this allows Ruby to search for the target key properly when 
I retrieve a value. However, in this example, I don’t have any interesting 
data in KeyObject, so I simply call super and use the default implementation 
of eql? in the Object class.

Then, at v we use new instances of KeyObject as the keys for my hash 
values. Figure 7-11 shows the results of this test.
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Figure 7-11: Time to retrieve 10,000 values vs. hash size, using objects as keys (Ruby 2.0)
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As you can see, the results are very similar to those in Figure 7-4. The 
chart is more or less flat. It takes about the same amount of time to retrieve 
a value from a hash with 1 million elements as it does for a hash with just 1 
element. No surprise there; using objects as keys hasn’t slowed down Ruby 
at all.

Now let’s change the KeyObject class and try again. Listing 7-7 shows the 
same code with a new hash function added at u.

require 'benchmark'

class KeyObject
  def hash

u     4
  end
  def eql?(other)
    super
  end
end

21.times do |exponent|

  target_key = nil

  size = 2**exponent
  hash = {}
  (1..size).each do |n|
    index = KeyObject.new
    target_key = index if n > size/2 && target_key.nil?
    hash[index] = rand
  end

  GC.disable

  Benchmark.bm do |bench|
    bench.report("retrieving an element
                  from a hash with #{size} elements 10000 times") do
      10000.times do
        val = hash[target_key]
      end
    end
  end

  GC.enable
end

Listing 7-7: KeyObject now has a very poor hash function.

I’ve purposefully written a very poor hash function. Instead of return-
ing a pseudorandom integer, the hash function in Listing 7-7 always returns 
the integer 4 at u, regardless of which KeyObject object instance you call 
it on. Now Ruby will always get 4 when it calculates the hash value. It will 
have to assign all of the hash elements to bin number 4 in the internal hash 
table, as in Figure 7-10. 
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Let’s try this to see what happens! Figure 7-12 shows the results of run-
ning the code from Listing 7-7.
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Figure 7-12: Time to retrieve 10,000 values vs. hash size, using a poor hash function  
(Ruby 2.0)

Figure 7-12 is very different from Figure 7-11! Notice the scale of the 
graph. The y-axis shows milliseconds, and the x-axis shows the number of 
elements in the hash on a logarithmic scale. But this time, notice that we 
have thousands of milliseconds—which means actual seconds—on the 
y-axis! 

With one or a few elements, we can retrieve the 10,000 values very 
quickly—so quickly that the time is too small to appear on this graph. In 
fact, it takes about the same 1.5 ms. However, when the number of ele-
ments increases past 100 and especially 1,000, the time required to load 
the 10,000 values increases linearly with the hash size. For a hash contain-
ing about 10,000 elements, it takes over 1.6 full seconds to load the 10,000 
values. If we continued the test with larger hashes, it would take minutes or 
even hours to load the values.

What’s happening here is that all of the hash elements are saved into 
the same bin, forcing Ruby to search through the list one key at a time.

Hash Optimization in Ruby 2.x
Starting with version 2.0, Ruby introduced a new optimization to make 
hashes work even faster. For hashes that contain 6 or fewer elements, Ruby 



188   Chapter 7

now avoids calculating the hash value entirely and simply saves the hash 
data in an array. These are known as packed hashes. Figure 7-13 shows a 
packed hash.

st_table

type

real_entries

entries

RHash

tbl

:key => value

:key2 => value2

:key3 => value3

:key4 => value4

:key5 => value5

:key6 => value6

Figure 7-13: Internally, Ruby 2.x saves small hashes  
with 6 or fewer elements as arrays.

Ruby 2.x doesn’t use the st_table_entry structure for small hashes, nor 
does it create a table of bins. Instead, it creates an array and saves the key/value 
pairs directly into this array. The array is large enough to fit 6 key/value pairs; 
once you insert a 7th key and value, Ruby discards the array, creates the bin 
array, and moves all 7 elements into st_table_entry structures as usual by cal-
culating hash values. This explains the small spike we saw inserting the 7th 
element in Figure 7-8 (page 179). real_entries saves the number of values 
saved in the array between 0 and 6.

In a packed hash, there are only 6 or fewer elements; thus, it’s faster for 
Ruby to iterate over the key values looking for a target value than it would 
be to calculate a hash value and use a bin array. Figure 7-14 shows how Ruby 
2.x retrieves an element from a packed hash.

To find the value for a given key of target, Ruby iterates through the 
array and calls the eql? method on each key value if the values are objects. 
For simple values, such as integers or symbols, Ruby just uses a numerical 
comparison. Ruby 2.x never calls the hash function at all for packed hashes.
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st_table

type

real_entries

entries

RHash

tbl

:key => value

:key2 => value2

:key3 => value3

:key4 => value4

:key5 => value5

:key6 => value6

:key.eql?(target)

:key2.eql?(target)

:key3.eql?(target)

etc...

Figure 7-14: For small hashes, Ruby 2.x iterates over the array to find  
a given key.

Summary
Understanding hash tables is key to understanding how Ruby works inter-
nally because the speed and flexibility of hash tables allow Ruby to use 
them in many ways. 

At the beginning of this chapter, we learned how hash tables are able 
to return values quickly, regardless of how many elements are in the table. 
Next, we learned how Ruby automatically increases the size of a hash table 
as you add more and more elements to it. The user of the hash table doesn’t 
need to worry about how fast or large the table is. Hash tables will always be 
fast and will automatically expand as necessary.

Finally, we looked at the importance of Ruby’s hash function. The hash 
table’s algorithm depends on the underlying hash function. With an effec-
tive hash function, values are evenly distributed across the bins in the hash 
table with few collisions, allowing them to be saved and retrieved quickly. 
However, with a poor hash function, values would be saved in the same bin, 
leading to poor performance.



Blocks are Ruby’s 
implementation of 

closures.



8
H o w  R u b y  B o rr  o w e d  a 

D e c a d e s - O l d  I d e a  f r o m  Li  s p 

Blocks are one of the most commonly used and pow-
erful features of Ruby because they allow you to pass 
a code snippet to Enumerable methods, such as each, 
detect, or inject. Using the yield keyword, you can also 
write your own custom iterators or functions that call 
blocks for other reasons. Ruby code containing blocks 
is often more succinct, elegant, and expressive than 
equivalent code in older languages, such as C.

But don’t jump to the conclusion that blocks are a new idea! In fact, 
blocks are not new to Ruby at all. The computer science concept behind 
blocks, called closures, was first invented by Peter J. Landin in 1964, a few 
years after the original version of Lisp was created by John McCarthy in 
1958. Closures were later adopted by Lisp, or—more precisely—a dialect 
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of Lisp called Scheme, which was invented by Gerald Sussman and Guy Steele 
in 1975. Sussman and Steele’s use of closures in Scheme brought the idea to 
many programmers for the first time.

But what does the word closure actually mean in this context? In other 
words, exactly what are Ruby blocks? Are they just the snippet of Ruby code 
that appears between the do and end keywords? In this chapter I’ll review 
how Ruby implements blocks internally and demonstrate how they meet the 
definition of closure used by Sussman and Steele back in 1975. I’ll also show 
how blocks, lambdas, and procs are all different ways of looking at closures.

Blocks: Closures in Ruby
Internally, Ruby represents each block using a C 
structure called rb_block_t, shown in Figure 8-1. 
By learning what Ruby stores in rb_block_t, we can 
find out exactly what a block is.

rb_block_t

??

Figure 8-1: What’s 
inside the rb_block_t 
C structure?

Roa dm a p
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As we did in Chapter 5 with the RClass structure, let’s deduce the con-
tents of the rb_block_t structure based on what we know blocks can do in 
Ruby. We’ll begin with the most obvious attribute of blocks. We know that 
each block must consist of a piece of Ruby code, or internally a set of com-
piled YARV bytecode instructions. For example, suppose we call a method 
and pass a block as a parameter, as shown in Listing 8-1.

10.times do
  str = "The quick brown fox jumps over the lazy dog."
  puts str
end

Listing 8-1: Superficially, a block is just a snippet of Ruby code.

When executing the 10.times call, Ruby needs to know what code to iter-
ate over. Therefore, the rb_block_t structure must contain a pointer to that 
code, as shown in Figure 8-2.

rb_block_t

iseq

putstring
setlocal
putself
getlocal
send
leave

"The quick brown fox..."
2, 0

2, 0
<callinfo!mid:puts, argc:1...

Figure 8-2: The rb_block_t structure contains a pointer to a snippet of YARV instructions.

The value iseq is a pointer to the YARV instructions for the Ruby code 
in the block.

Another obvious but often overlooked behavior of blocks is that they 
can access variables in the surrounding or parent Ruby scope, as shown in 
Listing 8-2.

u str = "The quick brown fox"
v 10.times do
w   str2 = "jumps over the lazy dog."
x   puts "#{str} #{str2}"

end

Listing 8-2: The code inside the block accesses the variable str from the surrounding code.

Here the puts function call at x refers equally to the str2 variable 
inside the block and the str variable defined in the surrounding code at u. 
Obviously blocks can access values from the code surrounding them. This 
ability is one of the things that makes blocks useful.
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Blocks have in some sense a dual personality. On the one hand, they 
behave like separate methods: You can call them and pass them arguments 
just as you would any method. On the other hand, they’re part of the sur-
rounding function or method. 

Stepping Through How Ruby Calls a Block
How does this work internally? Does Ruby implement blocks as separate 
methods or as part of the surrounding method? Let’s step through Listing 8-2 
to see what happens inside Ruby when you call a block.

When Ruby executes the first line of code from Listing 8-2 at u, 
str = "The quick brown fox", YARV stores the local variable str on its inter-
nal stack. YARV tracks the location of str using the EP, or environment 
pointer, located in the current rb_control_frame_t structure, as shown in 
Figure 8-3.1

locals: str

YARV internal stack
Stack frame for
top-level scope

rb_control_frame_t

EP

Figure 8-3: Ruby saves the local variable str on the stack.

Next, Ruby reaches the 10.times do call at v in Listing 8-2. Before 
executing the actual iteration—that is, before calling the times method—
Ruby creates and initializes a new rb_block_t structure to represent the 
block. Ruby needs to create the block structure now because the block is 
really just another argument to the times method. Figure 8-4 shows this 
new rb_block_t structure.

When creating the new block structure, Ruby copies the current value 
of the EP into the new block. In other words, Ruby saves the location of the 
current stack frame in the new block.

1. If the outer code was located inside a function or method, then the EP would point to the 
stack frame as shown. But if the outer code was located in the top-level scope of your Ruby 
program, then Ruby would use dynamic access to save the variable in the TOPLEVEL_BINDING 
environment instead. Regardless, the EP will always indicate the location of the str variable.
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locals: str

YARV internal stack

Stack frame for
top-level scope

rb_control_frame_t

EP

rb_block_t

EP

iseq

Figure 8-4: Ruby creates a new rb_block_t structure before calling  
the method and passing the block to it.

Next, Ruby calls the times method on the object 10, an instance of the 
Fixnum class. While doing this, YARV creates a new frame on its internal 
stack. Now we have two stack frames: above, a new stack frame for the 
Fixnum.times method, and below, the original stack frame used by the top-
level function (see Figure 8-5).

locals: str

YARV internal stack

Stack frame for internal
Fixnum.times C code

rb_control_frame_t

Figure 8-5: Ruby creates a new stack frame when it executes  
the 10.times call.

Ruby implements the times method internally using its own C code. 
Although this is a built-in method, Ruby implements it just as you probably 
would. Ruby starts to iterate over the numbers 0, 1, 2, and so on, up to 9, 
and then it calls yield, calling the block once for each of these integers. 
Finally, the code that implements yield internally calls the block each time 
it moves through the loop, pushing a third frame onto the top of the stack 
for the code inside the block to use. Figure 8-6 shows this third stack frame.
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locals: str

YARV internal stack
Stack frame for block code

rb_control_frame_t

rb_block_t

EP

iseq

locals: str2

EP

Figure 8-6: Ruby creates a third stack frame when the 10.times  
method yields to the block.

On the left side of the figure, we now have three stack frames:

•	 On the top is the new stack frame for the block, containing the str2 
variable defined at w in Listing 8-2.

•	 In the middle is the stack frame used by the internal C code that imple-
ments the Fixnum#times method.

•	 And at the bottom is the original function’s stack frame, containing the 
str variable defined at u in Listing 8-2.

While creating the new stack frame, Ruby’s internal yield code copies the 
EP from the block into the new stack frame. Now the code inside the block 
can access both its local variables, directly via the rb_control_frame_t structure, 
and the variables from the parent scope, indirectly via the EP pointer using 
dynamic variable access. Specifically, this allows the puts statement at x in 
Listing 8-2 to access the str2 variable from the parent scope.

Borrowing an Idea from 1975
So far we’ve seen that Ruby’s rb_block_t structure contains two important 
values:

•	 A pointer to a snippet of YARV code instructions—the iseq pointer

•	 A pointer to a location on YARV’s internal stack, the location that was 
at the top of the stack when the block was created—the EP pointer

Figure 8-7 shows these two values in the rb_block_t structure.
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locals: str

YARV internal stack

rb_block_t

EP

iseq

putstring
setlocal
putself
getlocal
tostring
etc...

"jumps over the lazy dog."
2, 0

2, 1

Figure 8-7: So far we’ve seen that Ruby blocks contain a pointer to a YARV instruction 
snippet and a location on the YARV stack.

We also saw that Ruby uses the EP 
when a block accesses values from the sur-
rounding code. At first, this seems like a 
very technical, unimportant detail. This 
is obviously a behavior we expect Ruby 
blocks to exhibit, and the EP seems to be a 
minor, uninteresting part of Ruby’s inter-
nal implementation of blocks. Or is it? 

The EP is actually a profoundly impor-
tant part of Ruby internals. It’s the basis 
for Ruby’s implementation of closures, the 
computer science concept introduced in 
Lisp long before Ruby was created in the 
1990s. Here’s how Sussman and Steele 
defined the term closure in 1975:

In order to solve this problem we introduce the notion of a closure 
[11, 14] which is a data structure containing a lambda expression, 
and an environment to be used when that lambda expression is 
applied to arguments.2 

They define a closure to be the combination of the following:

•	 A “lambda expression”—that is, a function that takes a set of arguments

•	 An environment to be used when calling that lambda or function

2. Gerald J. Sussman and Guy L. Steele, Jr., “Scheme: An Interpreter for Extended Lambda 
Calculus” (MIT Artificial Intelligence Laboratory, AI Memo No. 349, December 1975).

The IBM 704, above, was the first 
computer to run Lisp, in the early 
1960s. (Credit: NASA)
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Let’s take another look at the internal rb_block_t structure, repeated for 
convenience in Figure 8-8.

locals: str

YARV internal stack

rb_block_t

EP

iseq

putstring
setlocal
putself
getlocal
tostring
etc...

"jumps over the lazy dog."
2, 0

2, 1

Figure 8-8: Blocks are the combination of a function and the environment to use when 
calling that function.

This structure meets Sussman and Steele’s definition of a closure:

•	 iseq is a pointer to a lambda expression—a function or code snippet.

•	 EP is a pointer to the environment to be used when calling that lambda 
or function—that is, a pointer to the surrounding stack frame.

Following this train of thought, we can see that blocks are Ruby’s imple-
mentation of closures. Ironically, blocks—one of the features that makes 
Ruby so elegant and modern—are based on research and work done at least 
20 years before the birth of Ruby!

T he r b _ block _t a nd r b _con tr ol _ f r a me _t Str  uc t ur e s

In Ruby 1.9 and later, you’ll find the definition of the rb_block_t structure in the 
vm_core.h file, as shown in Listing 8-3.

typedef struct rb_block_struct {
u     VALUE self;
v     VALUE klass;
w     VALUE *ep;
x     rb_iseq_t *iseq;
y     VALUE proc;

} rb_block_t;

Listing 8-3: The definition of rb_block_t from vm_core.h
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You can see the iseq x and ep w values described above, along with a few 
other values:

•	 self u: The value the self pointer had when the block was first referred to is 
also an important part of the closure’s environment. Ruby executes block code 
inside the same object context that the code had outside the block.

•	 klass v: Along with self, Ruby also keeps track of the class of the current 
object using this pointer.

•	 proc y: Ruby uses this value when it creates a proc object from a block. As 
we’ll see in the next section, procs and blocks are closely related.

Right above the definition of rb_block_t in vm_core.h, we see the definition of the 
rb_control_frame_t structure, as shown in Listing 8-4.

typedef struct rb_control_frame_struct {
    VALUE *pc;                  /* cfp[0] */
    VALUE *sp;                  /* cfp[1] */
    rb_iseq_t *iseq;            /* cfp[2] */
    VALUE flag;                 /* cfp[3] */

u     VALUE self;                 /* cfp[4] / block[0] */
    VALUE klass;                /* cfp[5] / block[1] */
    VALUE *ep;                  /* cfp[6] / block[2] */
    rb_iseq_t *block_iseq;      /* cfp[7] / block[3] */

v     VALUE proc;                 /* cfp[8] / block[4] */
    const rb_method_entry_t *me;/* cfp[9] */

#if VM_DEBUG_BP_CHECK
    VALUE *bp_check;            /* cfp[10] */
#endif
} rb_control_frame_t;

Listing 8-4: The definition of rb_control_frame_t from vm_core.h

Notice that this C structure also contains the same values as the rb_block_t struc-
ture: everything from self at u to proc at v. The fact that these two structures share 
the same values is one of the interesting, but confusing, optimizations Ruby uses 
internally to speed things up. Whenever you first refer to a block by passing it into a 
method call, Ruby needs to create a new rb_block_t structure and copy values such as 
the EP from the current rb_control_frame_t structure into it. However, because these 
two structures contain the same values in the same order (rb_block_t is a subset of 
rb_control_frame_t), Ruby can avoid creating a new rb_block_t structure and instead 
set the new block pointer to the common portion of the rb_control_frame_t structure. 
In other words, instead of allocating new memory to hold the new rb_block_t struc-
ture, Ruby simply passes a pointer to the middle of the rb_control_frame_t structure. 
By doing so, Ruby avoids unnecessary calls to malloc and speeds up the process of 
creating blocks.
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Experiment 8-1: Which Is Faster: A while Loop or 
Passing a Block to each?
Ruby code containing blocks is often more elegant and succinct than the 
equivalent code in older languages, such as C. For example, in C we would 
write the simple while loop shown in Listing 8-5 to add up the numbers 1 
through 10.

#include <stdio.h>
main()
{
  int i, sum;
  i = 1;
  sum = 0;
  while (i <= 10) {
    sum = sum + i;
    i++;
  }
  printf("Sum: %d\n", sum);
}

Listing 8-5: Adding up 1 through 10 in C using a while loop

Listing 8-6 shows the same while loop in Ruby.

sum = 0
i = 1
while i <= 10
  sum += i
  i += 1
end
puts "Sum: #{sum}"

Listing 8-6: Adding up 1 through 10 in Ruby using a while loop

However, most Rubyists would write this code using a range object with 
a block, as shown in Listing 8-7.

sum = 0
(1..10).each do |i|
  sum += i
end
puts "Sum: #{sum}"

Listing 8-7: Adding up 1 through 10 in Ruby using a range object and a block

Aesthetics aside, is there any performance penalty for using a block 
here? Does Ruby slow down significantly in order to create the new 
rb_block_t structure, copy the EP value, and create new stack frames?
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Well, I won’t benchmark the C code because clearly it will be faster than 
either option using Ruby. Instead, let’s measure how long it takes Ruby, 
using a simple while loop, to add up the integers 1 through 10 to obtain 55, 
as shown in Listing 8-8.

require 'benchmark'
ITERATIONS = 1000000
Benchmark.bm do |bench|
  bench.report("iterating from 1 to 10, one million times") do
    ITERATIONS.times do
      sum = 0
      i = 1
      while i <= 10
        sum += i
        i += 1
      end
    end
  end
end

Listing 8-8: Benchmarking the while loop (while.rb)

Here, I’m using the benchmark library to measure the time required to 
run the while loop one million times. Admittedly, I’m using a block to con-
trol the million iterations (ITERATIONS.times do), but I’ll use the same block 
in the next test as well. Using Ruby 2.0 on my laptop, I can run through this 
code in just under a half second:

$ ruby while.rb
      user     system      total        real
      iterating from 1 to 10, one million times  0.440000   0.000000
                                                 0.440000 (  0.445757)

Now let’s measure the time required to run the code shown in Listing 8-9, 
which uses each with a block.

require 'benchmark'
ITERATIONS = 1000000
Benchmark.bm do |bench|
  bench.report("iterating from 1 to 10, one million times") do
    ITERATIONS.times do
      sum = 0
      (1..10).each do |i|
        sum += i
      end
    end
  end
end	

Listing 8-9: Benchmarking a call to a block (each.rb)
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This time it takes somewhat longer to run through the loop a million 
times, about 0.75 seconds:

$ ruby each.rb
      user     system      total        real
      iterating from 1 to 10, one million times  0.760000   0.000000
                                                 0.760000 (  0.765740)

Ruby requires about 71 percent more time to call the block 10 times, com-
pared to iterating through the simple while loop 10 times (see Figure 8-9).
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Figure 8-9: Ruby 2.0 uses 71 percent more time calling a block vs. a simple while loop. 
The graph shows the time for one million iterations (in seconds). 

Using each is slower because internally the Range#each method has to call 
or yield to the block each time around the loop. This involves a fairly large 
amount of work. In order to yield to a block, Ruby first has to create a new 
rb_block_t structure for that block, setting the EP in the new block to the 
referencing environment and passing the block into the call to each. Then 
each time around the loop Ruby has to create a new stack frame on YARV’s 
internal stack, call the block’s code, and finally copy the EP from the block 
to the new stack frame. Running a simple while loop is faster because Ruby 
needs only to reset the PC, or program counter, each time around the loop. 
It never calls a method or creates a new stack frame or a new rb_block_t 
structure.

Seventy-one percent more time seems like a large performance pen-
alty, and, depending on your work and the context of this while loop, it may 
or may not be important. If this loop were part of a time-sensitive, critical 
operation that your end users were waiting for, and if there weren’t other 
expensive operations inside the loop, it might be worth writing the iteration 
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using an old-fashioned C-style while loop. However, the performance of 
most Ruby applications, and certainly Ruby on Rails websites, is usually 
limited by database queries, network connections, and other factors, not by 
Ruby execution speed. It’s rare that Ruby’s execution speed has an immedi-
ate, direct impact on your application’s overall performance. (Of course, if 
you’re using a large framework, such as Ruby on Rails, then your Ruby code 
is a very small piece of a very large system. I imagine that Rails uses blocks 
and iterators many, many times while processing a simple HTTP request, 
apart from the Ruby code you write yourself.)

Lambdas and Procs: Treating a Function as a First-Class Citizen
Now to look at a more convoluted way of printing the “quick brown fox” string 
to the console. Listing 8-10 shows an example of using lambda.

u def message_function
v   str = "The quick brown fox"
w   lambda do |animal|
x     puts "#{str} jumps over the lazy #{animal}."

  end
end

y function_value = message_function
z function_value.call('dog')

Listing 8-10: Using lambda in Ruby

Let’s step through this code carefully. First, at u we define a method 
called message_function. Inside message_function, we create a local vari-
able at v called str. Next, at w we call lambda, and pass it a block. Inside 
this block, at x, we print the “quick brown fox” string again. However, 
message_function won’t immediately display the string because it doesn’t 
actually call the block at w. Instead, lambda returns the block we give it as 
a data value, which in turn is returned by message_function.

This is an example of “treating a function as a first-class citizen,” to para-
phrase a commonly used computer science expression. Once the block is 
returned from message_function, we save it in the local variable function_value 
at y and then call it explicitly, using the call method at z. With the lambda 
keyword—or the equivalent proc keyword—Ruby allows you to convert a 
block into a data value in this way.

I have lots of questions about Listing 8-10. 
What happens when we call lambda? How does Ruby 
convert the block into a data value, and what does 
it mean to treat this block as a first-class citizen? 
Does message_function return an rb_block_t structure 
directly, or does it return an rb_lambda_t structure? 
And what information would rb_lambda_t contain 
(see Figure 8-10)?

rb_lambda_t

??

Figure 8-10:  
Does Ruby use 
an rb_lambda_t 
C structure?  
And if so, what 
would it contain?
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Stack vs. Heap Memory
Before we can answer these questions, we need to take a closer look at how 
Ruby saves your data. Internally, Ruby saves your data in two places: on the 
stack or in the heap. 

We’ve seen the stack before. This is where Ruby saves local variables, 
return values, and arguments for each of the methods in your program. 
Values on the stack are valid only for as long as that method is running. 
When a method returns, YARV deletes its stack frame and all the values 
inside it.

Ruby uses the heap to save information that you might need for a while, 
even after a particular method returns. Each value in the heap remains 
valid for as long as there is a reference to it. Once a value is no longer 
referred to by any variable or object in your program, Ruby’s garbage col-
lection system deletes it, freeing its memory for other uses.

This scheme is not unique to Ruby. In fact, it’s used by many other pro-
gramming languages, including Lisp and C. And remember, Ruby itself is 
a C program. YARV’s stack design is based on the way C programs use the 
stack, and Ruby’s heap uses the underlying C heap implementation.

The stack and heap differ in one other important aspect. Ruby saves 
only references to data on the stack—that is, the VALUE pointers. For simple 
integer values, symbols, and constants such as nil, true, or false, the refer-
ence is the actual value. However, for all other data types, the VALUE is a 
pointer to a C structure containing the actual data, such as RObject. If only 
the VALUE references go on the stack, where does Ruby save the structures? 
In the heap. Let’s look at an example to understand this better.

A Closer Look at How Ruby Saves a String Value
Let’s look in detail at how Ruby handles the string value str from Listing 8-10. 
First, imagine YARV has a stack frame for the outer scope but has yet to call 
message_function. Figure 8-11 shows this initial stack frame.

YARV internal stack
Stack frame for

top-level function

rb_control_frame_t

Figure 8-11: To execute the code in Listing 8-11, Ruby starts with an  
initial stack frame.

In this figure you can see YARV’s internal stack on the left and the 
rb_control_frame_t structure on the right. Now suppose Ruby executes the 
message_function function call shown at y in Listing 8-10. Figure 8-12 shows 
what happens next.
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locals: str

YARV internal stack

Stack frame for
message_function

rb_control_frame_t

Figure 8-12: Ruby creates a second stack frame when calling  
message_function.

Ruby saves the str local variable in the new stack frame used by 
message_function. Let’s take a closer look at that str variable and how 
Ruby stores the “quick brown fox” string into it. Ruby stores each of your 
objects in a C structure called RObject, each of your arrays in a structure 
called RArray, each of your strings in a structure called RString, and so on. 
Figure 8-13 shows the “quick brown fox” string saved with RString.

str

RString

"The quick brown fox"

Figure 8-13: Ruby uses the RString C structure to save  
string values.

The actual string structure is shown on the right side of the figure, and 
a reference, or pointer, to the string is shown on the left. When Ruby saves a 
string value (or any object) onto the YARV stack, it actually places only the 
reference to the string on the stack. The actual string structure is saved in 
the heap instead, as shown in Figure 8-14 on the next page.

Once there are no longer any pointers referencing a particular object 
or value in the heap, Ruby frees that object or value during the next run of 
the garbage collection system. To demonstrate, suppose that my example 
code didn’t call lambda at all but rather immediately returned nil after sav-
ing the str variable, as shown in Listing 8-11.

def message_function
  str = "The quick brown fox"
  nil
end

Listing 8-11: This code doesn’t call lambda.
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locals: str

YARV internal stack

Stack frame for
message_function

rb_control_frame_t

RString

"The quick brown fox"

Stack

Heap

Figure 8-14: The str value on the stack is a reference to the RString structure saved in  
the heap.

Once this call to message_function finishes, YARV simply pops the str 
value off the stack (as well as any other temporary values saved there) and 
returns to the original stack frame, as shown in Figure 8-15.

YARV internal stack

Outer code
stack frame

rb_control_frame_t

RString

"The quick brown fox"

Stack

Heap ?

Will later be freed by GC

Figure 8-15: Now there is no longer a reference to the RString structure.
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As you can see in the figure, there is no longer a reference to the RString 
structure containing the “quick brown fox” string. Ruby’s garbage collec-
tion system is designed to identify values in the heap that don’t have any 
references to them, like the “quick brown fox” string here. After it identifies 
them, the GC system will free those orphaned values, returning that mem-
ory to the heap.

How Ruby Creates a Lambda
Now that we understand a bit more about the heap and how Ruby uses it, 
we’re ready to learn more about lambdas. Earlier when I used the phrase 
“treating a function as a first-class citizen,” I meant that Ruby allows you to 
treat functions or code as a data value, saving them into variables, passing 
them as arguments, and so on. Ruby implements this idea using blocks.

The lambda (or proc) keyword converts a block into a data value. But 
remember, blocks are Ruby’s implementation of closures. This means the 
new data value must somehow contain both the block’s code and referenc-
ing environment.

To see what I mean, let’s return to Listing 8-10, repeated here in 
Listing 8-12 with an eye toward its use of lambda.

def message_function
u   str = "The quick brown fox"
v   lambda do |animal|
w     puts "#{str} jumps over the lazy #{animal}."

  end
end
function_value = message_function

x function_value.call('dog')

Listing 8-12: Using lambda in Ruby (repeated from Listing 8-10)

Notice at x that when we call the lambda (the block), the puts state-
ment inside the block at w can access the str string variable defined at u 
inside message_function. How can this be? We’ve just seen how the str refer-
ence to the RString structure is popped off the stack when message_function 
returns! Obviously, after calling lambda, the value of str lives on so that the 
block can access it later.

When you call lambda, Ruby copies the entire contents of the current 
YARV stack frame into the heap, where the RString structure is located. 
For example, Figure 8-16 shows how the YARV stack looks just after the 
message_function starts at u in Listing 8-12. (To keep things simple, I’m not 
showing the RString structure, but remember that the RString structure will 
also be saved in the heap.)
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locals: str

YARV internal stack

Stack frame for
message_function

rb_control_frame_t

Figure 8-16: Ruby creates a second stack frame when calling  
message_function.

Next, Listing 8-12 calls lambda at v. Figure 8-17 shows what happens in 
Ruby when you call lambda.

The horizontal stack icon below the dotted line shows that Ruby creates 
a new copy of the stack frame for message_function in the heap. Now there 
is a second reference to the str RString structure, which means that Ruby 
won’t free it when message_function returns. 

In fact, along with the copy of the stack frame, Ruby creates two other 
new objects in the heap:

•	 An internal environment object, represented by the rb_env_t C structure 
at the lower left of the figure. It’s essentially a wrapper for the heap copy 
of the stack. As we’ll see in Chapter 9, you can access this environment 
object indirectly in your programs using the Binding class.

•	 A Ruby proc object, represented by the rb_proc_t structure. This 
is the actual return value from the lambda keyword; it’s what the 
message_function function returns.

Note that the new proc object, the rb_proc_t structure, contains an 
rb_block_t structure, including the iseq and EP pointers. Think of a proc as 
a kind of Ruby object that wraps up a block. As with a normal block, these 
keep track of the block’s code and the referencing environment for its 
closure. Ruby sets the EP in this block to point to the new heap copy of the 
stack frame.

Also, notice that the proc object contains an internal value called 
is_lambda. This is set to true for this example because we used the lambda 
keyword to create the proc. If I had instead created the proc using the 
proc keyword, or simply by calling Proc.new, then is_lambda would have been 
set to false. Ruby uses this flag to produce the slight behavior differences 
between procs and lambdas, though it’s best to think of procs and lambdas 
as essentially the same.
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locals: str

YARV internal stack Stack frame for
message_function

rb_control_frame_t

Stack

Heap

str rb_proc_t

rb_env_t

env envval

is_lambda

rb_block_t

iseq

EP

Figure 8-17: When you call lambda, Ruby copies the current stack frame to the heap.

How Ruby Calls a Lambda
Let’s go back to our lambda example in Listing 8-13.

def message_function
  str = "The quick brown fox"
  lambda do |animal|
    puts "#{str} jumps over the lazy #{animal}."
  end
end

u function_value = message_function
v function_value.call('dog')

Listing 8-13: Using lambda in Ruby (repeated again from Listing 8-10)
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What happens when message_function returns at u? Because the lambda 
or proc object is its return value, a reference to the lambda is saved in the 
stack frame for the outer scope in the function_value local variable. This pre-
vents Ruby from freeing the proc, the internal environment object, and the 
str variable, and there are now pointers referring to all of these values in 
the heap (see Figure 8-18).

YARV internal stack

Outer code
stack frame

rb_control_frame_t

rb_proc_t

Stack

Heap

locals: function_value

rb_env_t
str

Figure 8-18: Once message_function returns, the surrounding code holds a reference to 
the proc object.

When Ruby executes the call method on the proc object at v, it exe-
cutes its block as well. Figure 8-19 shows what happens in Ruby when you 
use the call method on a lambda or proc.

As with any block, when Ruby calls the block inside a proc object it 
creates a new stack frame and sets the EP to the block’s referencing envi-
ronment. However, that environment is a copy of a stack frame previously 
copied into the heap; the new stack frame contains an EP that points to 
the heap. This EP allows the block’s call to puts to access the str value 
defined in message_function. Figure 8-19 shows the argument to the proc, 
animal, saved in the new stack frame, like any other method or block 
argument.
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argument:
animal

EP

YARV internal stack

Stack frame
for Proc.call

rb_control_frame_t

Stack

Heap

str rb_proc_t

rb_env_t

env envval

is_lambda

rb_block_t

iseq

EP

Figure 8-19: Calling a proc object creates a new stack frame as usual and sets the EP to 
point to the heap’s referencing environment.

The Proc Object
We’ve seen that Ruby really has no structure called rb_lambda_t. In other 
words, the structure shown in Figure 8-20 doesn’t actually exist.

rb_lambda_t

??

Figure 8-20: Ruby doesn’t actually  
use a structure called rb_lambda_t.
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Instead, in this example, Ruby’s lambda keyword created a proc object—
really, a wrapper for the block we passed to the lambda or proc keyword. 
Ruby represents procs using an rb_proc_t C structure, as you can see in 
Figure 8-21.

putself
getlocal
tostring
putobject
getlocal
tostring
putobject
concatstrings
opt_send_simple
leave

2, 1

"jumps over the lazy"
2, 0

"."
4
<callinfo!mid:puts, ...

rb_proc_t

envval

is_lambda

rb_block_t

iseq

EP

Heap copy of stack frame

locals: str

Figure 8-21: Ruby procs are closures; they contain pointers to a function and a referencing 
environment.

This is a closure: It contains a function along with the environment that 
function was referred to or created in. The environment is a persistent copy 
of the stack frame saved in the heap.

A proc is a Ruby object. It contains the same information as other 
objects, including the RBasic structure. To save its object-related informa-
tion, Ruby uses a structure called RTypedData, along with rb_proc_t, to repre-
sent instances of the proc object. Figure 8-22 shows how these structures 
work together.

You might think of RTypedData as a kind of trick that Ruby’s C code uses 
to create a Ruby object wrapper around a C data structure. In this case, Ruby 
uses RTypedData to create an instance of the Proc Ruby class that represents 
a single copy of the rb_proc_t structure. The RTypedData structure contains 
the same RBasic information as all Ruby objects:

flags  Certain internal technical information Ruby needs to track

klass  A pointer to the Ruby class that the object is an instance of; 
the Proc class in this example
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RClass

[Proc class]

RTypedData

data

RBasic

flags

klass

VALUE

rb_proc_t

envval

is_lambda

rb_block_t

iseq

EP

Figure 8-22: Ruby saves the object-related information about  
proc objects in the RTypedData structure.

Figure 8-23 takes another look at how Ruby represents a proc object. 
The proc object is on the right next to an RString structure.

Notice that Ruby handles the string value and the proc similarly. As 
with strings, procs can be saved into variables or passed as arguments to a 
function call. Ruby uses the VALUE pointer to the proc whenever you refer to 
one or save one into a variable.

rb_proc_t

RTypedData

data

RBasic

flags

klass

VALUE

RString

String info...

RBasic

flags

klass

VALUE

Figure 8-23: Comparing a Ruby string with a proc
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Experiment 8-2: Changing Local Variables After 
Calling lambda
Listings 8-10 through 8-13 show how calling lambda copies the current stack 
frame in the heap. Now for a slightly different example. Listing 8-14 is basi-
cally the same, except that the line at v changes str after calling lambda.

def message_function
  str = "The quick brown fox"

u   func = lambda do |animal|
    puts "#{str} jumps over the lazy #{animal}."
  end

v   str = "The sly brown fox"
  func
end
function_value = message_function

w function_value.call('dog')

Listing 8-14: Which version of str will lambda copy to the heap (modify_after_lambda.rb)?

Because we call lambda at u before changing str to The sly brown fox 
at v, Ruby should have copied the stack frame to the heap, including the 
original value of str. That means that when we call the lambda at w, we 
should see the original “quick brown fox” string. However, running the 
code, we get the following:

$ ruby modify_after_lambda.rb
The sly brown fox jumps over the lazy dog.

What happened? Ruby somehow copied the new value of str, The sly 
brown fox, to the heap so we could access it when we called the lambda at w.

To find out how Ruby did this, let’s look more closely at what happens 
when you call lambda. Figure 8-24 shows how Ruby copies the stack frame to 
the heap, including the value str from Listing 8-14.

str = "The quick brown fox"

YARV internal stack
Stack frame for

message_function

rb_control_frame_t

Stack

Heap

str = "The quick brown fox"

EP

Figure 8-24: When you call lambda, Ruby copies the stack frame to the heap.
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Once this copy is made, the code at v in Listing 8-14 changes str to the 
“sly fox” string:

str = "The sly brown fox"

Because Ruby copied the stack frame when we called lambda, we should be 
modifying the original copy of str, not the new lambda copy (see Figure 8-25).

str = "The sly brown fox"

YARV internal stack
Stack frame for

message_function

rb_control_frame_t

Stack

Heap

str = "The quick brown fox"

EP

Figure 8-25: Does Ruby continue to use the original stack frame after making a heap copy?

The new heap copy of the string should have remained unmodified, 
and calling the lambda later should have given the original “quick fox” 
string, not the modified “sly fox” one. How does Ruby allow us to modify 
the new persistent copy of the stack once it’s been created by lambda?

As it turns out, once Ruby creates the new heap copy of the stack (the 
new rb_env_t structure or internal environment object), it resets the EP in 
the rb_control_frame_t structure to point to the copy. Figure 8-26 shows how 
Ruby resets the EP after creating a persistent heap copy of a stack frame.

str = "The quick brown fox"

YARV internal stack
Stack frame for

message_function

rb_control_frame_t

Stack

Heap

str = "The sly brown fox"

EP

Figure 8-26: Ruby resets the EP after creating a persistent heap copy of a stack frame.
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The difference here is that the EP now points down to the heap. 
Now when we call str = "The sly brown fox" at  in Listing 8-14, Ruby will 
use the new EP and access the value in the heap, not the original value on 
the stack. Notice The sly brown fox appears in the heap at the bottom of 
Figure 8-26.

Calling lambda More Than Once in the Same Scope
Another interesting behavior of the lambda keyword is that Ruby avoids mak-
ing copies of the stack frame more than once, as you can see in Listing 8-15.

i = 0
increment_function = lambda do
  puts "Incrementing from #{i} to #{i+1}"
  i += 1
end
decrement_function = lambda do
  i -= 1
  puts "Decrementing from #{i+1} to #{i}"
end

Listing 8-15: Calling lambda twice in the same scope

This code expects both lambda functions to operate on the local vari-
able i in the main scope. 

But if Ruby made a separate copy of the stack frame for each call to 
lambda, each function would operate on a separate copy of i. Look at the 
following example in Listing 8-16.

increment_function.call
decrement_function.call
increment_function.call
increment_function.call
decrement_function.call

Listing 8-16: Calling the lambdas created in Listing 8-15

If Ruby used a separate copy of i for each lambda function, the previ-
ous listing would generate the output shown in Listing 8-17.

Incrementing from 0 to 1
Decrementing from 0 to -1
Incrementing from 1 to 2
Incrementing from 2 to 3
Decrementing from -1 to -2

Listing 8-17: The output we would expect if each call to lambda created its own copy of the 
stack frame
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But we actually see the output shown in Listing 8-18.

Incrementing from 0 to 1
Decrementing from 1 to 0
Incrementing from 0 to 1
Incrementing from 1 to 2
Decrementing from 2 to 1

Listing 8-18: Because the lambda functions share the same heap copy of the stack, 
running Listing 8-16 generates this output.

Usually this is what you expect: Each block you pass to the lambdas 
accesses the same variable in the parent scope. Ruby achieves this by 
checking whether the EP already points to the heap. If so, as with the sec-
ond call to lambda in Listing 8-15, Ruby won’t create a second copy; it will 
simply reuse the same rb_env_t structure in the second rb_proc_t structure. 
Ultimately, both lambdas use the same heap copy of the stack.

Summary
In Chapter 3 we saw how YARV creates a new stack frame whenever you call 
a block, just as it does when you call a method. At first glance, Ruby blocks 
appear to be a special kind of method that you can call and pass arguments 
to. However, as we’ve seen in this chapter, there’s more to blocks than meets 
the eye.

Looking closely at the rb_block_t structure, we saw how blocks implement 
the computer science concept of closure in Ruby. Blocks are the combina-
tion of a function and an environment to use when calling that function. 
We learned that blocks have a curious dual personality in Ruby: They are 
similar to methods, but they also become part of the method that you call 
them from. The simplicity with which Ruby’s syntax allows for this dual role 
is one of the language’s most beautiful and elegant features.

Later we saw how Ruby allows you to treat functions or code as first-
class citizens using the lambda keyword, which converts a block into a data 
value that you can pass, save, and reuse. After reviewing the differences 
between stack and heap memory, we explored the way that Ruby imple-
ments lambdas and procs, and we saw that Ruby copies the stack frame 
to the heap when you call lambda or proc and reuses it when you call the 
lambda’s block. Finally, we saw how the proc object represents code as a 
data object in Ruby.



Metaprogramming becomes 
much easier to understand 
once you learn how Ruby 
implements it internally.



9
M e t a p r o g r a mm  i n g

One of the most confusing and daunting subjects Ruby 
developers face is metaprogramming. Metaprogramming, 
as indicated by the prefix meta, literally means to pro-
gram at a different or higher level of abstraction. Ruby 
provides many different ways for you to do this, allow-
ing your program to inspect and change itself dynam-
ically. In Ruby, your program can change itself!

Some of Ruby’s metaprogramming features allow your program to 
query for information about itself—for example, information about meth-
ods, instance variables, and superclasses. Other metaprogramming features 
allow you to perform normal tasks, such as defining a method or a constant, 
in an alternative and more flexible manner. Finally, methods such as eval 
allow your program to write new Ruby code from scratch, calling the parser 
and compiler at run time.
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In this chapter, we’ll focus on two important aspects of metaprogram-
ming. First, we’ll look at how you can alter the standard method definition 
process, the most common and practical use for metaprogramming. We’ll 
learn what Ruby normally does to assign a method to a class and how this 
is related to lexical scope. Then, we’ll look at alternative ways to define 
methods using metaclasses and singleton classes. We’ll also learn how Ruby 
implements the new, experimental refinements feature, allowing you to 
define methods and activate them later if you wish.
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In the second half of this chapter, we’ll see how you can write code that 
writes code with the eval method: metaprogramming in its purest form. 
We’ll also see how metaprogramming and closures are related. Like blocks, 
lambdas, and procs, eval and its related metaprogramming methods create 
a closure when you call them. In fact, we’ll learn how you can use the same 
mental model we developed in Chapter 8 for blocks to understand many of 
Ruby’s metaprogramming features.

Alternative Ways to Define Methods
Normally we define methods in Ruby using the def keyword. After def, we 
specify a name for the new method followed by the method body. By using 
some of Ruby’s metaprogramming features, however, we can define methods 
in alternative ways. We can create class methods instead of normal meth-
ods; we can create methods for a single object instance; and, as we’ll see in 
Experiment 9-2, we can create methods that can access the surrounding 
environment using a closure.

Next, we’ll look at what happens inside Ruby when you define a method 
in each of these ways using metaprogramming. In each case, studying what 
Ruby does internally will make Ruby’s metaprogramming syntax easier to 
understand. But before we tackle metaprogramming, let’s learn more about 
how Ruby normally defines a method. This knowledge will serve as a foun-
dation when we learn alternative ways to define a method.

Ruby’s Normal Method Definition Process
Listing 9-1 shows a very simple Ruby class containing a single method.

class Quote
  def display
    puts "The quick brown fox jumped over the lazy dog."
  end
end

Listing 9-1: Adding a method to a class using the def keyword 

How does Ruby execute this small program? And how does it know to 
assign the display method to the Quote class?

When Ruby executes the class keyword, it creates a new lexical scope 
for the new Quote class (see Figure 9-1). Ruby sets the nd_clss pointer in the 
lexical scope to point to an RClass structure for the new Quote class. Because 
it’s a new class, the RClass structure initially has an empty method table, as 
shown on the right side of the figure.

Next, Ruby executes the def keyword, which is used to define the display 
method. But how does Ruby create normal methods? What happens inter-
nally when you call def?
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nd_clss

nd_next

class Quote 

def display 
  puts    "The quick..."
end

end

RClass: Quote

method table:

etc.

Lexical
Scope:

Figure 9-1: Ruby creates a new lexical scope when you define a class.

By default, when you use def, you provide just the name of the new 
method. (We’ll see in the next section that you can also specify an object 
prefix along with the new method name.) Providing just the name of the 
new method with def instructs Ruby to use the current lexical scope to find 
the target class, as shown in Figure 9-2.

def display 
  --snip--
end

(no object
specified)

nd_clss

nd_next
RClass: Quote

method table:

Figure 9-2: By default, Ruby uses the current lexical scope  
to find the target class for a new method.

When Ruby initially compiles Listing 9-1, it creates a separate snippet of 
YARV code for the display method. Later, when executing the def keyword, 
Ruby assigns this code to the target class, Quote, saving the given method 
name in the method table (see Figure 9-3).

puts "The quick..." 

RClass: Quote

display

method table:
def display 

Figure 9-3: Ruby adds new methods to the method table for the target class.
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When we execute this method, Ruby looks up the method as described 
in “Ruby’s Method Lookup Algorithm” on page 138. Because display now 
appears in the method table for Quote, Ruby can find the method and 
execute it.

In sum, to define new methods in your program using the def keyword, 
Ruby follows this three-step process:

1.	 It compiles each method’s body into a distinct snippet of YARV instruc-
tions. (This occurs when Ruby parses and compiles your program.)

2.	 It uses the current lexical scope to obtain a pointer to a class or module. 
(This occurs when Ruby encounters a def keyword while executing your 
program.)

3.	 It saves the new method’s name—actually, an integer ID value that 
maps to the name—in the method table for that class.

Defining Class Methods Using an Object Prefix
Now that we understand how Ruby’s method definition process normally 
works, let’s learn alternative ways to define methods using metaprogram-
ming. As we saw in Figure 9-2, Ruby normally assigns new methods to the 
class that corresponds to the current lexical scope. However, sometimes 
you’ll decide to add a method to a different class—for example, when you 
define a class method. (Remember that Ruby saves class methods in a class’s 
metaclass.) Listing 9-2 shows an example of creating a class method.

class Quote
u   def self.display

    puts "The quick brown fox jumped over the lazy dog."
  end
end

Listing 9-2: Adding a class method using def self

At u we use def to define the new method, but this time we use a self 
prefix. This prefix tells Ruby to add the method to the class of the object you 
specify in the prefix rather than using the current lexical scope. Figure 9-4 
shows how Ruby does this internally.

This behavior is very different from the standard method definition 
process! When you provide an object prefix to def, Ruby uses the following 
algorithm to decide where to put the new method:

1.	 Ruby evaluates the prefix expression. In Listing 9-2 we use the self key-
word. While Ruby is executing code inside the class Quote scope, self 
is set to the Quote class. (We could have provided any Ruby expression 
here instead of self.) In Figure 9-4, the arrow extending up from self 
to the RClass structure indicates the value of self is Quote.
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def self.display  
  --snip--
end

RClass: metaclass 
for Quote

display

method table:
RClass: Quote

klass

Figure 9-4: Providing an object prefix to def instructs Ruby to add  
the new method to the object’s class.

2.	 Ruby finds the class of this object. In Listing 9-2, because self is a class 
itself (Quote), the class of the object is actually the metaclass for Quote. 
Figure 9-4 indicates this with the arrow extending to the right from the 
RClass structure for Quote.

3.	 Ruby saves the new method in that class’s method table. In this 
case, Ruby places the display method in the metaclass for Quote, 
making display a new class method.

NOTE    	 If you call Quote.class, Ruby will return Class. All classes are officially instances of 
the Class class. Metaclasses are an internal concept, normally hidden from your Ruby 
program. To see the metaclass for Quote, you can call Quote.singleton_class instead, 
which will return #<Class:Quote>.

Defining Class Methods Using a New Lexical Scope
Listing 9-3 shows a different way to assign display as a class method of Quote.

u class Quote
v   class << self

    def display
      puts "The quick brown fox jumped over the lazy dog."
    end
  end
end

Listing 9-3: Defining a class method using class << self

At v class << self declares a new lexical scope, just as class Quote does 
at u. In “Ruby’s Normal Method Definition Process” on page 221, we saw 
that using def in the scope created by class Quote assigns new methods to 
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Quote. But what class does Ruby assign methods to inside the scope created 
by class << self? The answer is self’s class. Because at v self is set to Quote, 
self’s class is the metaclass of Quote.

Figure 9-5 shows how class << self creates a new lexical scope for the 
metaclass of Quote.

nd_clss

nd_next

class Quote

  class << self

    def display
      puts "The quick..."
    end

  end
end

etc.

Lexical
Scope:

RClass: metaclass 
for Quote

display

method table:

RClass: Quote

klass

Figure 9-5: Ruby creates a new lexical scope for a class’s metaclass when you use 
class << self.

In this figure, Ruby’s class << metaprogramming syntax functions as 
follows:

1.	 Ruby first evaluates the expression that appears after class <<. In 
Listing 9-3 this is the expression self, which evaluates to the Quote class, 
just as it did using the object prefix syntax in Listing 9-2. The long arrow 
extending to the right from self to the RClass structure indicates the 
value of self is the Quote class.

2.	 Ruby finds the class for the object the expression evaluates to. In 
Listing 9-3 this will be the class of Quote, or Quote’s metaclass, indicated 
by the arrow extending down from Quote to the metaclass for Quote on 
the right side of the figure.

3.	 Ruby creates a new lexical scope for this class. In this example, the lexi-
cal scope uses the metaclass of Quote, indicated by the arrow extending 
to the right from nd_clss in the new scope.

Now we can use the new lexical scope to define a series of class methods 
using def as usual. In Listing 9-3 Ruby will assign the display method directly 
to the metaclass of Quote. This is a different way of defining a class method 
for Quote. You might find class << self a bit more confusing than def self, 
but it is a convenient way to create a series of class methods by declaring 
them all inside the inner, metaclass lexical scope.
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Defining Methods Using Singleton Classes
We’ve seen how metaprogramming allows you to declare class methods by 
adding methods to the class’s class or metaclass. Ruby also allows you to add 
methods to a single object instance, as shown in Listing 9-4.

u class Quote
end

v some_quote = Quote.new
w def some_quote.display

  puts "The quick brown fox jumped over the lazy dog."
end

Listing 9-4: Adding a method to a single object instance

At u we declare the Quote class; then, at v we create an instance of 
Quote: some_quote. At w this time, however, we create a new method for the 
some_quote instance, not the Quote class. As a result, only some_quote will have 
the display method; no other instances of Quote will have it.

Internally, Ruby implements this behavior using a hidden class called 
the singleton class, which is like a metaclass for a single object. Here’s the 
difference:

•	 A singleton class is a special hidden class that Ruby creates internally to 
hold methods defined only for a particular object.

•	 A metaclass is a singleton class in the case when that object is itself a class.

All metaclasses are singleton classes, but not all singleton classes are 
metaclasses. Ruby automatically creates a metaclass for every class you create 
and uses it to hold class methods that you might declare later. On the other 
hand, Ruby creates a singleton class only when you define a method on a 
single object, as shown in Listing 9-4. Ruby also creates a singleton class 
when you use instance_eval or related methods.

NOTE    	 Most Ruby developers use the terms singleton class and metaclass interchangeably, 
and when you call the singleton_class method, Ruby will return either a singleton 
class or a metaclass. However, internally Ruby’s C source code does make a distinc-
tion between singleton classes and metaclasses.

Figure 9-6 shows how Ruby creates a singleton class when execut-
ing Listing 9-4. Ruby evaluates the expression provided as a prefix to 
def: some_quote. Because some_quote is an object instance, Ruby creates a 
new singleton class for some_quote and then assigns the new method to this 
singleton class. Using the def keyword with an object prefix instructs Ruby 
either to use a metaclass (if the prefix is a class) or to create a singleton 
class (if the prefix is some other object).
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def some_quote.display
  --snip--
end

RClass: singleton 
class for some_quote

display

method table:
RObject: some_quote

klass

Figure 9-6: Providing an object prefix to def instructs Ruby to add the  
new method to the object’s singleton class.

Defining Methods Using Singleton Classes in a Lexical Scope
You can also declare a new lexical scope for adding methods to a single 
object instance using the class << syntax, as shown in Listing 9-5.

class Quote
end

some_quote = Quote.new
u class << some_quote

  def display
    puts "The quick brown fox jumped over the lazy dog."
  end
end

Listing 9-5: Adding a singleton method using class <<

The difference between this code and that in Listing 9-4 appears at u, 
when we use the class << syntax with the expression some_quote, which evalu-
ates to a single object instance. As shown in Figure 9-7, class << some_quote 
instructs Ruby to create a new singleton class along with a new lexical scope.

On the left side of Figure 9-7, you can see some of the code from 
Listing 9-5. Ruby first evaluates the expression some_quote and finds it is an 
object, not a class. Figure 9-7 indicates this with the long arrow pointing to 
the RObject structure for some_quote. Because it is not a class, Ruby creates a 
new singleton class for some_quote and also creates a new lexical scope. Next, 
it sets the class for the new scope to be the new singleton class. If a singleton 
class for some_quote already exists, Ruby will reuse it.
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nd_clss

nd_next

class << some_quote

  def display
    puts "The quick..."
  end

end

etc.

Lexical
Scope:

RClass: singleton 
class for some_quote

display

method table:

RObject: some_quote

klass

Figure 9-7: Ruby creates a new singleton class and lexical scope for some_quote.

Creating Refinements
Ruby 2.0’s refinements feature gave us the ability to define methods and add 
them to a class later if we wish. To see how this works, we’ll use the same 
Quote class and display method we used in Listing 9-1, repeated here for 
convenience.

class Quote
  def display
    puts "The quick brown fox jumped over the lazy dog."
  end
end

Now suppose elsewhere in our Ruby application we want to override or 
change what display does without changing the Quote class everywhere. Ruby 
provides an elegant way to do this, as shown in Listing 9-6.

module AllCaps
  refine Quote do
    def display
      puts "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG."
    end
  end
end

Listing 9-6: Refining a class inside a module

In refine Quote do, we use the refine method and pass the Quote class as 
a parameter. This defines new behavior for Quote that we can activate later. 
Figure 9-8 shows what happens internally when we call refine.
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module AllCaps
  refine Quote do 

     def display 
      puts "THE QUICK..." "
     end

   end
end

nd_clss

nd_next RClass:
refinement-module

refined_class

Lexical
Scope:

RClass: Quote

display

method table:

VM_METHOD_TYPE_REFINED

Figure 9-8: Ruby creates a special module when you call refine and updates the type of 
the target class’s methods.

Working our way through Figure 9-8 from the top-left corner down, we 
see the following:

•	 The refine method creates a new lexical scope (the shaded rectangle).

•	 Ruby creates a new “refinement” module and uses that as the class for 
this new scope.

•	 Ruby saves a pointer to the Quote class in refined_class inside the new 
refinement module. 

As you define new methods in the refine block, Ruby saves them in 
the refinement module. But it also follows the refined_class pointer and 
updates the same methods in the target class to use the method type 
VM_METHOD_TYPE_REFINED. 

Using Refinements
You can decide to activate these “refined” methods in a specific part of your 
program with the using method, as shown in Listing 9-7.

u Quote.new.display
 => The quick brown...

v using AllCaps

w Quote.new.display
 => THE QUICK BROWN...

Listing 9-7: Activating a refined method
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When we first call display at u, Ruby uses the original method. Then, 
at v we activate the refinement with using, which causes Ruby to use the 
updated method when we call display again at w.

The using method attaches the refinements from the specified module 
to the current lexical scope. As I write this, the current version of Ruby, 2.0, 
allows you to use refinements only in the top-level scope, as in this example; 
using is a method of the top-level main object. (Future versions may allow 
you to use refinements in any lexical scope in your program.) Figure 9-9 
shows how Ruby internally associates the refinement with the top-level 
lexical scope.

using AllCaps 

nd_clss

nd_next

nil

Top-Level
Lexical Scope:

nd_refinements

Quote

etc...

RClass:
AllCaps module

[main object]

Figure 9-9: The using method associates a module’s  
refinements with the top-level lexical scope.

Notice how each lexical scope contains an nd_refinements pointer, 
which tracks the refinements active in that scope. The using method sets 
nd_refinements, which would otherwise be nil.

And finally, Figure 9-10 shows how Ruby’s method dispatch algorithm 
finds the updated method when I call it.

Ruby uses a complex method dispatch process when you call methods. 
One portion of this algorithm looks for VM_METHOD_TYPE_REFINED methods. 
When it encounters a refined method, Ruby looks in the current lexical 
scope for any active refinements. If it finds an active refinement, Ruby calls 
the refined method; otherwise, it calls the original method.
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Quote.new.display

RClass: Quote

display

method table:

VM_METHOD_TYPE_REFINED

module AllCaps
  refine Quote do 
    def display
      puts "THE QUICK BROWN..." 
    end
  end
end

nd_clss

nd_next

nd_refinements

Figure 9-10: Ruby looks for a method in the refine block when the original method is 
marked with VM_METHOD_TYPE_REFINED.

Experiment 9-1: Who Am I? How self Changes with 
Lexical Scope
We’ve seen various ways to define methods in Ruby. We created methods in 
the usual way using the def keyword. Then, we looked at how to create meth-
ods on a metaclass and on a singleton class and how to use refinements.

While each technique adds the method to a different class, each also 
follows a simple rule: Ruby adds the new method to the class corresponding 
to the current lexical scope for each technique. (The def keyword, however, 
assigns the method to a different class when you use a prefix.) With refine-
ments, the current scope’s class is actually the special module created to 
hold the refined methods. In fact, this is one of the important roles lexical 
scope plays in Ruby: It identifies which class or module we are currently 
adding methods to.

We also know that the self keyword returns the current object—the 
receiver of the method currently being executed by Ruby. Recall that YARV 
saves the current value of self for each level of your Ruby call stack in the 
rb_control_frame_t structure. Is this object the same as the class for the cur-
rent lexical scope?

self in the Top Scope
Let’s see how the value of self changes as we run a simple program begin-
ning with Listing 9-8.

p self
 => main
p Module.nesting
 => []

Listing 9-8: A simple Ruby program with only one lexical scope
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To keep things simple, I’ve shown the output from the console inline. 
You can see that Ruby creates a top self object before it starts to execute 
your code. This object serves as the receiver for method calls in the top-
level scope. Ruby represents this object with the string main.

The Module.nesting call returns an array showing the lexical scope stack—
that is, which modules are “nested” until that point in the code. This array 
will contain an element for each lexical scope in the lexical scope stack. 
Because we’re at the top level of the script, Ruby returns an empty array.

Figure 9-11 shows the lexical scope stack and the value self for this 
simple program.

RObject: main

Lexical
Scope Stack:

nd_clss

nd_next

nil

RClass: Object

Value of self
for Each Scope:

Figure 9-11: At the top level, Ruby sets self to the main object and has a single entry in 
the lexical scope stack.

On the right of this figure, you see the main object: the current value of 
self. On the left side is the lexical scope stack, which contains just a single 
entry for the top-level scope. Ruby sets the class of the top scope to the class 
of the main object, which is the Object class. 

NOTE    	 Recall when you declare a new method using the def keyword, Ruby adds the method 
to the class for the current lexical scope. We’ve just seen the class for the top-level lexical 
scope is Object. Therefore, we can conclude that when you define a method at the top 
level of your script, outside of any class or module, Ruby adds the method to the Object 
class. You can call methods you define at the top level from anywhere because Object is 
a superclass of every other class.

self in a Class Scope
Now let’s define a new class and see what happens to the value of self and 
the lexical scope stack, as shown in Listing 9-9.

p self
p Module.nesting

class Quote
  p self

u    => Quote
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  p Module.nesting
v    => [Quote]

end

Listing 9-9: Declaring a new class changes self and creates a new entry in the lexical 
scope stack.

The output from the print statements is shown inline. We see at u 
that Ruby has changed self to Quote—the new class—and we see at v that 
there’s a new level added to the lexical scope stack. Figure 9-12 shows a 
summary.

RObject: mainnd_clss

nd_next

nil

RClass: Object

nd_clss

nd_next

RClass: Quote

Lexical
Scope Stack:

Value of self
for Each Scope:

Figure 9-12: Now self is the same as the class for the current lexical scope.

On the left side of this figure, we see the lexical scope stack. The top 
scope is on the top left, and under it we see the new lexical scope created by 
the class keyword. Meanwhile, on the right side of the figure, we see how the 
value of self changes when we call class. On the top level, self was set to the 
main object, but when we call class, Ruby changes self to the new class.

self in a Metaclass Scope
Let’s use the class << self syntax to create a new metaclass scope. Listing 9-10 
shows the same program with a few more lines of code.

p self
p Module.nesting

class Quote
  p self
  p Module.nesting
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  class << self
    p self

u      => #<Class:Quote>
    p Module.nesting

v      => [#<Class:Quote>, Quote]
  end
end

Listing 9-10: Declaring a metaclass scope

At u we see that Ruby has changed the value of self again. The syntax 
#<Class:Quote> indicates that self was set to Quote’s metaclass. At v we see 
that Ruby has also added another level to the lexical scope stack. Figure 9-13 
shows the next level in the stack.

nd_clss

nd_next

RClass: Quote

Lexical
Scope Stack:

Value of self
for Each Scope:

nd_clss

nd_next

RClass: 
#<Class:Quote>

Figure 9-13: A new lexical scope is created for the metaclass.

On the left, we can see that Ruby created a new scope when it executed 
class << self. The right side of the figure shows the value of self in the new 
scope, the metaclass for Quote.

self Inside a Class Method
Now for one more test. Suppose we add a class method to the Quote class 
and then call it as shown in Listing 9-11. (The output is at the bottom 
because the p statements aren’t called until we call class_method.)

p self
p Module.nesting

class Quote
  p self
  p Module.nesting
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  class << self
    p self
    p Module.nesting

    def class_method
      p self
      p Module.nesting
    end
  end
end

Quote.class_method
u  => Quote
v  => [#<Class:Quote>, Quote]

Listing 9-11: Declaring and calling a class method

At u we see that Ruby sets self back to the Quote class when we call 
class_method. This makes sense: When we call a method on a receiver, Ruby 
always sets self to be the receiver. Because we call a class method in this 
case, Ruby sets the receiver to that class.

At v we see that Ruby hasn’t changed the lexical scope stack. It’s still 
set to [#<Class:Quote>, Quote], as shown in Figure 9-14.

nd_clss

nd_next

RClass: Quote

Lexical
Scope Stack:

Value of self
for Each Scope:

nd_clss

nd_next

RClass: 
#<Class:Quote>

RClass: Quote

Figure 9-14: When you call a method, Ruby changes self but doesn’t create a new scope.

Notice that the lexical scope hasn’t changed but self has been changed 
to Quote, the receiver of the method call. 
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You can use these general rules to keep track of self and lexical scope:

•	 Inside a class or module scope, self will always be set to that class or mod-
ule. Ruby creates a new lexical scope when you use the class or module key-
words and sets the class for that scope to the new class or module.

•	 Inside a method (including a class method), Ruby will set self to the 
receiver of that method call.

Metaprogramming and Closures: eval, instance_eval, 
and binding

In Chapter 8 we learned that blocks are Ruby’s implementation of closures, 
and we saw how blocks bring together a function with the environment 
where that function was referenced. In Ruby, metaprogramming and closures 
are closely related. Many of Ruby’s metaprogramming constructs also act 
as closures, giving the code inside them access to the referencing environ-
ment. We’ll learn about three important metaprogramming features and 
how each gives you access to the referencing environment by acting as a 
closure in just the way blocks do.

Code That Writes Code
In Ruby, the eval method is metaprogramming in its purest form: You pass 
a string to eval, and Ruby immediately parses, compiles, and executes the 
code, as shown in Listing 9-12.

str = "puts"
str += " 2"
str += " +"
str += " 2"
eval(str)

Listing 9-12: Parsing and compiling code using eval

We dynamically construct the string puts 2+2 and pass it to eval. Ruby 
then evaluates the string. That is, it tokenizes, parses, and compiles it using 
the same Bison grammar rules and parse engine that it did when it first 
processed the primary Ruby script. Once this process is finished and Ruby 
has another new set of YARV bytecode instructions, it executes the new code.

But one very important detail about eval isn’t obvious in Listing 9-12. 
Specifically, Ruby evaluates the new code string in the same context from 
where you called eval. To see what I mean, look at Listing 9-13.

a = 2
b = 3
str = "puts"
str += " a"
str += " +"
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str += " b"
u eval(str)

Listing 9-13: It isn’t obvious here, but eval accesses the surrounding scope via a closure, too.

You would expect the result from running this code to be 5, but notice 
the difference between Listings 9-12 and 9-13. Listing 9-13 refers to the 
local variables a and b from the surrounding scope, and Ruby can access 
their values. Figure 9-15 shows how YARV’s internal stack looks just before 
calling eval at u.

YARV internal stack

rb_control_frame_tlocals:
a, b, str

Figure 9-15: Ruby saves the local variables a, b, and str on YARV’s internal stack as usual.

As expected, we see that Ruby has saved the values of a, b, and str on 
the stack to the left. On the right, we have the rb_control_frame_t structure, 
which represents the outer, or main, scope of this script.

Figure 9-16 shows what happens when we call the eval method. 

YARV internal stack
rb_control_frame_t

Stack frame for
eval code

rb_control_frame_t

Stack frame for
original function

Tokenize, Parse,
Compile

locals:
a, b, str

EP

Figure 9-16: Calling eval and accessing values from the parent scope
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Calling eval invokes the parser and compiler on the text we pass it. When 
the compiler finishes, Ruby creates a new stack frame (rb_control_frame_t) for 
use in running the new compiled code (as shown at the top). Notice, how-
ever, that Ruby sets the EP in this new stack frame to point to the lower stack 
frame where the variables a and b are. This pointer allows the code passed to 
eval to access these values.

Ruby’s use of EP here should look familiar. Aside from parsing and com-
piling the code dynamically, eval works the same way as if we had passed a 
block to some function, as in Listing 9-14.

a = 2
b = 3
10.times do
  puts a+b
end

Listing 9-14: Code inside a block can access variables from the surrounding scope.

In other words, the eval method creates a closure: the combination of 
a function and the environment where that function was referenced. In 
this case, the function is the newly compiled code, and the environment is 
where we call eval from.

Calling eval with binding
The eval method can take a second parameter: a binding. A binding is a 
closure without a function—that is, it’s just the referencing environment. 
Think of bindings as a pointer to a YARV stack frame. Passing a binding 
value to Ruby indicates that you don’t want to use the current context as the 
closure’s environment but instead want to use some other referencing envi-
ronment. Listing 9-15 shows an example.

def get_binding
  a = 2
  b = 3

u   binding
end

v eval("puts a+b", get_binding)

Listing 9-15: Using binding to access variables from some other environment

The function get_binding contains the local variables a and b, but it also 
returns a binding at u. At the bottom of the listing, we again want Ruby to 
dynamically compile and execute the code string and print out the result. 
By passing the binding returned by get_binding to eval, we tell Ruby to evalu-
ate puts a+b in the context of the get_binding function. If we had called eval 
without the binding, it would have created new, empty local variables a and b.

Ruby makes a persistent copy of this environment in the heap because 
you might call eval long after the current frame has been popped off the 
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stack. Even though get_binding has already returned in this example, Ruby 
can still access the values of a and b when it executes the code parsed and 
compiled by eval at v.

Figure 9-17 shows what happens internally when we call binding.

YARV internal stack

rb_env_t

env

rb_binding_t

line_no

env

Stack

Heap

a, b

a, b
rb_control_frame_t

get_binding
stack frame

filename

Figure 9-17: Calling binding saves a copy of the current stack frame in the heap.

This figure resembles what Ruby does when you call lambda (see Figure 8-18 
on page 210), except that Ruby creates an rb_binding_t C structure instead 
of an rb_proc_t structure. The binding structure is simply a wrapper around 
the internal environment structure—the heap copy of the stack frame. The 
binding structure also contains the file name and line number of the loca-
tion from where you called binding.

As with the proc object, Ruby uses the RTypedData structure to wrap a 
Ruby object around the rb_binding_t C structure (see Figure 9-18).

The binding object allows you to create a closure and then obtain and 
treat its environment as a data value. However, the closure created by the 
binding doesn’t contain any code; it has no function. You might think of 
the binding object as an indirect way to access, save, and pass around Ruby’s 
internal rb_env_t structure. 
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RTypedData

RBasic

flags

klass

VALUE

data

RClass
[Binding class]

rb_binding_t

line_no

env

filename

Figure 9-18: Ruby uses RTypedData to wrap a Ruby object  
around the rb_binding_t structure.

An instance_eval Example
Now for a variation on the eval method: instance_eval is shown in action in 
Listing 9-16.

u class Quote
  def initialize

v     @str = "The quick brown fox"
  end
end
str2 = "jumps over the lazy dog."

w obj = Quote.new
x obj.instance_eval do
y   puts "#{@str} #{str2}"

end

Listing 9-16: The code inside instance_eval has access to obj’s instance variable.

Here’s what’s going on:

•	 At u we create a Ruby class called Quote that saves the first half of the 
string in an instance variable in initialize at v.
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•	 At w we create an instance of the Quote class and then call instance_eval 
at x, passing a block. The instance_eval method is similar to eval, except 
that it evaluates the given string in the context of the receiver, or the 
object we call it on. As shown here, we can pass a block to instance_eval 
instead of a string if we don’t want to dynamically parse and compile code.

•	 The block we pass to instance_eval prints out the string at y, accessing 
the first half of the string from the obj’s instance variable and the sec-
ond half from the surrounding scope, or environment.

How can this possibly work? It seems that the block passed to instance_
eval has two environments: the quote instance and the surrounding code 
environment. In other words, the @str variable comes from one place and 
str2 from another.

Another Important Part of Ruby Closures
This example highlights another important part of closure environments in 
Ruby: the current value of self. Recall that the rb_control_frame_t structure 
for each stack frame, or level, in your Ruby call stack contains a self pointer, 
along with the PC, SP, and EP pointers and other values (see Figure 9-19).

rb_control_frame_t

sp

pc

self

SP

trace
putself
putobject       2
putobject       2
opt_plus
opt_send_simple <callinfo!mid:puts...
leavePC

YARV internal stack YARV instructions

2

2

self

type

Figure 9-19: The rb_control_frame_t structure

The self pointer records the current value of self in your Ruby project; it 
indicates which object is the owner of the method Ruby is currently execut-
ing at that time. Each level in your Ruby call stack can contain a different 
value for self.

Recall that whenever you create a closure Ruby sets the EP, or environ-
ment pointer, in the rb_block_t structure to the referencing environment, 
giving the code inside the block access to the surrounding variables. And, 
as it turns out, Ruby also copies the value of self into rb_block_t. This means 
that the current object is also a part of closures in Ruby. Figure 9-20 looks 
at what closures contain in Ruby.
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putstring "The quick brown fox... "
setdynamic str, 0
putself 
getdynamic str, 0
send :puts, 1
leave

locals: str

RObject

ivptr

klass

rb_block_t

EP

self

iseq

YARV internal stack

Figure 9-20: In Ruby, closure environments include both the stack frame and the current 
object from the referencing code.

Because the rb_block_t structure contains the value of self from the 
referencing environment, code inside a block can access the values and 
methods of the object that was active when the closure was created or refer-
enced. This ability probably seems obvious for a block: The current object 
before and after you call a block doesn’t change. However, if you use a 
lambda, proc, or binding, Ruby will remember what the current object was 
when you created it. And, as we’ll see shortly with instance_eval, Ruby can 
sometimes change self when you create a closure, giving your code access 
to a different object’s values and methods.

instance_eval Changes self to the Receiver
When you call instance_eval at x in Listing 9-16, Ruby creates both a closure 
and a new lexical scope. For example, as you can see in Figure 9-21, the new 
stack frame for the code inside instance_eval uses new values for both EP 
and self.

On the left of the figure, we see that executing instance_eval creates a 
closure. This result should be no surprise. Passing a block to instance_eval 
at x in Listing 9-16 creates a new level on the stack and sets EP to the refer-
encing environment, giving the code inside the block access to the variables 
str2 and obj.
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rb_control_frame_t

self

EP

YARV internal stack

locals:
str2, obj

EP

instance_eval
resets self

RObject

ivptr

klass

New value
of self

Figure 9-21: The stack frame created by running instance_eval has a new value for self.

However, as you can see on the right of the figure, instance_eval also 
changes the value of self in the new closure. When the code inside the 
instance_eval block runs, self points to the receiver of instance_eval, or obj, 
in Listing 9-16. This allows the code inside instance_eval to access the val-
ues inside the receiver. In Listing 9-16, the code at y can access both @str 
from inside obj and str2 from the surrounding code.

instance_eval Creates a Singleton Class for a New Lexical Scope
The instance_eval method also creates a new singleton class and sets it as the 
class for a new lexical scope, as shown in Figure 9-22.

RClass: singleton 
class for obj

new_method

method table:
nd_clss

nd_next

Lexical
Scope:

obj = Quote.new 
obj.instance_eval do 

  puts "#{@str} #{str2}"  
  def new_method 
   end

end

Figure 9-22: instance_eval creates a lexical scope for a new singleton class.

While executing instance_eval, Ruby creates a new lexical scope, as 
shown by the shaded rectangle inside the instance_eval block. If we had 
passed a string to instance_eval, Ruby would have parsed and compiled 
the string and then created a new lexical scope in the same way.
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Along with the new lexical scope, Ruby creates a singleton class for the 
receiver, obj. The singleton class allows you to define new methods for 
the receiver object (see Figure 9-22): The def new_method call inside the 
instance_eval block adds new_method to the singleton class for obj. As a single-
ton class, obj will have the new method, but no other objects or classes 
in the program will have access to it. (The metaprogramming methods 
class_eval and module_eval work in a similar way and also create a new lexical 
scope; however, they just use the target class or module for the new scope 
and don’t create a metaclass or singleton class.)

How Ruby Ke e p s T r ack of L e x ic a l Scope for Blocks

Let’s take a closer look at how Ruby represents lexical scopes internally. Figure 9-23 
shows the lexical scope Ruby creates for the Quote class.

nd_clss

nd_next

class Quote 

   def display
    puts "The quick..." 

   end

end

RClass:
Quote

etc.

cref

Figure 9-23: Ruby’s C source code internally uses a separate structure called cref to track lexi-
cal scopes.

You can see the display method’s code snippet represented as a rectangle on 
the left side of the figure, inside the class Quote declaration. On the right side of the 
rectangle, you can see a small arrow pointing to a structure labeled cref, which is the 
actual lexical scope. This, in turn, contains a pointer to the Quote class (nd_clss) and to 
the parent lexical scope (nd_next).

As indicated by the figure, Ruby’s C source code internally represents lexical 
scopes using these cref structures. The small arrow on the left shows that each piece 
of code in your program refers to a cref structure with a pointer. This pointer keeps 
track of which lexical scope that piece of code belongs to.

Notice one important detail about Figure 9-23: Both the code snippet and lexi-
cal scope inside the class Quote declaration refer to a single RClass structure. There’s 
a one-to-one correspondence between code, lexical scope, and class. Every time 
Ruby executes the code inside the class Quote declaration, it uses the same copy of 
the RClass structure, the one for Quote. This behavior seems obvious; the code inside 
a class declaration always refers to the same class.

For blocks, however, things aren’t so simple. Using metaprogramming methods 
such as instance_eval, you can specify a different lexical scope for the same piece 
of code—a block, for example—to use each time it is executed. Figure 9-24 shows 
the problem.
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obj.instance_eval do

end

def new_method
end nd_clss

nd_next

etc.

cref

?
RClass:
singleton

class for obj

Figure 9-24: The block’s code can’t refer to a single lexical scope because the scope’s class 
depends on the value of obj.

We learned in the previous section that Ruby creates a singleton class for the 
lexical scope created by instance_eval. However, this code might be run many times 
for different values of obj. In fact, your program might execute this code at the same 
time in different threads. This requirement means that Ruby can’t keep a pointer to a 
single cref structure for the block as it does for a class definition. This block scope 
will refer to different classes at different times.

Ruby solves this problem by saving a pointer to the lexical scope used by 
blocks in a different place: as an entry on YARV’s internal stack (see Figure 9-25).

obj.instance_eval do

end

def new_method
end nd_clss

nd_next

etc.

cref

SP

svar/cref

special EP

Figure 9-25: Ruby tracks lexical scope for blocks using the svar/cref entry on the stack, not 
using the block’s code snippet.

On the left side of the figure, you can see the call to instance_eval and the 
code snippet for the block inside. In the center of the figure is the cref structure for 
the lexical scope. On the right side, you can see YARV saves a pointer to the scope 
in the second entry on its stack, labeled svar/cref.

Recall from Chapter 3 that the second entry on YARV’s internal stack con-
tains one of two values: svar or cref. As we saw in Experiment 3-2 on page 75, 
svar saves a pointer to a table of special variables, such as the result of the last 
regular expression match, while executing a method. But while executing a block, 
YARV saves the cref value here instead. Usually this value isn’t important because 
blocks normally use the lexical scope of the surrounding code. But when executing 
instance_eval and a few other metaprogramming features, such as module_eval and 
instance_exec, Ruby sets cref in this way to the current lexical scope.
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Experiment 9-2: Using a Closure to Define a Method
Another common metaprogramming pattern in Ruby is to dynamically 
define methods in a class using define_method. For example, Listing 9-17 
shows a simple Ruby class that prints out a string when you call display.

class Quote
  def initialize
    @str = "The quick brown fox jumps over the lazy dog"
  end
  def display
    puts @str
  end
end
Quote.new.display
 => The quick brown fox jumps over the lazy dog

Listing 9-17: A Ruby class that displays a string from an instance variable

This code is similar to that in Listing 9-1, except that we use an instance 
variable @str to hold the string value. 

Using define_method
We could have used metaprogramming to define display in a more verbose 
but dynamic way, as shown in Listing 9-18.

class Quote
  def initialize
    @str = "The quick brown fox jumps over the lazy dog"
  end

u   define_method :display do
    puts @str
  end
end

Listing 9-18: Using define_method to create a method

We call define_method at u instead of the normal def keyword. Because 
the name of the new method is passed as the argument :display, we can 
dynamically construct the method name from some data values or iterate 
over an array of method names, calling define_method for each one.

But there is another subtle difference between def and define_method. For 
define_method we provide the body of the method as a block; that is, we use a 
do keyword at u. This syntax difference may seem minor, but remember that 
blocks are actually closures. Adding do introduces a closure, meaning that the 
code inside the new method has access to the environment outside. This is not 
the case with the def keyword.

There are no local variables present in Listing 9-18 when we call 
define_method, but suppose that another place in our application did have 
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values that we wanted to use inside our new method. By using a closure, Ruby 
makes an internal copy of the surrounding environment on the heap, which 
the new method will be able to access.

Methods Acting as Closures
Now for another test. Listing 9-19 stores only the first half of the string in 
the instance variable. In a moment, we’ll write a new method for the Quote 
class to access this.

class Quote
  def initialize
    @str = "The quick brown fox"
  end
end

Listing 9-19: Now @str has only the first half of the string.

Listing 9-20 shows how we can use a closure to access both the instance 
variable and the surrounding environment.

def create_method_using_a_closure
  str2 = "jumps over the lazy dog."

u   Quote.send(:define_method, :display) do
    puts "#{@str} #{str2}"
  end
end

Listing 9-20: Using a closure with define_method

Because define_method is a private method in the Module class, we need 
to use the confusing send syntax at u. Earlier, at u in Listing 9-18, we 
were able to call define_method directly because we used it inside the class’s 
scope. We can’t do that from other places in the application. By using send, 
the create_method_using_a_closure method can call a private method that it 
wouldn’t normally have had access to.

But more importantly, notice that the str2 variable is preserved in the 
heap for the new method to use even after create_method_using_a_closure 
returns:

create_method_using_a_closure
Quote.new.display
 => The quick brown fox jumps over the lazy dog.

Internally, Ruby treats this as a call to lambda. That is, this code func-
tions the same way as if I had written the code in Listing 9-21.

class Quote
  def initialize
    @str = "The quick brown fox"
  end
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end
def create_method_using_a_closure
  str2 = "jumps over the lazy dog."
  lambda do
    puts "#{@str} #{str2}"
  end
end

u Quote.send(:define_method, :display, create_method_using_a_closure)
v Quote.new.display

Listing 9-21: Passing a proc to define_method

Listing 9-21 separates the code that creates the closure and defines 
the method. Because at u we pass three arguments to define_method, Ruby 
expects the third to be a proc object. While this is an even more verbose 
way to write this code, it’s a bit less confusing because calling lambda makes 
it clear that Ruby will create a closure.

Finally, when we call the new method at v, Ruby resets the self pointer 
from the closure to receiver object, similar to the way that instance_eval 
works. This allows the new method to access @str as you would expect.

Summary
In this chapter we’ve seen how the concept of closures—the idea central to 
the way blocks, lambdas, and procs work in Ruby—also applies to methods 
such as eval, instance_eval, and define_method. The same underlying concept 
explains how these different Ruby methods work. In a similar way, the con-
cept of lexical scope underpins all of the ways that Ruby allows you to cre-
ate a method and assign it to a class. Understanding the concept of lexical 
scope should make the different uses of Ruby’s def keyword and class << 
syntax easier to understand.

While metaprogramming might seem complex at first, learning how 
Ruby works internally can help us understand what Ruby’s metaprogram-
ming features actually do. What seems initially like a large set of different, 
unrelated methods in a confusing API turn out to be related by a few impor-
tant ideas. Studying Ruby internals allows us to see these concepts and to 
understand what they mean.
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J R u b y:  R u b y  o n  t h e  J V M

In Chapters 1 through 9 we learned how the standard 
version of Ruby works internally. Because Ruby is writ-
ten in C, its standard implementation is often known 
as CRuby. It’s also often referred to as Matz’s Ruby 
Interpreter (MRI), after Yukihiro Matsumoto, who cre-
ated the language in the early 1990s. 

In this chapter we’ll see an alternative implementation of Ruby called 
JRuby. JRuby is Ruby implemented in Java instead of C. The use of Java allows 
Ruby applications to run like any other Java program, using the Java Virtual 
Machine (JVM). It also allows your Ruby code to interoperate with thousands 
of libraries written in Java and other languages that run on the JVM. Thanks 
to the JVM’s sophisticated garbage collection (GC) algorithms, just-in-time 
( JIT) compiler, and many other technical innovations, using the JVM means 
that your Ruby code often runs faster and more reliably.

In the first half of this chapter, we’ll contrast standard Ruby—that is, 
MRI—with JRuby. You’ll learn what happens when you run a Ruby program 
using JRuby and how JRuby parses and compiles your Ruby code. In the lat-
ter half of the chapter, we’ll see how JRuby and MRI save your string data 
using the String class. 
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Running Programs with MRI and JRuby
The normal way to run a Ruby program using standard Ruby is to enter ruby 
followed by the name of your Ruby script, as shown in Figure 10-1.

$ ruby block.rb

0101101110101
0100110101001
0101010101010
1100010100110
0101010101011

10.times do 
  puts n
end

Ruby
Executable

Ruby
Script

Figure 10-1: Running a script at the command line using standard Ruby
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As you can see in the rectangle at the left, entering ruby at a terminal 
prompt launches a binary executable, the product of compiling Ruby’s C 
source code during the Ruby build process. On the right, you see that the 
command line parameter to the ruby command is a text file containing your 
Ruby code.

To run your Ruby script using JRuby, you normally enter jruby at your 
terminal prompt. (Depending on how you installed JRuby, the standard 
ruby command might be remapped to launch JRuby.) Figure 10-2 shows how 
this command works at a high level.

$ jruby block.rb

10.times do 
  puts n
end

#!/usr/bin/env bash
# --------------------------------
# jruby.bash - Start Script

Figure 10-2: The jruby command actually maps to a shell script.

Unlike the ruby command, the jruby command doesn’t map to a 
binary executable. It refers to a shell script that executes the java com-
mand. Figure 10-3 shows a simplified view of the command JRuby uses to 
launch Java.

0101101110101
0100110101001
0101010101010
1100010100110
0101010101011

Java
Executable

$ java -Xbootclasspath/a:/path/to/jruby.jar org.jruby.Main block.rb

0101101110101
0100110101001
0101010101010
1100010100110
0101010101011

10.times do 
  puts n
end

Ruby
Script

JRuby
Application

Figure 10-3: A simplified version of the command JRuby uses to launch the JVM

Notice in Figure 10-3 that JRuby executes your Ruby script using 
a binary executable known as the Java Virtual Machine (JVM). Like the 
standard Ruby executable, the JVM is written in C and compiled into a 
binary executable. The JVM runs Java applications, while MRI runs Ruby 
applications.

Notice, too, that in the center of Figure 10-3 one of the parameters to 
the java program, -Xbootclasspath, specifies an additional library, or collec-
tion, of compiled Java code to make available to the new program: jruby.jar. 
The JRuby Java application is contained inside jruby.jar. Finally, on the right, 
you see the text file containing your Ruby code again.



254   Chapter 10

In sum, here’s what happens when standard Ruby and JRuby launch 
your Ruby programs:

•	 When you run a Ruby script using MRI, you launch a binary executable, 
originally written in C, that directly compiles and executes your Ruby 
script. This is the standard version of Ruby.

•	 When you run a Ruby script using JRuby, you launch a binary execut-
able, the JVM, which executes the JRuby Java application. This Java 
application, in turn, parses, compiles, and executes your Ruby script 
while running inside the JVM.

How JRuby Parses and Compiles Your Code
Once you launch JRuby, it needs to parse and compile your code. To do 
this, it uses a parser generator, just as MRI does. Figure 10-4 shows a high-
level overview of the JRuby parsing and compiling process.

Run Time

Grammar
Rules 
(.y file)

JRuby Build Time

Parser Code
(.java file)

tokens AST
nodes

Tokenize Parse Compile
Ruby Code
(.rb files)

JVM 
Bytecode

Generate
Parser
(Jay)

Figure 10-4: JRuby uses a parser generator called Jay.

Just as MRI uses Bison, JRuby uses a parser generator called Jay during 
the JRuby build process to create the code that will parse your Ruby code. 
Jay is very similar to Bison, except that it’s written in Java instead of C. At 
run time, JRuby tokenizes and parses your Ruby code using the generated 
parser. As with MRI, this process produces an abstract syntax tree (AST).

Once JRuby parses your code and produces an AST, it compiles your 
code. However, instead of producing YARV instructions as MRI does, JRuby 
produces a series of instructions, known as Java bytecode instructions, that 
the JVM can execute. Figure 10-5 shows a high-level comparison of how 
MRI and JRuby process your Ruby code.

The left side of the figure shows how your Ruby code changes when you 
execute it with MRI. MRI converts your code into tokens, then into AST 
nodes, and finally into YARV instructions. The Interpret arrow indicates that 
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the MRI executable reads the YARV instructions and interprets, or executes, 
them. (You don’t write the C or machine language code; that work is done 
for you.)

MRI

Machine
Language

Ruby

Tokens

AST Nodes

Machine
Language

C

Interpret

Ruby

Tokens

AST Nodes

Java
Bytecode

YARV
Instructions

JRuby

Figure 10-5: The different forms your Ruby code  
takes inside MRI (left) and JRuby (right)

The high-level overview at the right side of the figure shows how JRuby 
handles your Ruby code internally. The boxes in the one large rectangle 
show the different forms your code takes as JRuby executes it. You can see 
that, like MRI, JRuby first converts your code into tokens and later into AST 
nodes. But then MRI and JRuby diverge: JRuby compiles the AST nodes 
into Java bytecode instructions, which the JVM can execute. In addition, 
the JVM can convert the Java bytecode into machine language using a JIT 
compiler, which speeds up your program even more because executing 
machine language is faster than executing Java bytecode. (We’ll look at the 
JIT compiler in more detail in Experiment 10-1.)

How JRuby Executes Your Code
We’ve seen that JRuby tokenizes and parses your code almost the same way 
that MRI does. And just as MRI Ruby 1.9 and 2.0 compile your code into 
YARV instructions, JRuby compiles it into Java bytecode instructions.

But that’s where the similarity ends: MRI and JRuby use two very differ-
ent virtual machines to execute your code. Standard Ruby uses YARV, but 
JRuby uses the JVM to execute your program. 
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The whole point of building a Ruby interpreter with Java is to be able to 
execute Ruby programs using the JVM. The ability to use the JVM is impor-
tant for two reasons:

Environmental  The JVM allows you to use Ruby on servers, in appli-
cations, and in IT organizations where previously you could not run 
Ruby at all.

Technical  The JVM is the product of almost 20 years of intense 
research and development. It contains sophisticated solutions for 
many difficult computer science problems, like garbage collection 
and multithreading. Ruby can often run faster and more reliably on 
the JVM.

To get a better sense of how this works, let’s see how JRuby executes the 
simple Ruby script simple.rb in Listing 10-1.

puts 2+2 

Listing 10-1: A one-line Ruby program (simple.rb)

First, JRuby tokenizes and parses this Ruby code into an AST node 
structure. Next, it iterates through the AST nodes and converts your Ruby 
into Java bytecode. Use the --bytecode option, as shown in Listing 10-2, to 
see this bytecode for yourself.

$ jruby --bytecode simple.rb

Listing 10-2: JRuby’s --bytecode option displays the Java bytecode your Ruby code is com-
piled into.

As the output of this command is complex, I won’t dig into it here, but 
Figure 10-6 summarizes how JRuby compiles and executes this script.

At the left of this figure, you see the code puts 2+2. The large down-
ward pointing arrow indicates that JRuby converts this code into a series 
of Java bytecode instructions that implement a Java class called simple 
(after the script’s filename). The class simple extends AbstractScript nota-
tion is Java code; here, it declares a new Java class called simple, which uses 
AbstractScript as a superclass.

The simple class is a Java version of our Ruby code that adds 2 + 2 
and prints the sum. The simple Java class does the same thing using Java. 
Inside simple, JRuby creates a Java method called __file__ that executes 
the 2+2 code as indicated with the inner __file__ rectangle at the bot-
tom of the figure. The method rectangle <init> is the constructor for 
the simple class.
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puts 2+2Ruby (simple.rb)

Java Bytecode

class simple extends
AbstractScript

<init>

__file__

class RubyFixnum 
extends RubyInteger

op_plus

Your Code JRuby Code

class RubyIO extends 
RubyObject

puts

Figure 10-6: JRuby converts your Ruby code into Java classes.

At the right of Figure 10-6, you see a small part of JRuby’s library of 
Ruby classes. These are Ruby’s built-in classes, such as Fixnum, String, and 
Array. MRI implements these classes using C. When your code calls a method 
from one of these classes, the method dispatch process uses the CFUNC 
method type. However, JRuby implements all of the built-in Ruby classes 
using Java code. On the right side of Figure 10-6, you see two built-in Ruby 
methods that our code calls.

•	 First, your code adds 2 + 2, using the + method of the Ruby Fixnum 
class. JRuby implements the Ruby Fixnum class using a Java class called 
RubyFixnum. In this example, your code calls the op_plus Java method in 
this RubyFixnum class.

•	 To print the sum, the code calls the puts method of the built-in Ruby IO 
class (actually via the Kernel module). JRuby implements this in a simi-
lar way, using a Java class called RubyIO.

Implementing Ruby Classes with Java Classes
As you know, standard Ruby is implemented internally using C, which 
doesn’t support the notion of object-oriented programming. C code can’t 
use objects, classes, methods, or inheritance the way that Ruby code does.

However, JRuby is implemented in Java, an object-oriented program-
ming language. While not as flexible and powerful as Ruby itself, Java 
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does support writing classes, creating objects as instances of those classes, 
and relating one class to another through inheritance, which means that 
JRuby’s implementation of Ruby is also object oriented. 

JRuby implements Ruby objects with Java objects. To get a better idea 
of what this means, see Figure 10-7, which compares Ruby code with MRI 
C structures.

RClass

Mathematician

RObject

pythagoras

class Mathematician 
   attr_accessor :first_name 
   attr_accessor :last_name 
end

pythagoras = Mathematician.new

C StructuresRuby

klass

Figure 10-7: MRI implements objects and classes using C structures.

Internally Ruby creates an RClass C structure for each class and an 
RObject structure for each object. Ruby tracks the class for each object using 
the klass pointer in the RObject structure. Figure 10-7 shows one RClass 
for the Mathematician class and one RObject for pythagoras, an instance of 
Mathematician.

Figure 10-8 shows that the situation is very similar in JRuby, at least at 
first glance.

Java ObjectsRuby

RubyClass

Mathematician

RubyObject

pythagoras

metaClass

class Mathematician 
   attr_accessor :first_name 
   attr_accessor :last_name 
end

pythagoras = Mathematician.new

Figure 10-8: Internally, JRuby represents objects using the RubyObject Java class  
and classes using the RubyClass Java class.

On the left side of the figure, we see the same Ruby code. On the 
right are two Java objects, one an instance of the RubyObject Java class and 
the other an instance of the RubyClass Java class. JRuby’s implementation 
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of Ruby objects and classes closely resembles MRI’s, but JRuby uses Java 
objects instead of using C structures. JRuby uses the names RubyObject and 
RubyClass because these Java objects represent your Ruby object and class.

But when we look a bit closer, things aren’t so straightforward. Because 
RubyObject is a Java class, JRuby can use inheritance to simplify its internal 
implementation. In fact, the superclass of RubyObject is RubyBasicObject. This 
reflects how the Ruby classes are related, as we can see by calling the ancestors 
method on Object.

p Object.ancestors
 => [Object, Kernel, BasicObject]

Calling ancestors returns an array containing all the classes and modules 
in the superclass chain for the receiver. Here, we see that Object’s superclass 
is the Kernel module and its superclass is BasicObject. JRuby uses the same 
pattern for its internal Java class hierarchy, as shown in Figure 10-9.

public class RubyObject extends RubyBasicObject

public class RubyBasicObject

Figure 10-9: RubyBasicObject is the superclass of the RubyObject  
Java class.

The Kernel module aside, we can see that JRuby’s internal Java class 
hierarchy reflects the Ruby class hierarchy that it implements. This similar-
ity is made possible by Java’s object-oriented design.

Now for a second example. Let’s use ancestors again to show the super-
classes for the Class Ruby class.

p Class.ancestors
 => [Class, Module, Object, Kernel, BasicObject]

Here, we see that the superclass of Class is Module, its superclass is Object, 
and so on. And as we would expect, JRuby’s Java code uses the same design 
internally (see Figure 10-10).

public class RubyObject extends RubyBasicObject

public class RubyBasicObject

public class RubyClass extends RubyModule

public class RubyModule extends RubyObject

Figure 10-10: JRuby’s internal Java class hierarchy for RubyClass
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Experiment 10-1: Monitoring JRuby’s Just-in-Time 
Compiler
I mentioned earlier that JRuby can speed up your Ruby code by using a JIT 
compiler. JRuby always translates your Ruby program into Java bytecode 
instructions, which the JVM can compile into machine language that your 
computer’s microprocessor can execute directly. In this experiment we’ll 
see when this happens and measure how much it speeds up your code.

Experiment Code
Listing 10-3 shows a Ruby program that prints out 10 random numbers 
between 1 and 100.

u array = (1..100).to_a
v 10.times do
w   sample = array.sample

  puts sample
end

Listing 10-3: A sample program for testing JRuby’s JIT behavior (jit.rb)

At u we create an array with 100 elements: 1 through 100. Then, at v 
we iterate over the following block 10 times. Inside this block, we use the 
sample method at w to pick a random value from the array and print it. 
When we run this code, we get the output shown in Listing 10-4.

$ jruby jit.rb
87
88
69
5
38
--snip--

Listing 10-4: The output from Listing 10-3

Now let’s remove the puts statement and increase the number of itera-
tions. (Removing the output will make the experiment more manageable.) 
Listing 10-5 shows the updated program.

array = (1..100).to_a
1000.times do

u   sample = array.sample
end

Listing 10-5: We remove puts and increase the number of iterations to 1,000.
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Using the -J-XX:+PrintCompilation Option
Of course, if we run the program now, we won’t see any output because 
we’ve removed puts. Let’s run the program again—this time using a debug 
flag (shown in Listing 10-6) to display information about what the JVM’s 
JIT compiler is doing.

$ jruby -J-XX:+PrintCompilation jit.rb
    101   1       java.lang.String::hashCode (64 bytes)
    144   2       java.util.Properties$LineReader::readLine (452 bytes)
    173   3       sun.nio.cs.UTF_8$Decoder::decodeArrayLoop (553 bytes)
    200   4       java.lang.String::charAt (33 bytes)
--snip--

Listing 10-6: The output generated by the -J-XX:+PrintCompilation option

Here, we use the -J option for JRuby and pass the XX:+PrintCompilation 
option to the underlying JVM application. PrintCompilation causes the 
JVM to display the information you see in Listing 10-6. The line java.lang 
.String::hashCode means that the JVM compiled the hashCode method of the 
String Java class into machine language. The other values show technical 
information about the JIT process (101 is a time stamp, 1 is a compilation 
ID, and 64 bytes is the size of the bytecode snippet that was compiled).

The goal of this experiment is to validate the hypothesis that Listing 10-5 
should run faster once the JVM’s JIT compiler converts it into machine 
language. Notice that Listing 10-5 has just one line of Ruby code inside the 
loop at u that calls array.sample. Therefore, we should expect our Ruby pro-
gram to finish noticeably faster once the JIT compiles JRuby’s implementa-
tion of Array#sample into machine language because Array#sample is called so 
many times.

Because the output in Listing 10-6 is quite long and complex, we’ll use 
grep to search the output for occurrences of org.jruby.RubyArray. 

$ jruby -J-XX:+PrintCompilation jit.rb | grep org.jruby.RubyArray

The result is no output. None of the lines in the PrintCompilation output 
match the name org.jruby.RubyArray, which means the JIT compiler is not 
converting the Array#sample method into machine language. It doesn’t do 
this conversion because the JVM only runs the JIT compiler to compile Java 
bytecode instructions that your program executes numerous times—areas 
of bytecode instructions known as hot spots. The JVM spends extra time 
compiling hot spots because they are called so many times. To prove this, 
we can increase the number of iterations to 100,000 and repeat our test, as 
shown in Listing 10-7.

array = (1..100).to_a
100000.times do
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  sample = array.sample
end

Listing 10-7: Increasing the number of iterations should trigger the JIT compiler to convert 
Array#sample to machine language.

When we repeat the same jruby command again with grep, we see the 
output shown in Listing 10-8.

u $ jruby -J-XX:+PrintCompilation jit.rb | grep org.jruby.RubyArray
   1809 165       org.jruby.RubyArray::safeArrayRef (11 bytes)
   1810 166  !    org.jruby.RubyArray::safeArrayRef (12 bytes)
   1811 167       org.jruby.RubyArray::eltOk (16 bytes)
   1927 203       org.jruby.RubyArray$INVOKER$i$0$2$sample::call (36 bytes)

v    1928 204  !    org.jruby.RubyArray::sample (834 bytes)
   1930 205       org.jruby.RubyArray::randomReal (10 bytes)

Listing 10-8: The output after running Listing 10-7 with -J-XX:+PrintCompilation piped 
to grep

Because we used grep org.jruby.RubyArray at u, we see only Java class 
names that match the text org.jruby.RubyArray. At v we can see that the 
JIT compiler compiled the Array#sample method because we see the text 
org.jruby.RubyArray::sample.

Does JIT Speed Up Your JRuby Program?
Now to see if the JIT sped things up. Based on a command-line parameter—
ARGV[0]—which I save in iterations at u, Listing 10-9 measures the amount 
of time it takes to call Array#sample a given number of times.

require 'benchmark'

u iterations = ARGV[0].to_i

Benchmark.bm do |bench|
  array = (1..100).to_a
  bench.report("#{iterations} iterations") do
    iterations.times do
      sample = array.sample
    end
  end
end

Listing 10-9: Sample code for benchmarking JIT performance

By running this listing as shown below, we can measure how long it 
takes to execute the loop 100 times, for example. 

$ jruby jit.rb 100
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Figure 10-11 shows the results for 100 to 100 million iterations using 
both JRuby and MRI.
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Figure 10-11: JRuby vs. MRI performance. Time is shown in seconds vs. number of 
iterations (using JRuby 1.7.5 and Java 1.6; MRI Ruby 2.0).

The graph for MRI is more or less a straight line moving up to the 
right. This means it always takes Ruby 2.0 about the same amount of time 
to execute the Array#sample method. The results for JRuby, however, are not 
so simple. At left you can see that for fewer than 100,000 iterations, JRuby 
takes longer to execute Listing 10-9. (The chart uses a logarithmic scale, so 
the absolute time differences on the left side are small.) However, once we 
reach about 1 million iterations, JRuby speeds up dramatically and starts to 
take less time to execute Array#sample.

Ultimately for many, many iterations, JRuby is faster than MRI. But 
what’s important here is not simply that JRuby might be faster but that its 
performance characteristics vary. The longer your code runs, the longer the 
JVM has to optimize it, and the faster things will be.

Strings in JRuby and MRI
We’ve learned how JRuby executes bytecode instructions, passing control 
between your code and a library of Ruby objects implemented with Java. 
Now we’ll take a closer look at this library, specifically at how JRuby imple-
ments the String class. How do JRuby and MRI implement strings? Where 
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do they save the string data you use in your Ruby code, and how do their 
implementations compare? Let’s begin to answer these questions by looking 
at how MRI implements strings.

How JRuby and MRI Save String Data
This code saves a famous quote from Pythagoras in a local variable. But 
where does this string go?

str = "Geometry is knowledge of the eternally existent."

Recall from Chapter 5 that MRI uses different C structures to imple-
ment built-in classes, such as RRegexp, RArray, and RHash, as well as RString, 
which saves your strings. Figure 10-12 shows how MRI represents the 
Geometry... string internally.

G e o m e t r

RString

len = 48

ptr

RBasic

flags

klass

capa = 48
etc...

Figure 10-12: Part of the RString C structure

Notice that MRI saves the actual string data in a separate buffer, or sec-
tion of memory, shown on the right. The RString structure itself contains a 
pointer to this buffer, ptr. Also notice that RString contains two other integer 
values: len, or the length of the string (48 in this example), and capa, or the 
capacity of the data buffer (also 48). The size of the data buffer can be lon-
ger than the string, in which case capa would be larger than len. (This would 
be the case if you executed code that reduced the length of the string.)

Now let’s consider JRuby. Figure 10-13 shows how JRuby represents this 
string internally. JRuby uses the Java class RubyString to represent strings in 
your Ruby code, following the naming pattern we saw above with RubyObject 
and RubyClass. RubyString uses another class to track the actual string data: 
ByteList. This lower-level code tracks a separate data buffer (called bytes) 
similar to the way that the RString structure does so in MRI. ByteList also 
stores the length of the string in the realSize instance variable.
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RubyString

value

e o m e t r

etc...

G

ByteList

bytes

realSize = 48

Figure 10-13: JRuby uses two Java objects and a data buffer for each string.

Copy-on-Write
Internally, both JRuby and MRI use an optimization called copy-on-write for 
strings and other data. This trick allows two identical string values to share 
the same data buffer, which saves both memory and time because Ruby 
avoids making separate copies of the same string data unnecessarily.

For example, suppose we use the dup method to copy a string.

str = "Geometry is knowledge of the eternally existent."
str2 = str.dup

Does JRuby have to copy the Geometry is... text from one string object 
to another? No. Figure 10-14 shows how JRuby shares the string data across 
two different string objects.

RubyString

value ByteList

e o m e t r

etc...

G

RubyString

value ByteList

Figure 10-14: Two JRuby string objects can share the same data buffer.
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When we call dup, JRuby creates new RubyString and ByteList Java objects, 
but it doesn’t copy the actual string data. Instead, it sets the second ByteList 
object to point to the same data buffer used by the original string. Now we 
have two sets of Java objects but only one underlying string value, as shown 
on the right of the figure. Because strings can contain thousands of bytes or 
more, this optimization can often save a tremendous amount of memory.

MRI uses the same trick, although in a slightly more complex way. 
Figure 10-15 shows how standard Ruby shares strings.

G e o m e t r
RString

ptr

etc...

RString

shared

ptr

RString

ptr

shared

Figure 10-15: MRI shares strings by creating a third RString structure.

Like JRuby, MRI shares the underlying string data. However, when you 
copy a string in standard MRI Ruby, it creates a third RString structure and 
then sets both the original RString and new RString to refer to it using the 
shared pointer.

In either case, we have a problem. What if we change one of the string 
variables? For example, suppose we convert one of the strings to uppercase 
as follows:

str = "Geometry is knowledge of the eternally existent."
u str2 = str.dup
v str2.upcase!

At u in both JRuby and MRI, we have two shared strings, but at v I 
change the second string using the upcase! method. Now the two strings dif-
fer, which means that Ruby clearly can’t continue to share the underlying 
string buffer or upcase! would change both strings. We can see the strings 
are now different by displaying the string values.
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p str
 => "Geometry is knowledge of the eternally existent."
p str2
 => "GEOMETRY IS KNOWLEDGE OF THE ETERNALLY EXISTENT."

At some point, Ruby must have separated these two strings, creating a 
new data buffer. This is what the phrase copy-on-write means: Both MRI and 
JRuby create a new copy of the string data buffer when you write to one of 
the strings.

Experiment 10-2: Measuring Copy-on-Write 
Performance
In this experiment we’ll collect evidence that this extra copy operation 
really occurs when we write to a shared string. First, we’ll create a simple, 
nonshared string and write to it. Then we’ll create two shared strings and 
write to one of them. If copy-on-write really occurs, then writing to a shared 
string should take a bit longer because Ruby has to create a new copy of 
the string before writing.

Creating a Unique, Nonshared String
Let’s begin by creating our example string again, str. Initially Ruby can’t 
possibly share str with anything else because there is only one string. We’ll 
use str for our baseline performance measurement.

str = "Geometry is knowledge of the eternally existent."

But as it turns out, Ruby shares str immediately! To see why, we’ll exam-
ine the YARV instructions that MRI uses to execute this code, as shown in 
Listing 10-10.

code = <<END
str = "Geometry is knowledge of the eternally existent."
END

puts RubyVM::InstructionSequence.compile(code).disasm
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)

u [ 2] str        
0000 trace            1                                               (   1)

v 0002 putstring        "Geometry is knowledge of the eternally existent."
w 0004 dup              
x 0005 setlocal_OP__WC__0 2

0007 leave            

Listing 10-10: MRI Ruby uses a dup YARV instruction internally when you use a literal 
string constant.
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Reading the YARV instructions above carefully, we see at v that Ruby 
puts the string onto the stack using putstring. This YARV instruction 
internally copies the string argument to the stack, creating a shared copy 
already. At w Ruby uses dup to create yet another shared copy of the string 
to use as an argument for setlocal. Finally, at x setlocal_OP__WC__0 2 saves 
this string into the str variable, shown as [2] in the local table u.

Figure 10-16 summarizes this process.

putstring "Geometry is..."

dup

RString
ptr

G e o

etc...

RString
ptr

strsetlocal 2, 0

Figure 10-16: Executing putstring and dup creates shared strings in MRI.

On the left are the YARV instructions putstring, dup, and setlocal. On the 
right are the RString structures that these instructions create, as well as the 
underlying shared string data. As I just mentioned, putstring in fact copies 
the string constant from a third RString left off the diagram, meaning the 
string is actually shared a third time.

Because Ruby initially shares strings created from constant values, we 
need to create our string differently by concatenating two strings together 
as follows:

str = "This string is not shared" + " and so can be modified faster."

The result of this concatenation will be a new, unique string. Ruby will 
not share its string data with any other string objects.

Experiment Code
Let’s take some measurements. Listing 10-11 shows the code for this 
experiment.
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require 'benchmark'

ITERATIONS = 1000000

Benchmark.bm do |bench|
  bench.report("test") do
    ITERATIONS.times do

u       str = "This string is not shared" + " and so can be modified faster."
v       str2 = "But this string is shared" + " so Ruby will need to copy it  

              before writing to it."
w       str3 = str2.dup
x       str3[3] = 'x'

    end
  end
end

Listing 10-11: Measuring a delay for copy-on-write

Before we run this test, let’s walk through this code. At u we create a 
unique, unshared string by concatenating two strings. This is str. Then at v 
we create a second unshared string, str2. But at w we use dup to create a copy 
of this string, str3, and now str2 and str3 share the same value.

Visualizing Copy-on-Write
At x in Listing 10-11 we change the fourth character in str3 using the code 
str3[3] = 'x'. But here Ruby can’t change the character in str3 without 
changing str2 as well, as shown in Figure 10-17.

RString: str3

ptr

RString: str2

ptr

B u t t h i

etc...

?

str3[3] = 'x'

Figure 10-17: Ruby can’t change str3 without also changing str2.
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Ruby has to make a separate copy of str3 first, as shown in Figure 10-18.

RString: str3
ptr

RString: str2
ptr

B u t x t h i

etc...

B u t t h i

etc...

copy

str3[3] = 'x'

Figure 10-18: Ruby copies the string into a new buffer for str3 before writing to it.

Now Ruby can write into the new buffer for str3 without affecting str2.

Modifying a Shared String Is Slower
When we execute Listing 10-11, the benchmark library measures how long it 
takes to run the inner block 1 million times. This block creates str, str2, 
and str3 and then modifies str3. On my laptop, benchmark yields a measure-
ment of about 1.87 seconds.

Next, let’s change str3[3] = 'x' at x to modify str instead.

#str3[3] = 'x'
str[3] = 'x'

Now we’re modifying the unshared, unique string instead of the shared 
string. Running the test again yields a result of about 1.69 seconds, or about 
9.5 percent less than the time benchmark reported for the shared string. As 
expected, it takes slightly less time to modify a unique string than it does to 
modify a shared one. 

The graph in Figure 10-19 shows my cumulative results averaged over 
10 different observations for both MRI and JRuby. On the left side of the 
graph are my average measurements for MRI. The bar on the far left rep-
resents the time required to modify the shared string, str3, and the right 
MRI bar shows how long it took to modify the unique string, str. The two 
bars on the right side exhibit the same pattern for JRuby, but the difference 
in the height of the bars is much less. Apparently, the JVM can make a new 
copy of the string faster than MRI.

But there’s more: Notice that overall JRuby ran the experiment code 
in 60 percent less time. That is, it was 2.5 times faster than MRI! Just as in 
Experiment 10-1, we must be seeing the JVM optimizations, such as JIT 
compilation, speed up JRuby when compared to MRI.
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Figure 10-19: Both MRI and JRuby show a delay for copy-on-write (seconds).

Summary
In this chapter we took a look at JRuby, a version of Ruby written in Java. 
We saw how the jruby command launches the JVM, passing jruby.jar as a 
parameter. We explored how JRuby parses and compiles our code, and 
learned in Experiment 10-1 how the JVM can compile hot spots, or fre-
quently executed snippets of Java bytecode, into machine language. Our 
results from Experiment 10-1 showed that compiling hot spots dramati-
cally improves performance, allowing JRuby to run even faster than MRI 
in some cases.

In the second half of this chapter, we learned how MRI and JRuby 
represent our string data internally. We discovered that both versions of 
Ruby use copy-on-write optimization, sharing string data between differ-
ent string objects when possible. Finally, in Experiment 10-2 we proved 
that copy-on-write actually occurred in both JRuby and MRI.

JRuby is a very powerful and clever implementation of Ruby: By run-
ning your Ruby code using the Java platform, you can benefit from the 
many years of research, development, tuning, and testing that have been 
invested in the JVM. The JVM is one of the most popular, mature, and pow-
erful software platforms in use today. It’s being used not only by Java and 
JRuby but also by many other software languages, such as Clojure, Scala, 
and Jython, to name a few. By using this shared platform, JRuby can take 
advantage of the speed, robustness, and diversity of the Java platform—and 
it can do this for free! 

JRuby is a groundbreaking piece of technology with which every Ruby 
developer should be familiar.



Rubinius uses Ruby to 
implement Ruby.



11
R u b i n i u s :  

R u b y  I m p l e m e n t e d  w i t h  R u b y

Like JRuby, Rubinius is an alternative implementa-
tion of Ruby. Much of Rubinius’s internal source code 
is written in Ruby itself instead of in only C or Java. 
Rubinius implements built-in classes, such as Array, 
String, and Integer, just as you would—with Ruby code!
This design offers a unique opportunity for you to learn about Ruby inter-
nals. If you aren’t sure how a particular Ruby feature or method works, you 
can read the Ruby code inside Rubinius to find out, without special knowl-
edge of C or Java programming. 



274   Chapter 11

Rubinius also includes a sophisticated virtual machine written in C++. 
This machine executes your Ruby program and, like JRuby, supports JIT and 
true concurrency and uses a sophisticated garbage collection algorithm. 

This chapter starts with a high-level overview of Rubinius and an example 
of how to use backtrace output to dig through the Rubinius source code. 
Later in the chapter, we’ll learn how Rubinius and MRI implement the Array 
class, including how Ruby saves data into an array and what happens when 
you remove an element from an array.

The Rubinius Kernel and Virtual Machine
To run a Ruby program using Rubinius (see Figure 11-1), you typically use 
the ruby command (as with MRI) or rbx because the ruby command is actu-
ally a symbolic link to the executable rbx in Rubinius. 
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Rubinius
Virtual Machine

(C++)

Ruby
Script

$ ruby block.rb
$ rbx block.rb

Rubinius Kernel
(Ruby)

class String
  ...
end

--snip--

10.times do 
  puts n
end

Figure 11-1: Rubinius consists of a C++ virtual machine and a Ruby kernel.

As with MRI, you launch Rubinius using an executable that reads and 
executes the Ruby program specified on the command line. But the Rubinius 
executable is completely different from the standard Ruby executable. As the 
preceding figure shows, Rubinius consists of two major pieces:

The Rubinius kernel  This is the part of Rubinius written in Ruby. 
It implements a lot of the language, including the definitions of many 
built-in, core classes, such as String and Array. The Rubinius kernel 
is compiled into bytecode instructions that are installed onto your 
computer.

The Rubinius virtual machine  The Rubinius virtual machine is writ-
ten in C++. It executes the bytecode instructions from the Rubinius 
kernel and performs a range of other low-level tasks, such as garbage 
collection. The Rubinius executable contains a compiled, machine-
language version of this virtual machine.

Figure 11-2 takes a closer look at Rubinius’s virtual machine and kernel. 
The Rubinius kernel contains a set of Ruby classes, such as String, Array, and 
Object, as well as other Ruby classes that perform various tasks, such as com-
piling or loading code. The Rubinius virtual machine at the left of the figure 
is the rbx executable that you launch from the command line. The C++ vir-
tual machine contains code to perform garbage collection, just-in-time com-
pilation (and many other tasks), as well as additional code for built-in classes, 
such as String or Array. In fact, as indicated by the arrows, each Ruby class 
built into Rubinius consists of both C++ and Ruby code working together. 
Rubinius defines certain methods using Ruby and other methods using C++.
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etc...

JIT

Other Code Built-In Classes

Rubinius
Virtual Machine

(C++)

Rubinius Kernel
(Ruby)

String

GC Array

etc...

class String
  ...
end

class Array
  ...
end

etc...

Figure 11-2: A closer view of Rubinius internals

Why implement Ruby using two languages? Because C++ speeds up 
Rubinius programs and allows them to interact with the operating system 
directly at a low level. The use of C++ instead of C also allows Rubinius to 
use an elegant object-oriented design internally. And the use of Ruby to 
implement built-in classes and other features makes it easy for Ruby devel-
opers to read and understand much of the Rubinius source code.

Tokenization and Parsing
Rubinius processes your Ruby program in much the same way that MRI 
does, as shown in Figure 11-3.

Run Time

Grammar
Rules

(.y file)

Rubinius Build Time

tokens AST
nodes

Tokenize Parse Compile
Ruby Code
(.rb files)

Rubinius
Instructions
(.rbc files)

Generate
Parser
(Bison)

Parser Code
(.c file)

Figure 11-3: How Rubinius processes your code
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Rubinius generates an 
LALR parser using Bison dur-
ing its build process, just as 
MRI does. When you run your 
program, the parser converts 
your code into a token stream, 
an abstract syntax tree (AST) 
structure, and then a series 
of high-level virtual machine 
instructions called Rubinius 
instructions. Figure 11-4 com-
pares the forms that your 
code takes inside MRI and 
Rubinius.

At first, Rubinius and MRI 
work similarly, but instead of 
interpreting your code as MRI 
does, Rubinius uses a com-
piler framework called the 
Low-Level Virtual Machine 
(LLVM) to compile your code 
again into lower-level instruc-
tions. LLVM, in turn, may 
compile these instructions all 
the way to machine language, 
using a JIT compiler.

Using Ruby to Compile Ruby
One of the most fascinating 
aspects of Rubinius is how it 
implements a Ruby compiler 
with a combination of Ruby 
and C++. When you run a 
program using Rubinius, your 
code is processed by both C++ 
and Ruby code, as shown in 
Figure 11-5.

At the top left of the dia-
gram, Rubinius, like MRI, uses 
C code to parse Ruby code with 
a series of grammar rules. At 
right, Rubinius starts to process 
your Ruby program using Ruby 
code, representing each node 
in the AST with an instance of 
a Ruby class. Each Ruby AST 
node knows how to generate 
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Figure 11-4: How MRI and Rubinius transform 
your code internally
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Figure 11-5: A high-level overview of how 
Rubinius compiles your code
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Rubinius instructions for its piece of your program during compilation. 
Finally, at bottom left, the LLVM framework further compiles the Rubinius 
instructions into LLVM instructions and ultimately into machine language.

Rubinius Bytecode Instructions
To get a sense of Rubinius instructions, let’s run a short program using 
Rubinius (see Listing 11-1).

$ cat simple.rb
puts 2+2
$ rbx simple.rb
4

Listing 11-1: Using Rubinius to calculate 2 + 2 = 4 (simple.rb)

When we rerun simple.rb using the rbx compile command with the -B option, 
Rubinius displays the bytecode instructions its compiler generates, as shown 
in Listing 11-2.

$ rbx compile simple.rb -B
============= :__script__ ==============
Arguments:   0 required, 0 post, 0 total
Arity:       0
Locals:      0
Stack size:  3
Literals:    2: :+, :puts
Lines to IP: 1: 0..12

0000:  push_self                  
0001:  meta_push_2                
0002:  meta_push_2                

u 0003:  send_stack                 :+, 1
0006:  allow_private              

v 0007:  send_stack                 :puts, 1
0010:  pop                        
0011:  push_true                  
0012:  ret               
----------------------------------------           

Listing 11-2: Displaying Rubinius bytecode instructions using the rbx compile command 
with the -B option

The instructions vaguely resemble MRI’s YARV instructions. Each 
instruction typically pushes a value onto an internal stack, operates on 
stack values, or executes a method such as the + at u or puts at v.

Figure 11-6 shows both the Ruby code and corresponding Rubinius 
instructions for simple.rb and part of the Kernel module.
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Rubinius CodeYour Code

puts 2+2

push_self
meta_push_2
meta_push_2
meta_send_op_plus  :+
allow_private
send_stack         :puts, 1
pop
push_true
ret

push_rubinius
find_const               0
push_literal             :$stdout
send_stack               :[], 1
push_local               0 # a
cast_array
push_nil
send_stack_with_splat    :puts, 0
pop
push_nil
ret

module Kernel

def puts
  --snip--
end

Figure 11-6: The puts method in Rubinius is implemented with Ruby code.

You can see Ruby code at the top of the figure: the puts 2+2 code at left 
and Rubinius’s definition of the puts method at right. Rubinius implements 
built-in Ruby classes, such as the Kernel module, in Ruby; therefore, when 
we call the puts method, Rubinius simply passes control to the Ruby code 
for the Kernel#puts method contained inside the Rubinius kernel.

The lower portion of the figure shows the Rubinius instructions into 
which the Ruby code is compiled. At left are the instructions for puts 2+2, 
and at right is the compiled version of the Kernel#puts method. Rubinius 
compiles its built-in Ruby code and your Ruby code in the same manner 
(except that Rubinius compiles the built-in Ruby code during the Rubinius 
build process).

Ruby and C++ Working Together
In order to handle certain low-level technical details and to speed things 
up, Rubinius uses C++ code in its virtual machine to help implement built-
in classes and modules. That is, it uses both Ruby and C++ to implement 
the language’s core classes.

To understand how this works, let’s execute this short Ruby script in 
Rubinius (see Listing 11-3).



280   Chapter 11

str = "The quick brown fox..."
puts str[4]
 => q

Listing 11-3: Calling the String#[] method

This simple program prints the fifth character (the letter q at index 4) 
in the sample string. Because the String#[] method is part of a built-in Ruby 
class, Rubinius implements it using Ruby code, as shown in Figure 11-7.

Rubinius CodeYour Code

str = "The quick brown fox..."
puts str[4]

class String

def   (index, other = undefined)
  Rubinius.primitive :string_aref

Object* String::aref(STATE, Fixnum* index)
{

}

Ruby

C++

Figure 11-7: Rubinius implements built-in classes with a combination of Ruby and C++ code.

On the left of the figure is the Ruby script that prints the letter q. On 
the right is the Ruby code that Rubinius uses to implement the String#[] 
method, taken from a Rubinius source code file called string.rb (named 
after the String class). (We’ll learn how to find Rubinius source code files 
in Experiment 11-1.) 

Notice that the beginning of String#[] starts with the method call 
Rubinius.primitive. This indicates that Rubinius actually uses C++ code 
to implement this method; Rubinius.primitive is a directive that tells the 
Rubinius compiler to generate a call to the corresponding C++ code. 
The code that actually implements String#[] is a C++ method called 
String::aref, shown at the bottom right of Figure 11-7.

Implementing Ruby Objects with C++ Objects
Ruby’s use of the object-oriented C++ allows its virtual machine to repre-
sent each Ruby object internally using a corresponding C++ object (see 
Figure 11-8).

Rubinius uses C++ objects the way that MRI uses the RClass and RObject 
C structures. When you define a class, Rubinius creates an instance of 
the Class C++ class. When you create a Ruby object, Rubinius creates an 
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instance of the Object C++ class. A klass_ pointer in the pythagoras object 
indicates it is an instance of Mathematician, just as the klass pointer in the 
RObject C structure does in MRI.

Class

  Mathematician

Ruby C++ Objects

Object

klass_

pythagoras = Mathematician.new

class Mathematician
  attr_accessor :first_name
  attr_accessor :last_name
end

pythagoras

Figure 11-8: Rubinius represents classes and objects using C++ objects.

Experiment 11-1: Comparing Backtraces in MRI 
and Rubinius
Recall that Ruby displays a backtrace when an exception occurs in order to 
help you find the problem. Listing 11-4 shows a simple example.

10.times do |n|
  puts n
  raise "Stop Here"
end

Listing 11-4: A Ruby script that raises an exception

We call raise to tell Ruby to stop the first time it executes the block after 
displaying the value of the parameter n. Listing 11-5 shows the output from 
running Listing 11-4 with MRI.

$ ruby iterate.rb
0
iterate.rb:3:in 'block in <main>': Stop Here (RuntimeError)
    from iterate.rb:1:in 'times'
    from iterate.rb:1:in '<main>'

Listing 11-5: How MRI displays a backtrace for an exception

You probably see output like this many times while developing a Ruby 
program. However, one subtle detail is worth a closer look. Figure 11-9 
shows a diagram of the MRI backtrace output.
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iterate.rb:3:in `block in <main>'

iterate.rb:1:in `times'

iterate.rb:1:in `<main>'

Backtrace iterate.rb

?

10.times do |n|
  puts n
  raise "Stop Here"
end

Figure 11-9: MRI displays where built-in CFUNC methods are called, not where  
they are defined.

Notice that line 3 of iterate.rb, containing the call to raise, is at the top 
of the call stack. At the bottom of the call stack, MRI displays iterate.rb:1, 
where the short script began.

Notice, too, that MRI’s backtrace contains a broken link: iterate.rb 
doesn’t contain a definition for the method times. Instead, MRI refers to 
the line of code that calls the times method: 10.times do. The actual times 
method is implemented with C code inside MRI—a CFUNC method. MRI 
displays the location of calls to CFUNC methods in backtraces, not the loca-
tion of the actual C implementation of these methods.

Backtraces in Rubinius
Unlike MRI, Rubinius implements built-in methods using Ruby, not C. This 
implementation allows Rubinius to include accurate source file and line 
number information about built-in methods in backtraces. To demonstrate, 
let’s run Listing 11-4 again using Rubinius. Listing 11-6 shows the result.

$ rbx iterate.rb
0
An exception occurred running iterate.rb
    Stop Here (RuntimeError)

Backtrace:
          { } in Object#__script__ at iterate.rb:3
             Integer(Fixnum)#times at kernel/common/integer.rb:83
                 Object#__script__ at iterate.rb:1
  Rubinius::CodeLoader#load_script at kernel/delta/codeloader.rb:68
  Rubinius::CodeLoader.load_script at kernel/delta/codeloader.rb:119
           Rubinius::Loader#script at kernel/loader.rb:645
             Rubinius::Loader#main at kernel/loader.rb:844

Listing 11-6: How Rubinius displays a backtrace for an exception

Rubinius displays much more information! To understand this output a 
bit better, see Figures 11-10 and 11-11.

At left in Figure 11-10 is a simplified version of the backtrace information 
Rubinius displayed while running iterate.rb. Rubinius displays the two lines 
in the backtrace corresponding to iterate.rb just as MRI does. But Rubinius 
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also includes new entries in the Ruby call stack that correspond to Ruby 
source code files inside the Rubinius kernel. We can guess that the loader.rb 
and codeloader.rb files contain code that load and execute our script. 

iterate.rb:3

kernel/common/integer.rb:83

iterate.rb:1

Backtrace iterate.rb

kernel/delta/codeloader.rb:68

kernel/delta/codeloader.rb:119

kernel/loader.rb:645

kernel/loader.rb:844

10.times do |n|
  puts n
  raise "Stop Here"
end

Figure 11-10: Like MRI, Rubinius includes information about your program in backtraces.

But the most interesting entry in the call stack is kernel/common/integer​
.rb:83. This entry tells us where the Integer#times method is implemented 
inside the Rubinius kernel, as shown in Figure 11-11.

iterate.rb:3

kernel/common/integer.rb:83

iterate.rb:1

Backtrace kernel/common/integer.rb

kernel/delta/codeloader.rb:68

kernel/delta/codeloader.rb:119

kernel/loader.rb:645

kernel/loader.rb:844

def times
  return to_enum(:times) unless block_given?

  i = 0
  while i < self
    yield i
    i += 1
  end
  self
end

Figure 11-11: Rubinius includes information about its kernel in backtraces.

The backtrace information on the left of the figure is the same as that 
in Figure 11-10. The arrow points from the second level of the Ruby call 
stack to the code that calls the puts n block—the yield instruction in the 
Integer#times method. 

Using Rubinius, iterate.rb becomes part of a larger Ruby program: the 
Rubinius kernel. When we call 10.times, Rubinius calls the Ruby code shown 
at the right, which then executes our block using the yield keyword on 
line 83.
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N o t e 	 The path kernel/common/integer.rb refers to a location in the Rubinius source 
code tree. If you installed Rubinius using a binary installer, you’ll need to download 
the source code from http://rubini.us/ or GitHub in order to read it.

Rubinius implements Integer#times by counting from 0 up to the speci-
fied integer (minus one), calling the block each time through the loop. 
Let’s take a closer look at Integer#times, as shown in Listing 11-7.

u def times
v   return to_enum(:times) unless block_given?

w   i = 0
x   while i < self
y     yield i

    i += 1
  end

z   self
end

Listing 11-7: The Rubinius implementation of Integer#times, from kernel/common/integer.rb

The definition of the times method starts at u. At v Rubinius returns 
the result of to_enum if a block is not provided, as shown below. (The to_enum 
method returns a new enumerator object, which allows you to perform the 
enumeration later if you prefer.) 

p 10.times
 => #<Enumerable::Enumerator:0x120 @generator=nil @args=[] @lookahead=[] 
     @object=10 @iter=:times>

Rubinius continues to execute the rest of the method if you provide a 
block. At w Rubinius creates a counter i and initializes it to 0. Next, it uses 
a while loop at x to perform the iteration. Notice that the while loop condi-
tion i < self refers to the value of self. Inside Integer#times, self is set to the 
current integer object, or 10 in our script. At y Rubinius yields to (calls) 
the given block, passing in the current value of i. This calls our puts n block. 
Finally, at z Rubinius returns self, which means the return value of 10.times 
will be 10.

Arrays in Rubinius and MRI
Arrays are so ubiquitous in Ruby that it’s easy to take them for granted. But 
how do they work inside Ruby? Where does Ruby save objects that you place 
into an array, and how does it represent array objects internally? In the fol-
lowing sections, we’ll look at the internal data structures that Rubinius and 
MRI use to hold values in an array.
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Arrays Inside of MRI
Suppose you put the first six numbers from the Fibonacci sequence into 
an array.

fibonacci_sequence = [1, 1, 2, 3, 5, 8]

As Figure 11-12 illustrates, MRI creates a C structure for the array but 
saves its elements elsewhere.

RArray

len = 6

RBasic

flags

klass

ptr

capa = 6

1 1 2 3 5 8

Figure 11-12: MRI uses the RArray C structure to represent arrays.

MRI uses one RArray structure to represent each array you create. Like 
RString, RObject, and other C structures, RArray uses the inner RBasic struc-
ture to hold the klass pointer and other technical information. (In this 
case, the klass pointer points to the RClass structure for the Array class.)

Below RBasic are a few additional values specific to arrays—ptr, len, 
and capa:

•	 ptr is a pointer to a memory segment Ruby allocates separately to store 
the array elements. The Fibonacci numbers appear in this memory seg-
ment at the right side of Figure 11-12.

•	 len is the length of the array—that is, the number of values saved in the 
separate memory segment.

•	 capa tracks the capacity of the memory segment. This number is often 
larger than len. MRI avoids continually resizing the memory segment 
each time you change the size of the array; instead, as you add array ele-
ments, it occasionally increases the size of the separate memory segment, 
each time allocating more memory than the new elements require.

Each value in the separate memory segment is actually a VALUE pointer 
to a Ruby object. In this case, the Fibonacci numbers would be saved directly 
inside the VALUE pointers because they are simple integers.
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Arrays Inside of Rubinius
Now let’s see how Rubinius saves the same Fibonacci array internally. We 
learned earlier that Rubinius represents each Ruby object with a correspond-
ing C++ object. This representation is true of arrays as well. For example, 
Figure 11-13 shows the C++ object that Rubinius would use to represent 
fibonacci_sequence.

T he R Arr   ay C S t ruc t ur e De f ini t ion

Listing 11-8 shows the definition of RArray from the MRI C source code.

#define RARRAY_EMBED_LEN_MAX 3
struct RArray {
  struct RBasic basic;

u   union {
    struct {

v       long len;
      union {

w         long capa;
x         VALUE shared;

      } aux;
y       VALUE *ptr;

    } heap;
z     VALUE ary[RARRAY_EMBED_LEN_MAX];

  } as;
};

Listing 11-8: The definition of RArray (from include/ruby/ruby.h)

This definition shows a few values that are missing from Figure 11-12. First, at u, 
notice that MRI uses a C union keyword to declare two alternative definitions for 
RArray. The first, an inner struct, defines len at v, capa at w, shared at x, and ptr 
at y. As with strings, MRI uses copy-on-write optimization with arrays, allowing two 
or more arrays to share the same underlying data. For arrays that share data, the 
shared value at x refers to another RArray that contains the shared data.

The second half of the union at z defines ary, a C array of VALUE pointers in 
RArray. This is an optimization that allows MRI to save the array data for arrays with 
three or fewer elements inside the RArray structure itself, avoiding the need to allo-
cate the separate memory segment at all. MRI optimizes four other C structures in a 
similar way: RString, RObject, RStruct (used by the Struct class), and RBignum (used 
by the Bignum class).
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Array

ObjectHeader total_ = 6 tuple_ start_ = 0

Figure 11-13: Rubinius uses C++ objects to represent arrays.

The combined four blocks represent an instance of the Array C++ class. 
Rubinius creates a C++ array object each time you create an array. From left 
to right, the fields are as follows:

•	 ObjectHeader contains technical information that Rubinius keeps track 
of inside each object, including a class pointer and an array of instance 
variables. ObjectHeader corresponds to the RBasic C structure in MRI and 
is one of the C++ superclasses of the Array C++ class inside the Rubinius 
virtual machine.

•	 total_ is the length of the array, which is 6 for fibonacci_sequence.

•	 tuple_ is a pointer to an instance of another C++ class, called Tuple, that 
contains the array data. 

•	 start_ indicates where the array data starts inside the tuple object. (The 
tuple may contain more data than your array needs.) Initially, Rubinius 
sets this to 0.

Rubinius doesn’t save the array data in the C++ array object. It saves it 
in a tuple object, as shown in Figure 11-14.

Tuple

ObjectHeader full_size_ = 80 1 1 2 3 5 8

tuple_

fields

Figure 11-14: Rubinius saves array data in tuple objects.

Each tuple contains the same object header information as arrays. 
Rubinius saves this header information in every C++ object. Following the 
object header, tuple objects contain a value called full_size_, which keeps 
track of the size of this tuple object in bytes. Following this value, Rubinius 
saves the actual data values in a C++ array called fields. These data values 
are our six Fibonacci numbers, as shown at the right of Figure 11-14.

N o t e 	 Array data values are saved in the tuple C++ object. If we had created a larger 
array, Rubinius would have used a larger tuple object. If we change the size of 
an array, Rubinius allocates another tuple of the appropriate size or, as we’ll see 
in Experiment 11-2, it can optimize certain array methods in order to avoid allocat-
ing new objects and speed up your program.
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Experiment 11-2: Exploring the Rubinius 
Implementation of Array#shift 
We’ve seen that Rubinius uses C++ objects to represent arrays, but remem-
ber that Rubinius uses a combination of Ruby and C++ code to implement 
methods in the Array class. In this experiment, we’ll learn more about how 
arrays work by looking at how Rubinius implements the Array#shift method.

But first a quick review of what Array#shift does. As you may know, call-
ing shift removes one element from the beginning of an array and shifts the 
remaining elements to the left, as shown in Listing 11-9.

fibonacci_sequence = [1, 1, 2, 3, 5, 8]
p fibonacci_sequence.shift

u  => 1
p fibonacci_sequence

v  => [1, 2, 3, 5, 8]

Listing 11-9: Array#shift removes the first element from an array, shifting the remaining 
elements over.

At u Array#shift returns the first element of fibonacci_sequence. We can 
see from the output at v that Array#shift also removes the first element from 
the array, shifting the other five elements. But how does Ruby implement 
Array#shift internally? Does it actually copy the remaining array elements 
to the left, or does it copy them into a new array?

Reading Array#shift
First, let’s find out where the Array#shift method is located inside Rubinius. 
Because we don’t have a backtrace to refer to as in Experiment 11-1, we can 
ask Rubinius where to find the method using source_location.

p Array.instance_method(:shift).source_location
 => ["kernel/common/array.rb", 848]

This output tells us that Rubinius defines the Array#shift method 
at line 848 in the file kernel/common/array.rb in the Rubinius source tree. 
Listing 11-10 shows the Rubinius implementation of Array#shift.

u def shift(n=undefined)
  Rubinius.check_frozen

v   if undefined.equal?(n)
    return nil if @total == 0

w     obj = @tuple.at @start
    @tuple.put @start, nil
    @start += 1
    @total -= 1

    obj
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x   else
    n = Rubinius::Type.coerce_to(n, Fixnum, :to_int)
    raise ArgumentError, "negative array size" if n < 0

    Array.new slice!(0, n)
  end
end

Listing 11-10: The implementation of Array#shift inside the Rubinius kernel

At u shift takes an optional parameter n. If shift is called without a 
parameter n, as in Listing 11-9, it will remove the first element and shift the 
remaining elements by one position. If you provide a parameter n to shift, it 
will remove n elements and shift the remaining elements n positions to the 
left. At v Rubinius checks whether the parameter n was supplied. If n was 
specified, it jumps to x and uses Array#slice! to remove the first n elements 
and return them.

Modifying Array#shift
Now let’s see what happens when you call shift with no parameters. How 
does Rubinius shift the array by one element? Unfortunately, the Tuple#at 
method called at w is implemented by the C++ code inside the Rubinius vir-
tual machine. (You won’t find a definition for at in the Ruby kernel/common/
tuple.rb file.) This means we won’t be able to read the entire algorithm 
in Ruby. 

We can, however, add Ruby code to Rubinius to display information 
about the array data when we call shift. Because the Rubinius kernel is writ-
ten with Ruby, we can change it like any other Ruby program! First, we’ll 
add a few lines of code to Array#shift, as shown in Listing 11-11.

if undefined.equal?(n)
  return nil if @total == 0

u   fibonacci_array = (self == [1, 1, 2, 3, 5, 8])
v   puts "Start: #{@start} Total: #{@total} Tuple: #{@tuple.inspect}" if 

  fibonacci_array

  obj = @tuple.at @start
  @tuple.put @start, nil
  @start += 1
  @total -= 1

w   puts "Start: #{@start} Total: #{@total} Tuple: #{@tuple.inspect}" if 
  fibonacci_array

  obj
end

Listing 11-11: Adding debug code to the Rubinius kernel
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At u we check whether this array is our Fibonacci array. Rubinius uses 
this method for every array in the system, but we want to display only infor-
mation about our array. Then, at v we display the values of @start, @total, 
and @tuple. Under the hood, @tuple is a C++ object, but in Rubinius it also 
functions as a Ruby object, allowing us to call its inspect method. At w we 
display the same values once they’ve been changed by the Array#shift code.

Now we need to rebuild Rubinius to include our code changes. 
Listing 11-12 shows the output produced by the rake install command. 
(Run this at the root of the Rubinius source code tree.)

$ rake install

--snip--

RBC kernel/common/hash.rb
RBC kernel/common/hash19.rb
RBC kernel/common/hash_hamt.rb

u RBC kernel/common/array.rb
RBC kernel/common/array19.rb
RBC kernel/common/kernel.rb

--snip--

Listing 11-12: Rebuilding Rubinius

The Rubinius build process recompiled the array.rb source code file at u, 
along with many other kernel files. (RBC refers to the Rubinius compiler.)

N o t e 	 Don’t try to use this sort of code change in a production environment.

Now to rerun Listing 11-9 using our modified version of Rubinius. 
Listing 11-13 shows the output interspersed with our original code.

fibonacci_sequence = [1, 1, 2, 3, 5, 8]
p fibonacci_sequence.shift

u Start: 0 Total: 6 Tuple: #<Rubinius::Tuple: 1, 1, 2, 3, 5, 8>
v Start: 1 Total: 5 Tuple: #<Rubinius::Tuple: nil, 1, 2, 3, 5, 8>

 => 1
p fibonacci_sequence
 => [1, 2, 3, 5, 8]

Listing 11-13: Using our modified version of Array#shift

At u and v our new Ruby code inside Array#shift displays the inter-
nal contents of fibonacci_sequence: the @start, @total, and @tuple instance 
variables. Comparing u with v, we can see how Array#shift works internally. 
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Rubinius hasn’t allocated a new array object; it’s reused the underlying 
tuple object. Rubinius has done the following:

•	 Changed @total from 6 to 5 because the length of the array has 
decreased by 1

•	 Changed @start from 0 to 1, which allowed it to continue to use the 
same value for @tuple; now the array contents start at the second value 
(index 1) in @tuple, not the first (index 0)

•	 Changed the first value in @tuple from 1 to nil because the first value is 
no longer used by the array

Creating new objects and allocating new memory can take a long time 
because Rubinius might have to ask for memory from the operating system. 
Its reuse of the underlying data in the tuple object, without copying or allo-
cating memory for a new array, allows Rubinius to run faster. 

Figures 11-15 and 11-16 summarize how Array#shift works. Figure 11-15 
shows the array before calling Array#shift: @start pointed to the first value in 
the tuple, and @length was 6. 

Tuple

ObjectHeader full_size_ = 80 1 1 2 3 5 8

Before

@length = 6@start = 0

Figure 11-15: The tuple holding our Fibonacci numbers before calling Array#shift

Figure 11-16 shows the tuple after calling Array#shift; Rubinius has 
simply changed the values of @start and @length and set the first value in 
the tuple to nil.

Tuple

ObjectHeader full_size_ = 80 nil 1 2 3 5 8

After

@length = 5@start = 1

Figure 11-16: The same tuple after calling Array#shift

As you might guess, MRI uses a similar optimization for Array#shift by 
keeping track of where the array data starts in the original array. However, 
the C code it uses is more complex and difficult to understand. The Rubinius 
kernel gives us a much clearer view of this algorithm.
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Summary
We’ve learned in this chapter that Rubinius uses a virtual machine imple-
mented with C++ to run your Ruby code. Like YARV, the Rubinius virtual 
machine was custom designed to run Ruby programs, and it uses a compiler 
to convert your Ruby program into bytecode internally. We saw that these 
Rubinius instructions resemble YARV instructions; they operate on stack 
values in a similar way. 

But what sets Rubinius apart from other Ruby implementations is its 
Ruby language kernel. The Rubinius kernel implements many built-in Ruby 
classes, such as Array, using Ruby code. This innovative design provides a 
window into Ruby internals—you can use Rubinius to learn how Ruby works 
internally without having to know C or Java. You can learn how Ruby imple-
ments strings, arrays, or other classes simply by reading the Ruby source 
code in the Rubinius kernel. Rubinius isn’t just a Ruby implementation; 
it’s a valuable learning resource for the Ruby community.





The garbage collector is 
where Ruby objects are born 

and where they die.



12
G a r b a g e  C o l l e c t i o n  i n  M RI  , 

J R u b y,  a n d  R u b i n i u s

Garbage collection (GC) is the process high-level languages 
like Ruby use to manage memory for you. Where do 
your Ruby objects live while you’re using them? How 
does Ruby clean up objects your program no longer 
uses? Ruby’s GC system solves these problems.

Garbage collection is not unique to Ruby. The first implementation 
of garbage collection was in the Lisp programming language, invented by 
John McCarthy around 1960. Like Ruby, Lisp manages memory for you 
automatically using garbage collection. Since its invention, garbage collec-
tion has been the subject of decades of computer science research and has 
become an important feature of numerous computer languages, including 
Java, C#, and, of course, Ruby.

Computer scientists have invented many different algorithms for 
performing garbage collection. As it turns out, MRI uses the same GC 
algorithm John McCarthy invented over 50 years ago: mark-and-sweep garbage 
collection. JRuby and Rubinius, on the other hand, use a different algorithm, 
invented just a few years later in 1963: copying garbage collection. They also 
employ another innovation called generational garbage collection and can even 
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perform GC tasks in a separate thread while your application continues to 
run using concurrent garbage collection. In this chapter we’ll touch on the 
basic ideas behind these complex GC algorithms. The MRI, JRuby, and 
Rubinius garbage collectors use more complex versions of these algorithms, 
but the same fundamental principles apply. 
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Garbage Collectors Solve Three Problems
Despite its name, garbage collection is not only the process of cleaning up 
garbage objects. Garbage collectors, in fact, solve three problems:

•	 They allocate memory for use by new objects. 

•	 They identify which objects your program is no longer using. 

•	 They reclaim memory from unused objects.

Ruby’s GC system is no different. When you create a new Ruby object, 
the garbage collector allocates memory for that object. Later, Ruby’s gar-
bage collector determines when your program has stopped using the object 
so it can reuse that memory to create new Ruby objects. Allocating memory 
and reclaiming memory are two sides of the same coin; it makes sense for 
Ruby’s garbage collector to perform both tasks.

Garbage Collection in MRI: Mark and Sweep
A great place to start learning about garbage collection is MRI’s relatively 
simple GC algorithm, which is similar to the one used by John McCarthy in 
1960 with his groundbreaking work on Lisp. Once we understand how the 
algorithm works, we’ll look at the more complex garbage collection in JRuby 
and Rubinius and explore how MRI is adopting some of their techniques.

MRI’s mark-and-sweep algorithm hands your program memory for new 
objects until the available memory, or heap, is exhausted, at which point MRI 
stops your program and marks the objects that variables or other objects 
in your code still hold a reference to as live objects. Ruby then sweeps up the 
remaining objects, called garbage objects, allowing their memory to be reused. 
Once this process is complete, Ruby allows your program to continue again.

The Free List
Standard MRI Ruby uses McCarthy’s original allocation solution, which is 
called the free list. Figure 12-1 shows what a free list looks like conceptually.

Figure 12-1: A conceptual view of the free list inside MRI 
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Each white square in the diagram represents a small piece of memory 
that is available for creating new objects. Think of this diagram as a linked 
list of unused Ruby objects. When you create a new Ruby object, MRI pulls 
a free memory block from the head of the list and uses it to create a new 
Ruby object, as shown in Figure 12-2.

Figure 12-2: Ruby has taken the first memory block from the free list and used it to create 
a new Ruby object.

The gray box in this figure is an allocated, live object. The remaining 
white boxes are still available. Internally all Ruby objects are represented 
by a C structure called RVALUE. MRI uses a C union inside RVALUE to encom-
pass all of the C structures we’ve seen so far in MRI, such as RArray, RString, 
RRegexp, and so on. In other words, each square could be any kind of Ruby 
object or an instance of a custom Ruby class (via RObject). The contents of 
each object, such as the characters in a string, are often stored in a separate 
memory location.

As your program starts to allocate more new objects, MRI takes more 
new RVALUE structures from the free list, and the list of unused values 
shrinks, as shown in Figure 12-3.

Figure 12-3: As your program creates more objects, MRI starts to use up the free list.

MRI ’s Use of Mult ipl e F r e e L is t s

When MRI starts to execute a Ruby script, it allocates memory for use in the free list. 
It sets the length of the initial free list to about 10,000 RVALUE structures, which means 
that MRI can create 10,000 Ruby objects without allocating more memory. As more 
objects are needed, MRI allocates more memory, placing more empty RVALUEs onto 
the free list.

Rather than create a single, long linked list with 10,000 elements, Ruby divides 
the allocated memory into subsections known as heaps in the MRI source code, each 
about 16k in size. It then creates a free list for each of these heaps, initially creating 
24 lists of 407 objects each, using some of the remaining memory for other internal 
data structures.

Because there are multiple free lists, MRI repeatedly returns RVALUE structures 
from one free list until it’s empty and then steps to another free list, returning more 
structures from that second list. In this way, MRI iterates over the available free lists 
until they are all empty.
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Marking
As your program runs, it creates new objects, and eventually MRI uses up 
all remaining objects on the free list. At that point, the GC system stops 
your program, identifies objects that your code is no longer using, and 
reclaims their memory for allocation to new objects. If no unused objects 
are found, Ruby asks the operating system for more memory; if there is 
none to be had, Ruby throws an out-of-memory exception and stops.

Objects that your program allo-
cated but that are no longer being used 
are known as garbage objects. To identify 
garbage objects, MRI traverses point-
ers in your objects’ C structures, fol-
lowing references from one to another 
in order to find all active objects (see 
Figure 12-4). MRI knows your code is 
no longer using an object if it finds no 
references to them.

The gray box on the left is a root 
object, a global variable that you create 
or an internal object that Ruby knows 
your application must be using. There 
are typically many root objects at any 
given time. The arrows represent refer-
ences from this root object to other 
objects, which in turn may contain ref-
erences to other objects. This network 
of objects and references is known 
as the object graph. MRI marks each 
Ruby object that it finds as it traverses 
the object graph, stopping your pro-
gram during the marking process in 
order to insure that no new object ref-
erences are created.

Once the marking process com-
pletes, the heap contains a series of 
objects, both marked and unmarked, 
as shown in Figure 12-5. The marked 
objects are live, which means your code 
is actively using them. The unmarked 
objects are garbage, meaning Ruby can 
release or reclaim their memory. Your 
code is still using the marked objects, so 
their memory must be preserved. 

How Does MRI Mark Live Objects?
MRI saves the information about marked and unmarked objects using a 
technique known as bitmap marking. Bitmap marking refers to the technique 

M

M

MM

M

Figure 12-5: MRI has marked five 
active objects (gray) with five garbage 
objects remaining in the heap (white).

Figure 12-4: Ruby follows pointers, 
or references, from one object to 
another, starting with a root object 
on the left.
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of saving the live object marks as a series of bits in a data structure known 
as the free bitmap (see Figure 12-6). MRI uses a separate memory structure 
to hold the free bitmap and doesn’t save the marks near the objects.

0  1  0  1  1  0  0  1

etc...

Figure 12-6: MRI saves the GC mark flags in a separate data structure known as the 
free bitmap.

The reason to use a separate memory structure for the mark bits has 
to do with a Unix memory optimization technique called copy-on-write (see 
page 265). Similar to how Ruby shares memory between different strings 
that contain the same letters, copy-on-write allows Unix processes to share 
memory that contains the same values. By saving the mark bits separately, 
MRI maximizes the amount of memory that will contain the same values 
across processes. (In Ruby 1.9 and earlier, the mark bits were saved inside 
each RVALUE structure, causing the garbage collector to modify almost all of 
Ruby’s shared memory while marking live objects and rendering the copy-
on-write optimization ineffective.)

Sweeping
Having identified garbage objects, it’s time to reclaim them. Ruby’s GC 
algorithm places the unmarked objects back on the free list, as shown in 
Figure 12-7.

Figure 12-7: While sweeping, MRI places unused RVALUE structures back on the free list.

The process of moving unused objects back onto the free list is referred 
to as sweeping the objects. Normally this process runs very quickly because 
MRI doesn’t actually copy objects; it simply adjusts the pointers in each 
RVALUE to create the free linked list (the solid arrows in Figure 12-7).

Lazy Sweeping
Beginning with version 1.9.3, MRI introduced an optimization known as 
lazy sweeping. The lazy sweep algorithm reduces the amount of time a pro-
gram is stopped by the garbage collector. (Remember, during the normal 
mark and sweep, MRI stops executing your code.)
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Lazy sweeping sweeps only enough garbage objects back to the free 
list to create a few new Ruby objects and to allow your program to con-
tinue, thus reducing the amount of time required to sweep. Ruby sweeps 
all of the garbage RVALUE objects found in only one of MRI’s internal heap 
structures back to that heap’s free list. If no garbage objects are found in 
the current heap, Ruby tries a lazy sweep on the next heap and works its 
way through the remaining heaps. (We’ll see this algorithm at work in 
Experiment 12-1.)

Lazy sweeping can reduce the amount of time your program is paused 
waiting for garbage collection; however, it doesn’t reduce the overall amount 
of garbage collection work to do. Lazy sweeping amortizes the same total 
amount of sweeping work over multiple GC pauses.

T he RVALUE  S t ruc t ur e

You can find the definition of the RVALUE C structure in the gc.c MRI source code file, 
which contains the implementation of MRI’s garbage collector. Listing 12-1 shows 
part of the RVALUE definition.

typedef struct RVALUE {
u   union {
v     struct {

      VALUE flags;        /* always 0 for freed obj */
      struct RVALUE *next;
    } free;

w     struct RBasic  basic;
    struct RObject object;
    struct RClass  klass;
    struct RFloat  flonum;
    struct RString string;
    struct RArray  array;
    struct RRegexp regexp;

--snip--

    } as;
#ifdef GC_DEBUG
    const char *file;
    int   line;
#endif
} RVALUE;

Listing 12-1: Part of the RVALUE definition from gc.c

Notice at u that RVALUE uses a union to hold one of many different types of 
values internally. The first possible value is the free structure, defined at v, which 
represents RVALUEs still on the free list. MRI includes every other possible type of 
Ruby object in the union starting at w: RObject, RString, and so forth.
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Disadvantages of Mark and Sweep
The chief disadvantage of mark and sweep is that it requires your program 
to stop and wait while the marking and sweeping processes take place. 
Beginning with version 1.9.3, however, MRI’s lazy sweeping technique 
shortens the GC pauses somewhat.

Another disadvantage is that the time required to perform a mark-
and-sweep garbage collection is proportional to the total size of the heap. 
During the marking phase, Ruby needs to visit every active object in your 
program. During the sweeping phase, Ruby needs to iterate over all of the 
unused garbage objects left in the heap. As the number of objects created 
by your program and the total heap size grows, both tasks become more 
time intensive.

The final issue with mark and sweep is that all of the free list elements—
all of the unused objects available for your program to use—must be the 
same size. MRI doesn’t know ahead of time when you allocate a new object 
whether it will be a string, an array, or a simple number. This is why the 
RVALUE structure MRI uses in the free list must encompass any possible type 
of Ruby object.

Experiment 12-1: Seeing MRI Garbage Collection 
in Action
You’ve learned how the MRI GC algorithm works at a theoretical level. 
Let’s switch gears now to see how MRI performs actual garbage collection. 
The script in Listing 12-2 creates 10 Ruby objects.

10.times do
  obj = Object.new
end

Listing 12-2: Creating 10 Ruby objects using Object.new

If it’s true that MRI assigns unused space from the free list to new objects, 
Ruby should remove 10 RVALUE structures from the free list and assign them 
to these 10 new objects when we run Listing 12-2. To see this in action, we 
use the ObjectSpace#count_objects method, as shown in Listing 12-3.

def display_count
u   data = ObjectSpace.count_objects
v   puts "Total: #{data[:TOTAL]} Free: #{data[:FREE]} Object: #{data[:T_OBJECT]}"

end

10.times do
  obj = Object.new

w   display_count
end

Listing 12-3: Using ObjectSpace#count_objects to display information about MRI’s heap 
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Now we call display_count at w each time around the loop. display_count 
uses ObjectSpace#count_objects at u to display information at v about the 
total number of objects, the number of free objects, and the number of 
RObject structures active each time around the loop.

Running Listing 12-3 gives the output shown in Listing 12-4.

Total: 17491 Free: 171 Object: 85
Total: 17491 Free: 139 Object: 86
Total: 17491 Free: 132 Object: 87
Total: 17491 Free: 125 Object: 88
Total: 17491 Free: 118 Object: 89
Total: 17491 Free: 111 Object: 90
Total: 17491 Free: 104 Object: 91
Total: 17491 Free: 97 Object: 92
Total: 17491 Free: 90 Object: 93
Total: 17491 Free: 83 Object: 94

Listing 12-4: The output produced by Listing 12-3

The Total: field displays the value that MRI returns for ObjectSpace​
.count_objects[:TOTAL]. This value (17491) is the total number of objects 
currently active inside Ruby. It includes objects we create; objects Ruby 
creates internally while parsing, compiling, and executing our program; 
and objects on the free list. This number does not change when we create 
new objects because it already includes the entire free list.

The Free: field displays the value returned by ObjectSpace.count_
objects[:FREE] for the length of the free list. Notice that the value drops by 
about 7 each time around the loop. We create only one object per iteration, 
but Ruby creates 6 other objects each time around the loop while running 
the code in the display_count method.

The Object: field displays the count of RObject structures currently active 
in Ruby. Notice that this value increases by 1 each time around the loop, 
even though we don’t keep an active reference to the new objects. That is, 
we don’t save the value returned by Object.new anywhere. The RObject count 
includes active and garbage objects.

Seeing MRI Perform a Lazy Sweep
Now if we increase the number of iterations from 10 to 30 and rerun 
Listing 12-3, we see the following output in Listing 12-5.

Total: 17493 Free: 166 Object: 85
Total: 17493 Free: 134 Object: 86
Total: 17493 Free: 127 Object: 87
Total: 17493 Free: 120 Object: 88

--snip--

Total: 17493 Free: 29 Object: 101
Total: 17493 Free: 22 Object: 102
Total: 17493 Free: 15 Object: 103
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u Total: 17493 Free: 8 Object: 104
v Total: 17493 Free: 246 Object: 104

Total: 17493 Free: 239 Object: 105
Total: 17493 Free: 232 Object: 106
Total: 17493 Free: 225 Object: 107

Listing 12-5: Running Listing 12-3 with 30 iterations instead of 10

This time the free list count drops to 8 at u. Then at v the free count 
increases to 246, but the object count remains at 104. This must be a full 
garbage collection. But it’s not! If Ruby had collected all available garbage 
objects, it would have reduced the RObject count when it increased the free 
count because all of our objects become garbage immediately. What’s going 
on here?

This was a lazy sweep. Ruby first marked all active objects, indirectly 
identifying the garbage ones. Instead of moving all the garbage objects to 
the free list, however, it swept only a portion of them: the garbage objects 
it found in one of its internal heap structures. The free count increased, 
but the RObject count remained the same because MRI reused an RObject 
structure created by one of the previous iterations in order to create the 
new object. 

Seeing MRI Perform a Full Collection
We can see the effect of a full garbage collection by triggering one manu-
ally with the GC.start method (see Listing 12-6).

def display_count
  data = ObjectSpace.count_objects
  puts "Total: #{data[:TOTAL]} Free: #{data[:FREE]} Object: #{data[:T_OBJECT]}"
end

30.times do
  obj = Object.new
  display_count
end

u GC.start
v display_count

Listing 12-6: Triggering a full garbage collection

Here, we again iterate 30 times, creating new objects and calling 
display_count. Then, we call GC.start at u, which triggers MRI to run a full 
garbage collection. Finally, at v we call display_count again to display the 
same technical information. Listing 12-7 shows the new output.
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--snip--

Total: 17491 Free: 26 Object: 101
Total: 17491 Free: 19 Object: 102
Total: 17491 Free: 12 Object: 103

u Total: 17491 Free: 251 Object: 103
Total: 17491 Free: 244 Object: 104
Total: 17491 Free: 237 Object: 105
Total: 17491 Free: 230 Object: 106
Total: 17491 Free: 223 Object: 107
Total: 17491 Free: 216 Object: 108
Total: 17491 Free: 209 Object: 109
Total: 17491 Free: 202 Object: 110
Total: 17491 Free: 195 Object: 111
Total: 17491 Free: 188 Object: 112
Total: 17491 Free: 181 Object: 113

v Total: 17491 Free: 9527 Object: 43

Listing 12-7: The output generated by Listing 12-6

Most of Listing 12-7 shows output similar to Listing 12-5. The total 
remains the same, while the free count gradually decreases. At u we see 
the lazy sweep occur again, increasing the free count to 251. But at v we 
see a dramatic change. The total number of objects remains at 17491, but 
the free count jumps to 9527 and the number of objects reduces dramati-
cally to 43!

From this observation, we know the following:

•	 The free count increased dramatically at v because Ruby swept all 
of the garbage objects onto the free list in one large operation. This 
garbage included the objects our code created in previous iterations as 
well as objects that Ruby created internally during the parsing and com-
pilation phases.

•	 The RObject count reduced to 43 because all of the objects created in 
previous iterations were garbage (because we didn’t save them any-
where). The 43 count includes only objects Ruby created internally and 
none of the objects our code created. If we had saved our new objects 
somewhere, the RObject count would have remained the same. (We’ll try 
this next.)

Interpreting a GC Profile Report
So far in this experiment we’ve allocated just a few objects from the free 
list. Of course, your Ruby programs will typically create many more than 
30 objects. How does MRI’s garbage collector behave when we create thou-
sands or even millions of objects? How can you find out how much time is 
being taken by the garbage collector in a complex Ruby application?
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The answer is to use the GC::Profiler class. If you enable it, MRI’s inter-
nal GC code will collect statistics about each GC run. Listing 12-8 shows 
how to use GC::Profiler.

u GC::Profiler.enable

10000000.times do
  obj = Object.new
end

v GC::Profiler.report

Listing 12-8: Displaying a GC usage profile using GC::Profiler (gc-profile.rb)

We first enable the profiler at u by calling GC::Profiler.enable. The fol-
lowing code creates 10 million Ruby objects. At v we display the GC profile 
report by calling GC::Profiler.report. Listing 12-9 shows the report gener-
ated in Listing 12-8.

$ ruby gc-profile.rb
GC 1046 invokes.
Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object      GC Time(ms)
           0.036               690920               700040                17501         0.694000
           0.039               695200               700040                17501         0.433999
           0.041               695200               700040                17501         0.585000
           0.046               695200               700040                17501         0.577000
           0.049               695200               700040                17501         0.466000
           0.051               695200               700040                17501         0.516999
           0.054               695200               700040                17501         0.419000
           0.056               695200               700040                17501         0.535000
           0.059               695200               700040                17501         0.410000
           0.062               695200               700040                17501         0.426999
--snip--

Listing 12-9: A portion of the GC profile report generated in Listing 12-8

To save space, I’ve removed the first column from the report, a simple 
counter. Here’s what the other columns mean:

•	 Invoke time shows when the garbage collection occurred, measured as 
seconds after the Ruby script started to run.

•	 Use size shows how much heap memory is used by all live Ruby objects 
after each collection is finished.

•	 Total size shows the total size of the heap after collection—in other 
words, the memory taken by live objects plus the size of the free list.

•	 Total object shows the total number of Ruby objects, either live or on the 
free list.

•	 Finally, GC time shows the amount of time each collection took.



Garbage Collection in MRI, JRuby, and Rubinius   307

Notice in this experiment that, aside from invoke time, none of the val-
ues change. The amount of memory used by live Ruby objects, the total size 
of the heap, and the total number of objects all remain the same. This is 
because we don’t save the new Ruby objects anywhere. They all immediately 
become garbage. The GC time value fluctuates somewhat but more or less 
remains the same. The amount of time required by the collector to sweep 
all of the new objects back to the free list remains about the same because 
the collector sweeps about the same number of objects each time.

However, if we save all of the new objects in an array, they will remain 
live and not become garbage. Listing 12-10 shows code that saves each 
object into a single, large array.

GC::Profiler.enable

u arr = []
10000000.times do

v   arr << Object.new
end

GC.start

GC::Profiler.report

Listing 12-10: Saving 10 million Ruby objects in an array (gc-profile-array.rb)

Here, we create an empty array at u and save each of the new objects 
in it at v. Because the array holds a reference to all of the new objects, they 
remain active. The garbage collector can’t reclaim memory from any of 
them. Listing 12-11 shows the GC profile report produced by Listing 12-10.

$ ruby gc-profile-array.rb 
GC 17 invokes.
Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object      GC Time(ms)
           0.031               690920               700040                17501         0.575000
           0.034               708480               716320                17908         0.689000
           0.037              1261680              1269840                31746         1.077000
           0.043              2254280              2262920                56573         1.994999
           0.054              4044200              4053720               101343         3.454999
           0.074              7266080              7277160               181929         5.288000
           0.108             13058920             13072840               326821         9.417000
           0.170             23489240             23508320               587708        14.465000
           0.279             42267080             42311720              1057793        26.015999
           0.478             76096560             76157840              1903946        45.910000

Listing 12-11: Ruby has to increase the heap size to accommodate all the new, live objects.

This time the profile report is very different! The garbage collector can’t 
free any of the new objects because they remain active in the array. This 
means Ruby has no choice but to repeatedly allocate more memory to hold 
them. When you read Listing 12-11, notice that all three important values—
use size, total size, and total object—increase exponentially. This increase is 

u 
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why at u we see the garbage collector was called only 17 times. (Ruby also 
ran a few collections before we called GC::Profiler.enable as it parsed and 
compiled our script.) Each time the collector more or less doubled the size 
of the heap, allowing the script to continue to run for longer and longer 
periods of time. Instead of running many collections quickly, as we saw in 
Listing 12-9, Ruby ran just a few slow collections.

If we draw a graph of the time required for each collection (GC Time) 
against the total size of the heap (Total Heap Size), as shown in Figure 12-8, 
we can draw another interesting conclusion.
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Figure 12-8: The time required to perform mark and sweep increases linearly with the 
heap size.

Figure 12-8 uses a logarithmic scale for both the x-axis (Total Heap 
Size) and the y-axis (GC Time). Because Ruby doubled the heap size during 
each collection, the data points are more or less evenly spaced across the 
logarithmic x-axis scale. They are also evenly spaced along the logarithmic 
y-axis because the time increases exponentially.

Most importantly, note the data points form a straight line: This straight 
line means the time required to perform a garbage collection increases lin-
early as a function of the total heap size. As you create more Ruby objects, it 
takes longer to mark them. Sweeping also takes longer when there are more 
garbage objects; however, in this example, we don’t see any sweep time 
because all our objects remain live.
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Garbage Collection in JRuby and Rubinius
Because JRuby uses the Java Virtual Machine (JVM) to implement Ruby, it’s 
able to use the JVM’s sophisticated GC system to manage memory for Ruby 
objects. In fact, garbage collection is one of the primary benefits of using the 
JVM platform: The JVM garbage collector has been refined over many years.

The Rubinius C++ virtual machine also includes a sophisticated, effi-
cient garbage collector that uses some of the same underlying algorithms as 
the JVM. One of the benefits of choosing Rubinius as your Ruby platform is 
its sophisticated GC system.

The garbage collectors used by JRuby and Rubinius differ from MRI’s 
garbage collector in three ways:

•	 Instead of using a free list, they allocate memory for new objects and 
reclaim memory from garbage objects using an algorithm called copying 
garbage collection.

•	 They handle old and young Ruby objects differently using generational 
garbage collection.

•	 They use concurrent garbage collection to perform some GC tasks at the 
same time that your application code is running.

N o t e 	 Although the GC systems used by JRuby and Rubinius are dramatically different from 
MRI’s mark-and-sweep garbage collector, MRI has begun to incorporate some of these 
ideas as well. Specifically, the GC system in Ruby 2.1 has begun to use generational 
garbage collection. 

In the following sections, we’ll explore the basic algorithms underpin-
ning copying, generational, and concurrent garbage collection, as we learn 
more about how garbage collection works in Rubinius and JRuby.

Copying Garbage Collection
In 1963, three years after John McCarthy built the first Lisp garbage collector, 
Marvin Minsky developed a different way of allocating and reclaiming mem-
ory known as copying garbage collection. (Minsky’s research was also originally 
used for Lisp. The algorithm was later refined by Fenichel and Yochelson 
in 1969 and by Baker in 1978.) Instead of using a free list to track available 
objects, copying garbage collectors allocate memory for new objects from 
a single large heap or memory segment. When that memory segment is 
used up, these collectors copy only the live objects over to a second memory 
segment, leaving the garbage objects behind. The two segments are then 
swapped, immediately reclaiming all of the memory from the garbage 
objects. (Rubinius and the JVM both use complex algorithms based on this 
original idea.)
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Bump Allocation
When you allocate memory for a new object using a copying garbage collec-
tor, such as the collectors in the JVM and Rubinius, the garbage collector 
uses an algorithm called bump allocation. Bump allocation allocates adjacent 
memory segments from a large, continuous heap by bumping, or increment-
ing, a pointer to keep track of where the next allocation will occur. Figure 12-9 
shows how this process works for three repeated allocations. (The large 
rectangle represents the Rubinius or JVM heap.)

next
allocation

next
allocation

next
allocation

Figure 12-9: Allocating three objects using bump allocation

A copying collector keeps a pointer that tracks where in the heap the 
next allocation will occur. Each time the collector allocates memory for a 
new object, it returns some memory from the heap and moves this pointer 
to the right. As more objects are created, the memory allocated from the 
heap also moves to the right. Notice, too, that the new objects are not all 
the same size; each object uses a different number of bytes. As a result, the 
objects are not spaced evenly across the heap.

The advantages of this technique are that it’s very fast and simple to 
implement and it provides good locality of reference, meaning that related 
values in your program should be located near each other in memory. 
Locality is important because if your code repeatedly accesses the same 
area of memory, your CPU can cache that memory and access it much more 
quickly. If your program often accesses very different areas of memory, the 
CPU must continually reload the memory cache, slowing down your pro-
gram’s performance.
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Another benefit of copying garbage collection is the ability to create 
objects of different sizes. Unlike the RVALUE structure in MRI, JRuby and 
Rubinius can allocate new objects of any size.

The Semi-Space Algorithm
The real benefit and elegance of copying garbage collectors becomes 
evident when the initial heap is used up and a garbage collection occurs. 
Copying garbage collectors identify live and garbage objects the way that 
mark-and-sweep collectors do—by traversing the object graph following 
object references or pointers. Once the garbage objects have been identi-
fied, however, copying garbage collectors work very differently.

Copying garbage collectors actually use two heaps: one to create 
new objects with bump allocation and a second, empty one, as shown 
in Figure 12-10.

M M M M M

From-Space

To-Space

Figure 12-10: The semi-space algorithm uses two heaps, one initially empty.

The heap at the top contains the objects already created and is known as 
the from-space. Note that the objects in the from-space were already marked 
as live (gray with an M) or garbage (white). The lower heap is the to-space, 
and it’s initially empty. The algorithm I’m about to describe is known as the 
semi-space algorithm because the total available memory is divided between 
the from-space and the to-space.

When the from-space becomes completely full, copying garbage collec-
tors copy all of the live objects down into the to-space, leaving the garbage 
objects behind. Figure 12-11 shows the copying process.

M M M M M

From-Space

To-Space

next
allocation

Figure 12-11: The semi-space algorithm copies only live objects to the second heap.
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The from-space again appears at the top of the diagram and the to-
space below. Notice how the live objects are copied down into the to-space. 
The arrows pointing down indicate this copying process. A pointer similar 
to the one used for bump allocation keeps track of where the next live 
object should be copied to.

Once the copying process is finished, the semi-space algorithm swaps 
heaps, as shown in Figure 12-12.

From-Space

To-Space

next
allocation

Figure 12-12: After copying the live objects, the semi-space algorithm switches heaps.

In Figure 12-12, the to-space has become the new from-space and is 
now ready to allocate more memory for new objects using bump alloca-
tion. You might expect the algorithm to be slow because so much copying 
is involved, but it’s not, because only active, live objects are copied. Garbage 
objects are left in place and then reclaimed.

N o t e 	 All of the live objects were copied to the left side of the heap; this allows the garbage 
collector to allocate the remaining unused memory most efficiently. This compaction 
of the heap is a natural result of the semi-space algorithm. 

While the semi-space algorithm is an elegant way to manage memory, 
it is somewhat memory inefficient. It requires the collector to allocate 
twice as much memory as it actually uses because all of your objects might 
remain active and could be copied into the second heap. The algorithm is 
also somewhat difficult to implement because when the collector moves live 
objects, it also has to update references and pointers to them internally. 

The Eden Heap
As it turns out, both Rubinius and the JVM use a variation of the semi-
space algorithm with a third heap structure for allocating new objects 
called the Garden of Eden, or Eden heap. Figure 12-13 shows the three mem-
ory structures.



Garbage Collection in MRI, JRuby, and Rubinius   313
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Figure 12-13: The Eden heap is for allocating memory for brand-new objects.

The Eden heap is where the JVM and Rubinius allocate memory for 
new objects; the from-space contains all of the live objects copied in the 
previous garbage collection process; and the to-space remains empty until 
the next garbage collection runs. Each time the garbage collection process 
runs, the collector copies your objects from both the Eden heap and from-
space into the to-space, thereby allowing more memory to be available for 
new objects because the Eden heap will always be empty after each semi-
space copy operation.

Generational Garbage Collection
Many modern garbage collectors, including the collectors in the JVM and 
the Rubinius VM, use generational GC algorithms, a technique that treats new 
objects differently than older ones. A new, or young, object is one that your 
program has just created, while an old, or mature, object is one that your pro-
gram is continuing to use. The time that an object has to remain active for in 
order for it to be considered mature is usually measured by the number of 
times the garbage collection system has run.

The Weak Generational Hypothesis
The reason objects are categorized as either young or mature is based on 
the assumption that most young objects will have a short lifetime while 
mature objects are likely to continue to live for a long time. This assump-
tion is known as the weak generational hypothesis. In simple terms, new objects 
are likely to die young. Because young and mature objects have different 
life expectancies, different GC algorithms are appropriate for each cat-
egory, or generation.
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For example, consider a Ruby on Rails website. To generate a web page 
for each client request, a Rails application creates many new Ruby objects. 
However, once a web page has been generated and returned to the client, 
all of those Ruby objects are no longer needed and the GC system can 
reclaim their memory. At the same time, the application might also create a 
few Ruby objects that live between requests, such as ones that represent a 
controller, some configuration data, or a user session. These few mature 
objects would have a longer lifetime.

Using the Semi-Space Algorithm for Young Objects
According to the weak generational hypothesis, young objects are created 
continually by your program but also become garbage quite frequently. 
Because of this, both the JVM and Rubinius run the GC process more fre-
quently for young objects than for mature ones (you’ll see just how much 
more frequently in Experiment 12-2). The semi-space algorithm is ideal 
for young objects because it copies only live objects. When the Eden heap 
fills up with new objects, the garbage collector identifies most of them as 
garbage because new objects usually die young. Because there are fewer live 
objects, the collector has less copying to do. The JVM refers to these objects 
as survivors and calls the from-space and the to-space survivor spaces.

Promoting Objects
When a new object becomes old (that is, when it has survived a certain number 
of runs of the GC system), it is promoted, or copied, into the mature genera-
tion heap during the semi-space copy process, as shown in Figure 12-14.

promoted promoted

From-Space

To-Space

Figure 12-14: Generational garbage collectors promote old objects from the young heap 
to the mature one.

Notice that the from-space contains five active objects, shown as 
gray rectangles. Two of these are copied down to the to-space by the 
semi-space algorithm, but the other three are promoted. Their age has 
exceeded the new object lifetime because they have remained active for a 
certain number of GC runs.



Garbage Collection in MRI, JRuby, and Rubinius   315

In Rubinius, the new object lifetime is set to 2 by default, meaning that 
a young object becomes mature once the GC system has run twice with your 
code still holding a reference to that object. (This means that Rubinius will 
copy a live object twice between the from- and to-space, using the semi-space 
algorithm.) Over time, Rubinius adjusts the object lifetime value, based on 
various statistics, to optimize garbage collection as much as possible.

The JVM’s garbage collector internally calculates the new object life-
time, attempting to keep the from- and to-space heaps about half full. 
If these heaps start to fill up, the new object lifetime will decrease, and 
objects will be promoted more quickly. If the spaces are mostly empty, the 
JVM will increase the new object lifetime, allowing new objects to remain 
there longer.

Garbage Collection for Mature Objects
Once your objects are promoted into the mature collection, they will likely 
live on for a long time due to the weak generational hypothesis. As a result, 
both the JVM and Rubinius need to run garbage collection on the mature 
generation much less frequently. Garbage collection on the mature genera-
tion runs once the heap allocated for mature objects fills up. Because most 
new objects don’t live past the new object lifetime, the mature collection 
fills up slowly.

The JVM offers many command-line options that allow you to configure 
the relative or absolute sizes of young and mature generation heaps (the 
JVM documentation refers to the mature generation as the tenured genera-
tion). The JVM also maintains a third generation for internal objects created 
by the JVM itself: the permanent generation. Garbage collection on the young 
generation is called a minor collection, and on the tenured generation, it’s a 
major collection.

Rubinius uses a sophisticated GC algorithm called Immix for the 
mature generation of objects. Immix attempts to reduce the amount of 
total memory used and the amount of heap fragmentation by collecting 
active objects into continuous regions. Rubinius also uses a third genera-
tion for very large objects and collects them using a standard mark-and-
sweep process.

N o t e 	 MRI Ruby version 2.1 implements a generational GC algorithm for standard Ruby 
like the one the JVM and Rubinius have used for years. Its primary challenge is 
also detecting which mature objects reference young ones (see “References Between 
Generations” on page 316). MRI uses a solution common to many implementa-
tions of generational GC: it tracks each time a mature object references a young 
one using write barriers. However, implementing write barriers in MRI is complex 
because existing C extensions won’t contain them. 
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R e f e r e nce s Be t w e e n Ge ne r at ions

In addition to the new object lifetime, generational garbage collectors have to track 
another important detail: young objects that are active because of a reference from 
an old object. Because collections on the young generation will not mark mature 
objects, the collector might assume that certain young objects are garbage when 
they are not. Figure 12-15 shows an example of the problem.

?

Young Objects Mature Objects

live or
garbage?

Figure 12-15: Generational garbage collectors need to find mature objects that  
reference young objects.

The young collection contains several live objects (gray) and garbage objects 
(white). During the young object marking phase, the generational garbage collec-
tor follows only references from young objects in order to speed up the process, 
which occurs frequently. Notice, however, the center object marked with a question 
mark: Is it live or garbage? There are no references to it from other young objects, 
but there is a reference to it from a mature object. If Rubinius or the JVM were to run 
the semi-space algorithm on the young objects at left after marking them, the center 
object would be incorrectly considered garbage and its contents overwritten!

Write Barriers

Generational garbage collectors can solve this problem using write barriers. These 
are bits of code that keep track of when your program adds a reference from a 
mature object to a young one. When the garbage collector encounters such a 
reference, it considers that one mature object to be another root for use in marking 
young objects, thereby allowing the object in question to be considered live and 
to be copied properly by the semi-space algorithm.
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Concurrent Garbage Collection
Both Rubinius and the JVM use another sophisticated technique to reduce 
the amount of time your application spends waiting for garbage collection: 
concurrent garbage collection. When using concurrent garbage collection, 
the garbage collector runs at the same time as your application code. This 
eliminates, or at least reduces, pauses in your program due to garbage col-
lection because your application doesn’t have to stop and wait while the 
garbage collector runs.

Concurrent garbage collectors run in a separate thread from the pri-
mary application. Although in theory this could mean that your application 
will slow a bit because part of the CPU’s time has to be spent running the 
GC thread, most computers today contain microprocessors with multiple 
cores, which allow different threads to run in parallel. This means one of 
the cores can be dedicated to running the GC thread, leaving the other cores 
to run the primary application. (In practice, this still might slow down your 
application because fewer cores are available.)

N o t e 	 MRI Ruby 2.1 also supports a form of concurrent garbage collection by performing 
the sweep portion of the mark-and-sweep algorithm in parallel while your Ruby code 
continues to run. This helps to reduce the amount of time your application is paused 
while garbage collection runs.

Marking While the Object Graph Changes
Marking objects while your applica-
tion is running presents one large 
obstacle for concurrent garbage 
collectors: What if your application 
changes the object graph while the 
collector is marking it? To better 
understand this problem, see the 
example object graph in Figure 12-16.

This figure shows a small set of 
objects being marked by a concur-
rent garbage collector. On the left 
is a root object, and to the right are 
various child objects referenced by 
the root object. All of the live objects 
are marked with M and shown in 
gray. The garbage collector, indi-
cated by the large arrow, has already 
marked the live objects and is now 
processing the objects near the bot-
tom. The collector is about to mark 
the two remaining white objects at the 
bottom right.

M

M

M

M

Garbage
Collector

Figure 12-16: A garbage collector 
marking an object graph
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Now suppose your application, which is also running while the marking 
process is underway, creates a new object and adds it as a child of one of the 
previously marked objects. Figure 12-17 shows the new situation.

M

M

M

M
New Object

Garbage
Collector

Figure 12-17: Your application creates a new object while the  
marking process is underway.

Notice that one of the live, marked objects points to a new object that 
hasn’t been marked yet.

Now suppose the garbage collector finishes marking the object graph. 
It has marked all of the live objects, meaning that any remaining objects are 
assumed to be garbage. Figure 12-18 shows how the object graph appears at 
the end of the marking process.

M

M

M

M
Not garbage!

M

M

Figure 12-18: The collector incorrectly considers the new live  
object to be garbage.
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The garbage collector has finished marking all live objects, but it 
missed the new object. The collector will now reclaim its memory, but the 
application will have lost valid data or will have garbage data added to one 
of its objects!

Tricolor Marking
The solution to this problem is to maintain a mark stack, or a list of objects that 
still need to be examined by the marking process, as shown in Figure 12-19.

Mark Stack

M M

Remaining ObjectsMarked Objects

Garbage
Collector

Figure 12-19: The marking process works through the objects in the mark stack.

Initially all of the root objects are placed on the mark stack. As the 
garbage collector marks objects, it moves them from the mark stack to the 
list of marked objects on the left, and it adds any child objects it finds to 
the mark stack. When the mark stack is exhausted, the garbage collector is 
finished; it has identified all live objects and any remaining objects on the 
right are assumed to be garbage. But with this scheme, if the application 
modifies one of the objects during marking, the collector can move the 
modified object back to the mark stack, even if it was previously marked, 
as shown in Figure 12-20.

M

New Object

Mark Stack Remaining ObjectsMarked Objects

Garbage
Collector

Figure 12-20: The collector moves a marked object back to the mark stack because the 
application modified it.

The application has added a new object to the system, as shown at 
right in the figure’s remaining objects list. This time, however, the collec-
tor notices that an existing object was modified because it now contains a 
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reference to the new object and it moves the modified object to the mark 
stack in the center. As a result, the collector will eventually find and mark 
the new object as it works through the mark stack.

This modified marking algorithm is known as tricolor marking: Objects 
already processed are considered “black”; objects on the mark stack, “gray”; 
and the remaining objects, “white,” as shown in Figures 12-19 and 12-20.

N o t e 	 Concurrent garbage collectors can use write barriers to detect when an application 
changes the object graph. Write barriers are used by both generational and concurrent 
garbage collectors. 

Three Garbage Collectors in the JVM
In order to support different types of applications and server hardware, the 
JVM includes three separate garbage collectors that implement concurrent 
garbage collection differently. You can use command-line parameters to 
choose which collector to run in your JRuby program. The three collectors 
are as follows:

Serial  This collector stops your application and performs garbage 
collection while your application is waiting. It doesn’t use concurrent 
garbage collection at all.

Parallel  This collector performs many GC tasks, including minor col-
lections, in a separate thread while your application is running.

Concurrent  This collector performs most GC tasks in parallel with 
your application. It’s optimized to reduce GC pauses as much as pos-
sible, but its use may slow down your application’s overall throughput.

N o t e 	 In addition to these three, a variety of new, experimental garbage collectors are also 
available for the JVM. One of these is the garbage-first (G1) collector, and another is 
the continuously concurrent compacting (C4) collector.

Unless you direct it to do otherwise, the JVM automatically selects 
one of these garbage collectors, depending on the type of hardware being 
used. For most computers, the JVM uses the parallel collector by default; 
for server-class machines, it uses the concurrent collector instead. You can 
change the JVM’s default garbage collection choice by using command-
line options when you start your JRuby program. See the article “Java SE 6 
HotSpot Virtual Machine Garbage Collection Tuning” (http://www.oracle​
.com/technetwork/java/javase/gc-tuning-6-140523.html) for more details. 

The ability to choose from these different GC algorithms and to fur-
ther tune the behavior of the collector using many other configuration 
options is one of the great benefits of using JRuby. The effectiveness and 
performance of a garbage collector depends on your application’s behavior 
as well as the underlying algorithms used.
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To help make sense of the myriad GC-related options provided by the 
JVM, Charles Nutter, one of the lead developers behind the JRuby project, 
suggests using the following rules of thumb:

•	 When in doubt, stick with the JVM’s default settings. These settings 
work well in most cases.

•	 If you have a lot of data that need to be collected frequently or periodi-
cally, the concurrent or experimental G1 collectors may do a better job 
than the parallel collector.

•	 Try to improve your code so it uses less memory before tuning garbage 
collection. Tuning the JVM’s garbage collector when you are allocating 
too much memory solves only half the problem.

Experiment 12-2: Using Verbose GC Mode in JRuby
Experiment 12-1 explored garbage collection in MRI. In this experiment, 
we’ll see how garbage collection works in JRuby by asking the JVM to display 
technical information about what the JVM’s garbage collector is doing. 
Listing 12-12 shows the code from Experiment 12-1 that creates 10 Ruby 
objects.

10.times do
  obj = Object.new
end

Listing 12-12: Creating 10 Ruby objects using Object.new (jruby-gc.rb)

When we run this simple program using the -J-verbose:gc option, the 
JVM displays internal debugging information about garbage collection. 
Here’s the command to use:

$ jruby -J-verbose:gc jruby-gc.rb

But this command doesn’t produce any output. Perhaps we aren’t creat-
ing enough objects to trigger a garbage collection.

Let’s increase the number of new objects to 10 million, as shown in 
Listing 12-13.

10000000.times do
  obj = Object.new
end

Listing 12-13: Creating 10 million Ruby objects using Object.new (jruby-gc.rb)
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The new output is shown in Listing 12-14.

$ jruby -J-verbose:gc jruby-gc.rb
[GC 17024K->1292K(83008K), 0.0072491 secs]
[GC 18316K->1538K(83008K), 0.0091344 secs]
[GC 18562K->1349K(83008K), 0.0006953 secs]
[GC 18373K->1301K(83008K), 0.0006876 secs]
[GC 18325K->1289K(83008K), 0.0004180 secs]
[GC 18313K->1285K(83008K), 0.0006950 secs]
[GC 18309K->1285K(83008K), 0.0006597 secs]
[GC 18309K->1285K(83008K), 0.0007186 secs]
[GC 18309K->1285K(83008K), 0.0005617 secs]
[GC 18309K->1285K(83008K), 0.0006873 secs]
[GC 18309K->1285K(83008K), 0.0004944 secs]
[GC 18309K->1285K(83008K), 0.0006644 secs]
[GC 18309K->1285K(83008K), 0.0006448 secs]
[GC 18309K->1285K(83008K), 0.0007203 secs]

Listing 12-14: The output produced by running Listing 12-13 with -J-verbose:gc

The JVM displays a line of information each time garbage collection 
occurs while running our Ruby program. There are 14 GC events shown 
here. Each line contains the following information:

[GC...  The GC prefix means this event was a minor collection. The 
JVM cleaned up only new objects in the Eden heap or young objects 
in the survivor spaces. 

17024K->1292K  These values show the amount of data used by live objects 
before (left of the arrow) and after (right of the arrow) the garbage col-
lection. In this example, the amount of space taken up by live objects 
in the young collection dropped from about 17MB or 18MB to about 
1.3MB each time.

(83008K)  The value in parentheses shows the total size of the JVM heap 
for this process. This value has not changed.

0.0072491 secs  This value shows the amount of time taken to perform 
each garbage collection.

Listing 12-14 shows that the JVM’s young heap repeatedly fills up as we 
create more Ruby objects. Notice that each time the JVM garbage collector 
usually takes less than 1 millisecond to clean up the many thousands of gar-
bage objects.

Notice, too, that there were no major garbage collections. Why? Because 
we don’t save our Ruby objects. Listing 12-13 creates 10 million objects but 
doesn’t use them, so the JVM’s garbage collector determines that they are 
all garbage and reclaims their memory immediately before they are pro-
moted to become mature objects.
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Triggering Major Collections
In order to trigger major collections, we need to create some mature 
objects by creating Ruby objects that don’t die young but that live on for 
some time. We can achieve this by saving our new objects in an array, as we 
did in Experiment 12-1. Listing 12-15 repeats the same script again here for 
convenience.

u arr = []
10000000.times do

v   arr << Object.new
end

Listing 12-15: Saving 10 million Ruby objects in an array

Notice at u that we create an empty array and then insert all 10 mil-
lion new objects into it at v. Because the array contains a reference to all 
objects, the objects will all remain live.

Now let’s rerun our experiment using the -J-verbose:gc command. 
Listing 12-16 shows the result.

$ jruby -J-verbose:gc jruby-gc.rb
u [GC 16196K->8571K(83008K), 0.0873137 secs]

[GC 25595K->20319K(83008K), 0.0480336 secs]
[GC 37343K->37342K(83008K), 0.0611792 secs]
[GC 37586K(83008K), 0.0029985 secs]
[GC 54366K->54365K(83008K), 0.0617091 secs]
[GC 65553K->65360K(83008K), 0.0586615 secs]
[GC 82384K->82384K(100040K), 0.0479422 secs]
[GC 89491K(100040K), 0.0124503 secs]
[GC 95890K->95888K(147060K), 0.0795343 secs]
[GC 96144K(147060K), 0.0030345 secs]
[GC 130683K->130682K(148020K), 0.0941640 secs]
[GC 147706K->147704K(165108K), 0.0925857 secs]
[GC 150767K->151226K(168564K), 0.0226121 secs]

v [Full GC 151226K->125676K(168564K), 0.5317203 secs]
[GC 176397K->176404K(236472K), 0.0999831 secs]

--snip--

Listing 12-16: The beginning of the output produced by running Listing 12-15 with 
-J-verbose:gc

Notice at v that the output [Full GC...] first appears after 13 young 
collections. (The output continues past what is shown in Listing 12-16.) 
This tells us that many Ruby objects were promoted, filling up the mature 
generation and forcing a mature collection to run. 
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We can draw some other interesting conclusions from this output. 
First, the size of the young collection gradually grew from the first GC run 
at u to the mature collection at v. This tells us that the JVM was automati-
cally increasing the total heap size as more objects were created. Notice that 
the total heap size value in parentheses started at around 83MB and grew 
to over 200MB, as shown in bold. Also, each young collection was still rela-
tively fast at under 0.1 seconds, though much slower than the ones we saw in 
Listing 12-14, which took less than 1 millisecond. Remember that the semi-
space algorithm copies only live objects. This time all of our Ruby objects 
remained alive, and the JVM had to copy them repeatedly. Finally, notice 
that the mature, or full, collection at v took about 0.53 seconds, which was 
much longer than any of the young collections.

Further Reading
There’s a vast amount of information available on the topic of garbage 
collection. To learn more about John McCarthy’s original free list imple-
mentation, see his article on Lisp: “Recursive Functions of Symbolic 
Expressions and Their Computation by Machine, Part 1” (Communications 
of the ACM, 1960).

For a taste of modern GC research, you can read about the Immix algo-
rithm used by Rubinius in Stephen M. Blackburn and Kathryn S. McKinley’s 
“A Mark-Region Garbage Collector with Space Efficiency, Fast Collection, and 
Mutator Performance” (ACM SIGPLAN Notices, 2008). The following article 
from Oracle both explains the JVM’s overall GC algorithm and serves as a 
good reference for the many command-line options you can use to customize 
and tune the JVM’s garbage collector’s behavior: “Java SE 6 HotSpot Virtual 
Machine Garbage Collection Tuning” (http://www.oracle.com/technetwork/java/
javase/gc-tuning-6-140523.html).

Finally, two definitive sources on GC algorithms in general and how 
they have changed over the years are Jones and Lins’s Garbage Collection: 
Algorithms for Automatic Dynamic Memory Management (Wiley, 1996) and 
Jones, Hosking, and Moss’s, The Garbage Collection Handbook: The Art of 
Automatic Memory Management (CRC Press, 2012).
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Summary
This chapter has covered one of the most important but least understood 
areas of Ruby internals: garbage collection. We learned that garbage collec-
tors allocate memory for new objects and clean up unused garbage objects. 
We examined the basic algorithms used by MRI, Rubinius, and JRuby for 
garbage collection and discovered that MRI allocates and reclaims memory 
using a free list, while Rubinius and the JVM use the semi-space algorithm. 
We also saw how Rubinius and JRuby employ concurrent and generational 
GC techniques, which MRI starts to use in Ruby 2.1.

But we’ve only scratched the surface of garbage collection. Since its 
invention in 1960, many complex GC algorithms have been developed; 
indeed, garbage collection is still an active area of computer science research. 
The GC implementations in MRI, Rubinius, and JRuby are likely to continue 
to evolve and improve over time.
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Y e t  M o r e  R u b y  
V i r t u a l  M a c h i n e s 

b y  K o i c h i  S a s a d a

As a developer of YARV: Yet Another Ruby VM, I am 
thankful to have a chance to write about YARV in this 
appendix. Many pages of this book describe the inter-
nals of YARV, and the book has been read by people 
all over the world. I am greatly honored by that as a software developer, 
although it humbles me to have found several inefficiencies in YARV’s 
implementation while reading the book. In this appendix, I will give some 
supplemental information and background on the design and implementa-
tion of YARV.
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YARV: Yet Another Ruby VM
I started the development of YARV during the New Year’s holiday in 2004. I 
had already been interested in a virtual machine for Ruby at that time. I built 
a simple prototype in about a week. (I must have had plenty of time to kill 
back then.) According to the first announcement ([ruby-dev:22494]), it was 
capable of running a program to calculate Fibonacci numbers.

In its early stages of development, I implemented YARV as an exten-
sion library for Ruby 1.8. Instead of replacing the whole runtime engine, 
I designed it to be used by Ruby 1.8 as a VM to run specific programs. In 
other words, it was another Ruby implementation on top of the Ruby 1.8 
implementation. This architecture allowed us to test YARV with relative 
ease using Ruby 1.8, which was sufficiently stable. We could continue using 
the base mechanisms of Ruby 1.8, such as GC, C APIs, and so on. After fin-
ishing a substantial part of the development, the Ruby 1.8 core was removed 
and replaced with YARV all at once, in order to support features such as 
threads. However, we kept using infrastructure code, such as GC, after that. 
The Ruby interpreter (MRI/CRuby) is known to have an affinity with the 
C programming language. YARV inherits that characteristic as well. Then 
a new version of Ruby containing YARV at its core was released as Ruby 1.9. 
As of this writing in 2014, YARV has been used as the Ruby VM since then.

People often point out that YARV is not “Yet Another” anymore, because 
it is the official VM now. Though we still use the name because it is well 
known, we make it a rule not to use “YARV” in filenames or class names. 
When I started working on YARV, there had already been several proposals 
for the development of new virtual machines for Ruby. RiteVM by Matz, the 
creator of Ruby, and ByteCodeRuby were the most well-known projects then, 
as far as I can remember. That led me to prefix the name of our VM with 
“Yet Another.” Of course, I named it so hoping it would become popular. 
There are many examples of software programs that have “Yet Another” 
in their names and nevertheless became popular; for example, yacc. By 
the way, RiteVM is now the name of the mruby VM which Matz is actively 
developing.

Design Principles of YARV
We chose to implement YARV for the Ruby 1.9 specification, instead of 1.8. 
At the time, Ruby 1.9 was the next version, and we were discussing its speci-
fication, so we targeted YARV at that specification. We also had the option 
of implementing it for Ruby 1.8, thereby supporting a large number of users 
instantly. But some of the Ruby 1.8 features seemed difficult to implement 
with the stack machine that YARV is based on. So I decided to implement my 
VM for the newer spec, while negotiating with Ruby developers to change the 
parts of the specification that were hard to implement. This strategy worked 
well, and YARV became one of the interpreters to run Ruby 1.9. I think that 
was one of the reasons that it was finally merged in as an official VM.
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This book correctly explains YARV’s design details. I would like to add, 
however, that it was not very straightforward to get to the current design. 
One of the things I remember being an issue was the stack structure of the 
virtual machine. The book describes YARV as a “double stack machine,” but 
it used only one stack at first. Actual microprocessors allocate a calculation 
area and a function call frame one after another on a single stack. YARV 
used a similar architecture at first, but it became too complicated. Later I 
concluded that it should have two stacks, even if I had to give up some effi-
ciency. YARV’s operation became too complex, especially when implement-
ing the extraction of a block as a closure. Because this book cleverly avoids 
such hairy details, readers fortunately do not have to confront this sort 
of complexity. But I am glad I have chance to explain that, because it was 
one of the most difficult parts to implement. By the way, having two stacks 
means that the cost of checking for stack overflows also doubles. So I imple-
mented them both in the same memory block: one going from bottom to 
top and the other going from top to bottom. This trick somewhat reduced 
the cost of checking for stack overflows, because we only have to check the 
positions of two stack pointers once.

YARV Development Prehistory
I’d like to describe the history of how I came to develop YARV. Because 
earlier I had been interested in programming language processors, I had 
the experience of implementing two Java virtual machines. That gave me 
some knowledge of what was required to implement virtual machines 
intended for object-oriented programming languages. At the time, 
Mr. Nobuo Yamashita was periodically holding meetups to read the book 
The Structure and Interpretation of Computer Programs (SICP). By attending 
those meetings, I acquired knowledge and insight about implementations 
of Scheme. This insight was important because Ruby’s block design was 
based on Lisp functions, as Chapter 8 of this book points out.

December 2002 saw the publication of Ruby Source Code Kanzen Kaisetsu 
(commonly known as the Ruby Hacking Guide, or RHG) by Mr. Minero 
Aoki, which is a unique book that explains the entire Ruby source code. 
Mr. Masayoshi Takahashi held meetings to read RHG about once a month. 
We took turns in a reading group, but because the author Aoki-san himself 
was one of the members, the other members could talk with him in per-
son when they had questions. In this way, we learned the implementation 
details of Ruby very well. Let me add that both of these meetups were held 
in the meeting rooms at Time Intermedia, Ltd., where Mr. Yamashita was 
working then. I attended the meetups several times a month, and I wish to 
express my deep gratitude to the people who provided such an environ-
ment for learning.

After reading RHG and learning more about the structure of Ruby’s 
implementation, it became clear to me that the evaluation module Ruby 
used to run programs—the heart of the Ruby interpreter—was not effi-
cient enough. I kept on studying and thinking about the ideal design of 
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a virtual machine to run Ruby programs precisely and efficiently, which 
I finally implemented all at once during that New Year’s holiday. I didn’t 
foresee that it would be released as a part of Ruby 1.9. My first motivation 
was performance improvement—my source code surely reflected that. In 
hindsight, it was far too early for performance optimization.

Yet More Ruby Virtual Machines
This book explains the current architecture of YARV, which you might con-
clude is the correct way of implementing Ruby. But, as I have explained in 
this appendix so far, all of Ruby’s implementations, including YARV, are not 
much different from any other software application: they are all developed 
through trial and error by humans. While this book covers Ruby 2.0, we 
have already made various improvements for Ruby 2.1. And we are working 
on even more improvements that will make the forthcoming Ruby 2.2 even 
better.

For example, keyword arguments will be more efficient. Chapter 4 
explains the implementation of keyword arguments. Quickly summarizing: 
Ruby first passes a hash object containing keyword name-value pairs as a 
normal argument. Then, at compile time, the receiver implicitly expands 
code that reads the values from the argument hash. Users don’t seem to be 
complaining about its performance for now. I assume keyword arguments 
are not widely used, because it is a new feature introduced in Ruby 2.0. But 
this implementation is not efficient. Hash objects are created every time, 
incurring object creation and GC costs. Also, reading from hash objects 
using the implicitly expanded code is slow, because it involves multiple 
method calls.

In order to address this problem, we are reimplementing how Ruby 2.2 
handles keyword arguments to avoid creating hash objects as much as pos-
sible. Meanwhile, we are implementing a new design that will collect the 
names of keyword arguments at compile time, so that the caller need only 
pass the values at runtime. The callee will then recombine the values with 
the names collected by the compiler. This design change will allow Ruby to 
process keyword arguments 10 times faster. I would like to keep on improv-
ing the quality of Ruby’s implementation, including runtime efficiency.

If you become interested in YARV and Ruby implementations after 
reading this book, and if you have ideas for improving them, I encourage 
you to develop your own “Yet Another Ruby Implementation.” The Ruby 
core community will welcome your challenge.

Koichi Sasada 
Heroku, Inc. 
November 2014
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trace YARV instruction, 45
tricolor marking, 319–320
triggering major collections, 323–324
true value, 110
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Tuple (C++ class), 287
types of Ruby methods, 93–95

U
UNDEF methods, 94
unless keyword, 85
unnamed arguments, 47, 96
until...end loop, 85
using method, 229

V
VALUE pointer, 106, 107, 110, 204
values

array, how Ruby saves, 285–291
default, for arguments, 47
expanding hash tables to 

accommodate more, 174–175
false, 110
FIXNUM_FLAG, 110
nil, 110
simple, 110–111
special, 71
string, how Ruby saves, 204–207, 

263–271
true, 110

variable access
dynamic, 71–74
local, 67–70

variables, 67–74
class, 120–124
class instance, 120–122
instance

for generic objects, 111, 113
time required to save, 113–115

local, changing after calling lambda, 
214–217

special. See special variables
visualizing copy-on-write, 269–270
visualizing two instances of one class, 108
vm_core.h file, 198
vm_exec.c file, 64
vm_getivar (C function), 99
vm.inc file, 63
vm_insnhelper.h file, 74
VM_METHOD_TYPE_ISEQ (C source code 

value), 95
VM_METHOD_TYPE_CFUNC (C source code 

value), 97
VM_METHOD_TYPE_REFINED (C source code 

value), 229
vm_setivar (C function), 98

W
weak generational hypothesis, 313–314
while...end loop, 85, 200–203
write barriers, 316

X
-Xbootclasspath (Java option), 253

Y
Yacc (Yet Another Compiler 

Compiler), 12
YARV (Yet Another Ruby Virtual 

Machine), 33, 56–62, 
327–330

YARV instructions, 34, 63–64
branchunless, 85
displaying, 44–45
getlocal, 74–75
jump, 85
leave, 45, 60
opt_lt, 85
opt_plus, 38, 60
opt_send_simple, 38, 60
putobject, 59
putself, 36, 58, 63
send, 92–95, 247
setlocal, 69
taking a close look at, 63–64
throw, 87
trace, 45

Yet Another Compiler Compiler 
(Yacc), 12

Yet Another Ruby Virtual Machine 
(YARV), 33, 56–62, 327–330
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-y (Ruby option), 19

Z
ZSUPER methods, 94
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