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Gas Centrifuge Theory and
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This article gives a historical and technical review of the U.S. gas centrifuge efforts be-
tween 1934 and 1985. The first section tells of how the United States initially led in cen-
trifuge design, only to abandon the still-immature technology in the midst of the Man-
hattan Project. While interest in the technology continued in Europe, the United States
decided that centrifuges were not a viable alternative to existing gaseous-diffusion
plants. Five years later, U.S. spies learned of important Soviet achievements in cen-
trifuge design, which, it appeared, might place centrifuges in direct competition with
gaseous diffusion. When combined with European enthusiasm for the centrifuge, the
United States faced the prospect of losing its control on the enrichment market in the
West. Accordingly, the United States organized a program to rebuild its centrifuge dom-
inance. Over the next 25 years, it led the world in machine performance but ultimately
failed to commercialize its designs for a variety of reasons. The basic specifications and
performance data for several of the U.S. centrifuges designed and tested during these
years are reported here for the first time in the public domain.

The United States also made a number of contributions in the theoretical domain
that were openly shared over the course of the U.S. program. Most of these fell into the
field of fluid dynamics, developed to guide the design and optimization of centrifuges.
The most important elements, especially those relating to the calculation of separa-
tive power, are described in Theoretical Developments. These are of interest to policy-
makers because they can be used to predict the rate at which centrifuges produce fissile
material for nuclear weapons, an important factor for nuclear nonproliferation. They
are also used in calculations related to multi-isotope separation, which is important
for nuclear forensics. Examples of both kinds of policy analysis are given in articles by
Glaser1 and Wood2 appearing in an earlier issue of Science and Global Security. The
U.S. theory is used here to derive a simple equation that enables policy-makers to make
good estimates for the separative power of a real centrifuge by knowing only its length
and speed.

Received 15 April 2008; accepted 23 June 2008.
The author thanks Houston G. Wood and A. Robert Kuhlthau for their assistance with
centrifuge flow theory and documenting the history of the U.S. centrifuge program.
Address correspondence to R. Scott Kemp, Program on Science & Global Security,
221 Nassan St., 2nd Floor, Princeton University, Princeton, NJ 08542, USA. E-mail:
rskemp@princeton.edu

1



2 Kemp

MACHINE DEVELOPMENT IN THE UNITED STATES

Early History
The use of centrifuges for isotope separation was first proposed by British

scientists Lindeman and Aston in 1919, shortly after the existence of iso-
topes had been experimentally confirmed. In the following years, primitive
centrifuges were tested by a number of groups, but their experiments proved
unsuccessful; excessive heat transfer across the wall of the centrifuge rotor
created convective currents that mixed the gas, negating any separative effect.
In 1934, Jesse Beams at the University of Virginia had the insight to ther-
mally isolate the centrifuge rotor by placing it inside a vacuum, and in doing
so successfully separated the isotopes of chlorine. Beams’ early designs con-
sisted of tubular rotors connected to co-axial driveshafts mounted in thrust
bearings outside the vacuum casing. A heavy-oil gland sealed the gap between
the driveshaft and the casing. The design was basically functional, but friction
in the bearing and around the oil gland consumed kilowatts of energy, thus
heating the gas, lowering the separative power, raising the operating cost, and
shortening the life of the device.

When the Manhattan Project began, centrifuges of this kind were consid-
ered as a candidate technology for concentrating uranium-235 for the first nu-
clear weapon. Beams was asked to oversee the centrifuge project and led a
design team at the University of Virginia. The Westinghouse Research Labo-
ratory was charged with building the first production machines, and testing
was done at the Standard Oil Development Company in Bayway, New Jersey.
The team at the University of Virginia designed a supercritical machine, 7.35
in diameter and 136 in long, which operated at 270 m/s in a four-stream mode.
Westinghouse built a slightly smaller version, 7.2 in diameter by 132 in long,
as well as a subcritical machine, 7.2 in diameter by 42 in long. Separation
tests began with the subcritical unit in August 1943 and continued for 93
of 99 days before the oil gland developed a leak and caused the centrifuge
to crash at 215 m/s in December of 1943. The program was terminated by
enrichment-project manager Harold Urey a few weeks later in favor of gaseous
diffusion.

After WWII, various groups around the world worked to reduce the fric-
tion problem in an effort to make centrifuges competitive with gaseous diffu-
sion. Progress with thrust bearings was made in Germany and at the Franklin
Institute in Philadelphia, and Beams briefly experimented with magnetic sus-
pension as an alternative. However, the U.S. Atomic Energy Commission (AEC)
ultimately decided not to pursue centrifuge technology. In December 1951,
the Committee on Isotope Separation of the Division of Research strongly
advised against a post-war centrifuge revival, noting that centrifuges could
not compete economically with existing gaseous diffusion technology. That
would change in 1953 when German groups led by Wilhelm Groth and Konrad
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Beyerle, and a Dutch group led by Jacob Kistemaker, began asserting that
their centrifuges would soon be more economical than American-style diffu-
sion. Fearing a loss of their uranium-enrichment monopoly, the U.S. Atomic
Energy Commission decided to revive centrifuge research in September 1954.
But the revival was desultory: No machines were built because the AEC was
confident that it would have full access to German technology, which was at
that time the most advanced in the West. The most significant task done at
home was a study of novel, high-strength materials and supercritical rotors
commissioned to Arthur R. Kuhlthau at the University of Virginia in August
1956.

Zippe at the University of Virginia
In the summer of 1956, the Soviet Union began repatriating captive

German scientists who had been working on uranium enrichment at Insti-
tutes A and G at Sukhumi on the Black Sea. Oswald Francis (“Mike”) Schuette
of the U.S. Office of Naval Intelligence had the task of interrogating the return-
ing Germans. By chance, one of his subjects was the Austrian scientist Gernot
Zippe, who wound up in Germany only because he could not afford rail fare
back to his native Austria. Zippe had become a flight instructor for the Luft-
waffe after he finished his Ph.D. He was captured by Soviet forces and sent to
the Krasnogorsk detention camp, but when the Soviets learned of his technical
background he was transferred to Institute A, where he was put in charge of
mechanical developments for the Soviet centrifuge program.

Schutte’s report of Zippe’s activities attracted the interest of the Intelli-
gence Division of the U.S. Atomic Energy Commission. They arranged to bring
Zippe to the United States in 1957 under a false passport and the assumed
name of “Dr. Schubert.” AEC scientists and intelligence officials interrogated
Zippe in an all-day session at the Shoreham Hotel in Washington, D.C. This
was followed by a more collegial debriefing several days later at the University
of Virginia. Zippe revealed that he and the Soviets had worked out a completely
novel design that did away with the thrust bearings and oil glands that had
been so problematic in the U.S. centrifuge. The AEC arranged to have Zippe
return to the United States on contract to the University of Virginia, where he
would replicate the Soviet machine in exchange for a $10,000 salary. In Au-
gust 1958, Zippe returned to Virginia, and less than a year later he produced
a working replica of the Soviet machine.

The U.S. Program Expanded
Karl Cohen, whose theoretical contributions appear later in this article,

was asked to assess Zippe’s work for the Atomic Energy Commission. He was
so impressed that he advised the commission to expand its centrifuge efforts
in the direction of the Soviet design. By April 1960 the Division of Research
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approved a program to be housed at the Oak Ridge Gaseous Diffusion Plant
under the management of Union Carbide Corporation, Nuclear Division. Work
was begun 1 November 1960, and included the construction of a cascade based
on the Soviet design, as well as improvements to centrifuge theory, and a con-
tinuation of the study on novel materials. The original machines were 3-inch
diameter aluminum rotors copied from the Zippe replica. The program moved
quickly to stronger materials, including fiberglass-overwrapped aluminum and
composites. The program also moved to 6 in rotors and then to 10-, 14-, 19-, 20-,
and 24-in diameters. The timing of these developments are reflected in Table 1.

The focus throughout the 1960s was on improving the performance of in-
dividual machines. Work was split between Union Carbide at Oak Ridge and
the AirResearch Manufacturing Company in Torrance, California. It took only
two years for the program to move from the original Zippe model to a ma-
chine with more than 2 SWU/year capacity, and seven years to achieve a ma-
chine with 30 SWU/year capacity. By the end of the 1960s, the technology was
considered mature enough to consider long-term reliability testing. So-called
Set I centrifuges began reliability testing at the newly constructed Equipment
Test Facility in 1972 and continued through at least 1977. Machine production
techniques were studied at the Component Preparation Laboratories at both
Oak Ridge and Torrence starting in 1974. In addition to Set I testing, basic
machine design continued in parallel, leading to the development of additional
sets. Reliability testing for Set II designs commenced in 1974, and Set III in
1977. This final set was tested on a large scale at the 50,000 SWU/yr Compo-
nent Test Facility at Oak Ridge.

Table 1: Select U.S. centrifuges operated between 1961 and 2008. Values in
parenthesis estimated by author. Blank areas denotes missing data. “X” in machine
name indicates omitted name segment. Sources: AC-100 data from Glaser. All
other notes of R. A. Lowry.

δU actual
Diameter Length Velocity (kg-SWU Temp.

Name Date (in) (m) (m/s) Material /yr) (K)

Zippe UVA Jan. 1961 3 0.305 350 Aluminum 0.39 321
Cascade 3 May 1961 3 0.305 370 Aluminum 0.46 (318)
Ti-6 March 1962 6 0.61 450 Titanium 1.53 (318)
Al-Fg-6 June 1962 6 0.75 450 Al-Fiberglass 1.75 (318)
Thermal-6 Oct. 1962 6 450 1.95 (318)
Cascade-6 March 1963 6 500 2.4 (318)
DMS-1 Oct. 1962 4.5 1.5 350 Aluminum (318)
DMS-2 Jan. 1964 4.5 1.5 425 Al-Fiberglass 3.5 (321)
10-X-X July 1965 10 550
20-X-X 20
14-X-X 1965 14 (2.16) 11
14-X-X 1967 14 (4.04) 600 30 (315)
AC-100 2008 24 12 900 Composite 330
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In the late 1970s, the U.S. Department of Energy predicted that the de-
mand for nuclear power, and thus enriched uranium, would grow dramatically
in the coming decade. Saddled with only aging gaseous-diffusion plants, the
DOE proposed a commercial-scale centrifuge facility to meet future enrich-
ment demand. In 1977, Congress authorized an 8.8 million SWU/yr plant at
Portsmouth, Ohio. The first stages of the plant were based on Set III cen-
trifuges, 24 in diameter, 40 feet long, at 200 SWU/yr per machine. In time,
however, it became apparent that the demand for enriched uranium had not
increased as predicted; competing lifetime-extension programs on sunk-cost
gaseous diffusion plants obviated the need for a new plant; and claims of eco-
nomic mismanagement plagued the centrifuge program. The entire centrifuge
effort was cancelled on June 5, 1985. Only 3000 machines had been installed
at the Portsmouth facility at a total cost of $2.6 billion.

THEORETICAL DEVELOPMENTS

Theoretical work can be broken into two categories: early efforts to estimate
the performance of machines, and later efforts to understand the internal gas
flows more precisely so as to guide optimization and the design of internal com-
ponents. The former has its origins in the United Kingdom during the months
just prior to the creation of the Manhattan Project. British physicists Franz
Simon, Rudolf Peierls, Karl Fuchs and Nicholas Kurti worked out the general
theory of isotope separation.1 Paul Dirac used this theory to derive what is per-
haps the first and most well-known expression for the separative performance
for a gas centrifuge:

δUmax = ρDAB

(
πZ
2

) (
�M
2RT

)2(
va

)4

(1)

where ρDAB is the density multiplied the coefficient of self-diffusion, the prod-
uct of which is constant for a given gas; Z is the length, �M is the mass dif-
ference between the two isotopes being separated; R is the gas-law constant; T
is the temperature; and va is the peripheral velocity of the inner surface of the
rotor.

Dirac’s equation treats the centrifuge in a way that is independent of the
internal operation of the machine. It is useful in that it correctly guides the
experimentalist to seek foremost high peripheral velocities (va), second low
temperatures (T), and third long rotors (Z)—but while useful and elegant, it
overestimates the separative work for a machine. In particular, the fourth-
power dependency of the peripheral velocity tends in practice to approach the
second power, owing mainly to the generation of a vacuum core along the axis
of the rotor. Thus, it remained a task to develop a theory that more accurately
characterized physical machines.
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Separative Performance
The distinctly U.S. theoretical strain begins with the Manhattan Project’s

uranium-enrichment effort, under the leadership of Harold Urey. Improve-
ments to Dirac’s formulation were developed as part of work done at Columbia
University by Karl Cohen. He showed that the performance of a centrifuge de-
pends on the shape of the countercurrent flow in the rotor and on the balance
between the axial circulation of the gas and the radial diffusion of the iso-
topes.4 Cohen’s solution follows in approach earlier work by Furry, Jones, and
Onsager5 on thermal-diffusion columns, which have a similar internal flow.
Cohen’s solution assumes that (1) the countercurrent flow is uniform along the
length of the rotor, (2) the radial change in the fraction of the desired isotope
is small compared to the radial change in the integrated countercurrent mass
flow, and (3) the gas is always in the continuum (viscous) regime. The following
summary of Cohen’s model is based on an improved presentation by Hoglund,
Schacter, and von Halle.6 The complete derivation is given in Appendix B.

Cohen’s Model
The gas centrifuge works on the principle of pressure diffusion. The rota-

tional motion of the centrifuge accelerates gas molecules toward the wall of
the rotor. A counteracting diffusive force created by the thermal motion of the
molecules seeks to distribute the gas evenly throughout the rotor volume. The
two forces balance to create a dynamic equilibrium, which gives rise to a pres-
sure distribution in the rotor that is a function of the molecular mass of the gas:

p(r) = p(0) eM�2r2/2RT (2)

When the rotor contains a mixture of gases, the distribution holds indepen-
dently for each species. Thus, we have for two isotopes A and B the partial
pressures:

pA(r) = pA(0) eMA �2r2/2RT (3)

pB(r) = pB(0) eMB �2r2/2RT (4)

Dividing the two equations gives a simple separation factor for the centrifuge,
which is a function of the mass difference and the peripheral velocity:

α0 = pA(0)
pB(0)

/
pA(r)
pB(r)

= e[(MB −MA )�2r2/2RT] (5)

Equation (5) is valid in the equilibrium condition where the gas is station-
ary in the reference frame of the rotor and enough time has passed that
the molecules have diffused into their final distribution. However, the perfor-
mance of a centrifuge can be enhanced by introducing a countercurrent flow,
in which the gas flows up the center axis of the rotor and back down along
the rotor wall. This countercurrent motion exploits the radial diffusive process
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repeatedly along the length of the centrifuge, multiplying the separation effect
much as a fractional distillation column would. Because the gas never achieves
the dynamic equilibrium mentioned above, the radial separation at any posi-
tion along the axis is never as large as in Eq. 5, but the multiplying effect
of the countercurrent flow produces an axial separation that is many times
greater.

Cohen derives an expression for the overall axial separation in a centrifuge
based on the individual transport phenomena inside the centrifuge. Consider
the axisymmetric cylindrical volume element, shown in Figure 1, which con-
tains a binary gas mixture with components A and B:

The isotopes diffuse through the volume element differently in each direc-
tion. In the radial direction there is a concentration gradient and a pressure
gradient, both of which give rise to diffusive currents Eq. 6.2 In the axial direc-
tion, there is a concentration gradient but no pressure gradient Eq. 7. In the
azimuthal direction there is no net diffusion because the centrifuge is axisym-
metric Eq. 8. Thus, for the desired isotope A, we have:

JA · r̂ = −cDAB

[
∂N
∂r

+ (MB − MA )N(1 − N)
RT

�2r
]

(6)

JA · ẑ = −cDAB

[
∂N
∂z

]
(7)

JA · θ̂ = 0 (8)

where (r, θ, z) are the cylindrical polar coordinates with the origin fixed at the
bottom of the centrifuge on the axis of rotation; c, DAB, and T are respectively
the molar density, mass density, binary self-diffusion coefficient, and tempera-
ture of the gas entire; R is the universal gas constant; � the angular velocity;
and M and N the molar mass and mole fraction of isotope A, respectively.

The non-diffusive countercurrent transport is characterized by a velocity
field v = v(r) · ẑ, illustrated in Figure 2. Cohen solves the problem without spec-
ifying a function explicitly but requires that the magnitude of the velocity is a
function of r only. The effect of different velocity profiles is discussed in Flow
Profile Efficiency.

Figure 1: Diffusive fluxes in a volume element.



8 Kemp

Figure 2: Schematic profiles in a centrifuge. ρ: the density; v: the countercurrent velocity;
and ρv: the countercurrent mass flow.

Having defined the basic transport phenomena, Cohen proceeds to write
an expression that joins the diffusive and nondiffusive components together.
The task is simplified if we consider the centrifuge as two parts: the segment
above the feed point that emits product enriched in the light isotope (called
the rectifier), and the segment below the feed point that emits tails depleted in
the light isotope (the stripper). Only the rectifier is treated here, but a parallel
analysis applies for the stripper.

The net transport of component A being withdrawn as product at the top
of the centrifuge is the sum of the countercurrent transports up and down the
rectifier, plus the axial back-diffusion of the isotope (Eq. 7), which is nonzero
and negative as a consequence of the axial separation gradient:

d(PNP)
dz

= 2π

∫ a

0
cvN rdr − 2π

∫ a

0
cDAB

∂N
∂z

rdr (9)

where P is the molar flow rate on the product side, and NP is the mole fraction
of isotope A in the product.

The net transport of both components is:

P = 2π

∫ a

0
cvrdr (10)
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As evident from Eq. A4, Eqs. 9 and 10 are sufficient to determine the perfor-
mance of the rectifier. If a similar analysis is applied to the stripper, we can
sum the two parts to obtain the performance for the entire machine. Nearly
all of the parameters are known. The molar density c is known from Eq. 2.
The value cDAB is a constant according to the kinetic theory of gasses. The
velocity profile v(r) is determined by the design of the machine. The only re-
maining task is to determine an expression for N(r, z). The solution, given in
Appendix B, takes the form of an expression for dN(z)/dz, which can be inte-
grated along the length of the centrifuge to find the molar concentration of the
desired isotope in the product stream, NP, and accordingly used to compute the
separative work by Eq. A4. With this solution in hand, the problem is reduced
to determining the appropriate function for the countercurrent profile v(r). If
the profile is known, then we can proceed directly using analytical or numeri-
cal integration. However, often we do not know the profile and we must assume
a function. Some common assumptions are discussed in Flow Profile Efficiency.

The Development of Correction Factors
If we compare Cohen’s expression for separative work to Dirac’s original

formulation give by Eq. 1, we can develop a correction term for Dirac’s formula.
In this section, we derive this and other correction terms and separate them
into as series of “efficiency factors” according to the physical phenomenon each
represents. The separative power can then be expressed as:

δU = δUmax eI eC eF eE . . . (11)

This approach is useful because the parameters that govern each phenomenon
can be considered individually. If we then estimate these parameters in an in-
telligent way, we can produce a good estimate for the performance of a generic
machine with only a minimum of information.

Ideality Efficiency
The result given in Appendix B is an expression with a form analogous to

the gradient equation of a square cascade or fractional distillation column:

SdN/dz = (α − 1)N(1 − N) − (P/L)(NP − N) (12)

where S is the virtual stage length inside the centrifuge, α is the stage sepa-
ration factor, and L is the interstage mass up-flow inside the centrifuge. As-
sumption (1) of Cohen’s solution was that the countercurrent flow was non
decaying. Accordingly, the interstage up-flow L is constant along the length of
the centrifuge, which is analogous to a square cascade. Dirac’s estimate, by con-
trast, assumed that the internal workings of the centrifuge approximated an
ideal cascade. It can be shown from general separation theory that a square
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cascade performs to only ∼81% of an ideal cascade, giving us the ideality
efficiency:

eI = 0.81 (13)

In very long or very sophisticated centrifuges, damping can cause the counter-
current flow to decay along the length of the rotor. This profile more closely
approximates an ideal cascade and can lead to ideality efficiencies of greater
than 81%. However, such advanced designs are rare and difficult to construct.

Circulation Efficiency
The circulation efficiency takes into account the effect of axial back-

diffusion. Recall that the transport of isotope A (Eq. 7) contained a positive
contribution from the internal countercurrent flow and a negative contribu-
tion from axial back-diffusion. Since Dirac’s estimate does not consider axial
back-diffusion, it overestimates the performance and the circulation efficiency
corrects for this.

The circulation efficiency is part of a larger efficiency term that arises when
comparing Cohen’s expression to Dirac’s expression. The separative work for
separating element whose separation factor is very small, (α − 1) � 1, can be
expressed as:

δUS = L(α − 1)2 (14)

This condition is usually met for each virtual stage inside the centrifuge. Thus,
by dividing by the stage length S, we derive an approximate expression for the
separative work per unit length of the centrifuge:

∂(δU)
∂z

= L(α − 1)2

S
(15)

where L, (α − 1), and Sare all determined from Cohen’s theory and are given in
Appendix B. When divided by the derivative of Dirac’s expression, ∂(δUmax)/∂z,
we produce a correction term. The portion of that term arising from the axial
back-diffusion is the circulation efficiency:

eC = m2

1 + m2 (16)

where m ≡ L/L0 is the ratio of the internal interstage mass up-flow L to the
up-flow which gives the greatest separation factor L0, and both of which are
defined in Appendix B. Conceptually, m is a dimensionless measure of how fast
the mass is circulated within the machine. It is worth noting that eC converges
to 1 rapidly. Typical values of m in an optimized centrifuge may be around 3 to
4, giving 90 and 94% efficiency, respectively.
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Figure 3: Profiles commonly used in estimating the flow-profile efficiency. (A) The idealized
profile. (B) The two-shell profile. (C) The thermal profile.

Flow Profile Efficiency
The flow-profile efficiency takes into account the impact of the shape of the

countercurrent velocity profile on the separative performance. By following the
same procedure described for the circulation efficiency above, it can be shown
that the portion of the overall efficiency factor arising from the countercurrent
flow term is

eF = 4
[∫ a

0

(∫ r
0 cvr′ dr′) rdr

]2

a4
∫ a

0
1
r

(∫ r
0 cvr′ dr′)2 dr

(17)

Since the countercurrent-velocity profile v is often unknown, it is useful to
consider several generic profiles.

Idealized profile. The idealized profile assumes that mass flows upward
equally over the entire volume of the centrifuge, except for a returning delta
function at the wall of the centrifuge, as shown in Figure 3(A). This profile,
while not physically possible, yields a flow-profile efficiency of unity and corre-
sponds to the assumed profile in Dirac’s expression for the maximum possible
separative work.

Two-shell profile. A simple velocity profile used in theories like that of
Rätz assumes two thin streams, one situated at r1 flowing upward and one at
r2 flowing downward. The profile, shown in Figure 3(B), can be shown to have
an efficiency of:

eF =
[

1 −
(

r1

r2

)2
]2 /

ln
(

r2

r1

)
(18)

The two-shell profile is also not physically possible, but it simplifies the math-
ematics significantly and can provide a reasonable estimate for the efficiency
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if r1 and r2 are chosen carefully. For more on the uses of the two-shell profile,
see Glaser.1

Thermal profile. A physically realistic profile is that excited by a linear
temperature gradient along the wall of the centrifuge. The profile, shown in
Figure 3(C), was derived in Wood and Morton8 using Onsager’s pancake ap-
proximation (see Flow Theory), and corresponds to the “universal high-speed
pattern” derived by Parker and Kelly of the University of Virginia in 1967. It
turns out that the mathematical expression for the profile can be integrated
analytically and is also usefully representative of the profiles in a real ma-
chine. For this reason, it is widely used for computing the performance of a
generic machine. It has a flow-profile efficiency of:

eF = 14.4RT
Mv2

a
(19)

This flow-profile efficiency is inversely proportional to the square of the pe-
ripheral velocity. Thus, when multiplied by Dirac’s expression, it reduces the
overall velocity dependence of the separative work from a fourth to second
power, which fits experimental data better.

Experimental Efficiency
The experimental efficiency lumps together all the inefficiencies not ad-

dressed by the forgoing, such as turbulent mixing or disturbances to the coun-
tercurrent flow. The factor is unique to every machine, but the efficiency typ-
ically increases as designs become more cultivated. Figure 4 shows estimates
for the experimental efficiencies of 17 machines calculated by assuming that
100% performance corresponds to that given by the formulas above. Note that
some of the most advanced U.S. machines have “efficiencies” greater than
100%. These machines are so highly tuned that the slightly beneficial effects
of feed and baffles become visible, effects that were not included in the expres-
sions for the flow-profile efficiency in Eq. (17).

Simple Formulation for Policy-Makers
By combining the forgoing efficiency factors, assuming a linear-thermal-

gradient profile, taking the typical values m = 3, T = 310 K, and using the
diffusion constant for UF6 given in appendix C, we arrive at a simplified equa-
tion for the separative work of an generic centrifuge:

δU = V2Z
33,000

eE (20)

where V is the peripheral velocity in meters per second, Z is the length of the
centrifuge in meters, eE is the experimental efficiency described above, and δU
is in the usual units of kg-SWU per year. From Figure 4, it is reasonable to
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Figure 4: Experimental efficiencies for a selection of centrifuges. Centrifuges marked with an
asterisk (*) were built by the Urenco consortium and are based on performance estimates
reported by Glaser.1 Centrifuges marked with a dagger (†) are pre-Urenco German models
based on data reported by Groth9 and have uncertainties of ±4%. All other values are
based on experimental data from the U.S. centrifuge program and have uncertainties of less
than 1%. See main text for an explanation of why some models exceed 100% efficiency.

assume that eE is in the range of 0.35 to 0.45 for new designs; in the range 0.50
to 0.60 for established production machines; and in the range of 0.8 to 1.14 for
the most advanced centrifuge designs.

Flow Theory
Cohen’s theory is a one-dimensional approximation of the centrifuge in

which an assumed behavior of the gas is imposed for the purpose of estimating
separative performance. In particular, it ignores the effect of caps and baffles
at the end of the rotor, which interfere with and turn the countercurrent flow
through the generation of an Ekman layer. The estimate is reasonable for very
long centrifuges, but in most practical machines the Ekman layer extends over
a significant fraction of the rotor’s length, weakening the magnitude of the
countercurrent velocity as the gas moves from the center to the end regions,
and changing the machine’s separative performance. Additionally, the Cohen
theory requires that we assume a velocity profile for the countercurrent flow,
whereas a more complete theory would determine the shape of the flow ac-
cording to prescribed boundary conditions. The Navier-Stokes equations can
describe the gas dynamics exactly, but as with most fluid-dynamic systems,
there is no closed-form solution.

The development of a fully two-dimensional closed-form analytical theory
thus became the focus of a U.S. effort known as the Centrifuge Flow The-
ory Study Group founded in the early months of 1961. Lars Onsager of Yale
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University was selected to chair the group. Other members included George F.
Carrier of Harvard University, Stirling A. Colgate of the Lawrence Radiation
Laboratory, Wendell C. DeMarcus of the University of Kentucky, Carl Eckart of
the University of California, Harold Grad of New York University, and Stephen
A. Maslen of the Martin Company. Maria Goeppert-Mayer of the University of
California was added in October 1963.

Within a year of its formation, Onsager had led the group in developing
an extension of the thin-shell approximation that he originally proposed for
the thermal-diffusion column 23 years earlier.5 Onsager noted that at high
speed most of the gas was compressed in a thin annulus against the wall of
the centrifuge. Starting with the linear Navier-Stokes equations, he retained
only those terms most highly differentiated in the radial direction and treated
the gas as being locally flat by substituting the radius of the centrifuge for
the radial coordinate wherever it appeared algebraically (i.e., r → a), a step
known today as the “pancake approximation.” The result was a sixth-order,
anisotropic linear elliptic partial differential equation in two dimensions. Car-
rier and Maslen developed the mathematics and worked out appropriate
boundary conditions for the Ekman layer at the end of the centrifuge. Onsager
showed that the homogenous part could be solved by eigenfunctions and linked
the solutions to various physical phenomena. The first numerical results
were obtained in 1976. Houston Wood and Jeffrey B. Morton added the non-
homogenous solutions, which took into account feed effects and scoop drag, and
published solutions for the homogenous case in 1980.10 The complete pancake
model is able to predict the separative work of a real centrifuge to within 1–2%.

It became possible in the mid to late 1970s to model internal flows us-
ing computer simulations, but this did not lead to the demise of the analyti-
cal model. Numerical solutions were originally expensive and time consuming.
Even with today’s computing capabilities, the problem is difficult to set up
because of the extreme range of length scales and the stiffness of the equa-
tions involved. But the main advantage of the pancake model was that it could
give analytical insight into the workings of the centrifuge that were previously
unobtainable with one-dimensional models and without the many iterations
required to do phenomenology using numerical methods.
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APPENDIX A: AN INTRODUCTION TO ISOTOPE SEPARATION

For a three-stream separating element, like the centrifuge, we have feed, prod-
uct, and waste flows. The magnitude of the flows (in moles per unit time) are
designated F, P, and W; the mole fraction of the desired isotope in any stream
is designated N with the appropriate subscript. Inside the separating element
(centrifuge rotor), N becomes a function of position.

N ≡ nA

n
= pA

p
= ρA

ρ
(A1)

We also define the abundance R:

R ≡ N
1 − N

giving N = R
1 + R

(A2)

A measure of the separation between any two streams is the ratio of their
respective abundances. Thus, we have individual separation factors for the
feed-to-product stream and the waste-to-feed stream:

α ≡ RP

RF
β ≡ RF

RW
(A3)
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Definition of Separative Work

The performance metric of a separating element must be a function of both
the total separation it can produce (αβ) and the amount of material that the
separating element can process per unit time. Thus, separative work is defined
as:

δU = PV(NP) + WV(NW) − FV(NF) (A4)

where V is a value function for a binary mixture contrived to operate such
that (1) the lowest value is (arbitrarily) set to be a 50:50 mixture, (2) the value
increases as the mixture becomes purified in either component, and (3) scales
in such a way that the work of n elements (arranged in a non-mixing cascade)
will produce n times the work of a single element given the product and waste
values RP = αnRF and RW = βnRF . It can be shown that the value function is:

V(N) ≡ (2N − 1) ln
(

N
1 − N

)
(A5)

A mathematical discussion of its origins, and a more complete introduction to
separation theory, can be found in Villani.9

APPENDIX B: SOLUTION FOR VON HALLE’S FORMULATION OF
COHEN’S NET DESIRED MATERIAL TRANSPORT

The axisymmetric continuity equation for the desired component is:

∇ · (ρv + J)A = 0 (B1)

1
r

∂

∂r
r(JA · r̂) + ∂

∂z
(cvN + JA · ẑ) = 0 (B2)

Cohen asserts that the isotopic gradient, and thus axial back-diffusion, is con-
stant along the length of the centrifuge:

∂

∂z
(JA · ẑ) = −cDAB

∂

∂z

[
∂N
∂z

]
= 0 (B3)

Substituting (B3)→(B2), and integrating with respect to r:

JA · r̂ = −1
r

∫ r

0
cv

∂N
∂z

r′dr′ (B4)

Setting Eq. (6) equal to Eq. (B4) and solving for ∂N/∂r:

∂N
∂r

= −�M�2r
RT

N(1 − N) + 1
rcDAB

∫ r

0
cv

∂N
∂z

r′dr′ (B5)
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Now we define the function:

G(r) ≡
∫ r

0
2πcvr′dr′ (B6)

dG
dr

= 2πrcv and G(0) = 0 (B7)

Thus, we have:∫ a

0
2πcvN rdr =

∫ a

0

dG
dr

N dr (B8)

=
∫ a

0
NdG

= GN

∣∣∣∣∣
a

0

−
∫ a

0
GdN

= G(a)N|a − G(0)N|0 −
∫ a

0
G

dN
dr

dr

and by (B7), (B6), and (10):

= N|aP −
∫ a

0
G

dN
dr

dr

= N|aP −
∫ a

0
G

∂N
∂r

dr

The net upward transport of the desired component (Eq. 9) can then be written:

PNP = N|aP −
∫ a

0
G

∂N
∂r

dr −
∫ a

0
2πcDAB

∂N
∂z

rdr (B9)

Cohen assumes that the axial isotopic gradient is the same at any radius, and
that the isotopic concentration changes only slowly with r such that ∂N/∂z and
N(1 − N) can be treated as constants. While this is not exactly true, full three-
dimensional solutions of the Navier-Stokes equations reportedly show that it
is very nearly true. Recall also that cDAB is a constant. Substituting in Eq. B5
and collecting the terms with ∂N/∂z, we have:(∫ a

0

2π

cDAB

G2

r
dr + πa2cDAB

)
∂N
∂z

=
(

�M�2

RT

∫ a

0
G rdr

)
N(1 − N) − P(Np − N|a)

(B10)
which, if we divide through by L, would have the form of the gradient equation
analogous to that of a fractionating column given in Eq. (12):

SdN/dz = (α − 1)N(1 − N) − (P/L)(NP − N)
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where L is a measure of the upflowing mass in the countercurrent flow, which
for the gas centrifuge is:

L ≡
∫ r0

0
2πcvrdr (B11)

where r0 is the inflection point in the counter-current profile shown in Figure 2.
From this and Eq. (B10) we can solve for the stage length:

S = 1
L

(∫ a

0

2π

cDAB

G2

r
dr + πa2cDAB

)
(B12)

where the first term in parentheses is the contribution from the countercur-
rent flow, and the second term is the contribution for the axial back-diffusion.
Similarly, the stage separation factor is:

α − 1 = �M�2

RT
1
L

∫ a

0
G rdr (B13)

Both L and G are functions of c and v only, and both of which are known. If
one notes that both L and G depend linearly on the magnitude of v, then it
is evident that the countercurrent portion of the stage length varies directly
with the magnitude of L, whereas the diffusive term varies inversely with the
magnitude of L. Thus, there exists a value for the circulation rate L where the
stage S length is minimized, and therefore the number of stages in any given
length of rotor is maximized. These are:

S0 = a
[
2

∫ a
0

1
r G2 dr

]1/2∫ r0

0 cvrdr
(B14)

L0 = aπcDAB

[
2∫ a

0
1
r G2 dr

]1/2 ∫ r0

0
cvrdr (B15)

These let us rewrite Eq. (B10) as:

S
dN
dz

=
(

1 + m2

2m

)
S0

dN
dz

= (α − 1)N(1 − N) −
(

P
mL0

)
(NP − N) (B16)

Since the overall separation factor for the centrifuge is inversely proportional
to the stage length, the overall separation factor scales as:(

2m
1 + m2

)
(B17)
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APPENDIX C: PROPERTIES OF UF6

The following are from references 3 and 10 in Kelvin-centimeter-gram-second
units.

Equation of state:

ρ(p, T) = (4.235 × 10–6)p
/ (

T − 1.359p
T2

)

Dynamic viscosity:

η(T) = (−2.099 × 10–13)T3 + (2.783 × 10−10)T2 + (3.83 × 10−7)T + 3.907 × 10−5

Coefficient of self-diffusion times density:

Dρ(T) = (−1.725 × 10−14)T3 + (1.33 × 10−11)T2 + (6.349 × 10−8)T + 2.756

Vapor pressure:

pv =

⎧⎪⎨
⎪⎩

exp
[ 0.01736(T−195.4)(T+1094)

T−89.73

]
T< 337.2

exp
[
23.30 + 4668

92.137−1.8T

]
337.2 ≤ T ≤ 389.3

exp
[
24.90 − 6976

52.20+1.8T

]
T> 389.3


