

Tuning the Snowflake
Data Cloud

Optimizing Your Data Platform
to Minimize Cost and Maximize

Performance

Andrew Carruthers

Tuning the Snowflake Data Cloud: Optimizing Your Data Platform to Minimize Cost
and Maximize Performance

ISBN-13 (pbk): 979-8-8688-0378-9		 ISBN-13 (electronic): 979-8-8688-0379-6
https://doi.org/10.1007/979-8-8688-0379-6

Copyright © 2024 by Andrew Carruthers

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shaul Elson
Development Editor: Laura Berendson
Editorial Project Manager: Gryffin Winkler

Cover designed by eStudioCalamar
Cover image by Silke from Pixabay

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.apress.com/
gp/services/source-code.

If disposing of this product, please recycle the paper.

Andrew Carruthers
Birmingham, UK

https://doi.org/10.1007/979-8-8688-0379-6

For Diane, Esther, Josh, Verity, Evan, Violet, Jordan, and Beth

v

Table of Contents

About the Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Chapter 1: ��Tuning the Snowflake Data Cloud�� 1

Setting the Scene��� 3

Use Cases for Snowflake�� 4

Provision or Consumption Model�� 5

Refactor or Redesign�� 7

Application Migration to Snowflake�� 7

Migration Guides�� 8

Migration Options��� 9

Greenfield Development��� 12

Replication Considerations��� 12

Tune the Design�� 13

Your First Optimization��� 14

Optimizer Approach�� 15

Query Parsing Order��� 16

FROM Clause�� 16

WHERE Clause�� 17

GROUP BY Clause��� 17

HAVING Clause�� 18

SELECT Clause�� 18

DISTINCT Clause��� 19

ORDER BY Clause��� 19

https://doi.org/10.1007/979-8-8688-0379-6_1
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec11
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec13
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec20
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec21
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec22
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec23

vi

LIMIT/OFFSET��� 19

SQL Joins�� 20

Introspection Calls��� 21

Optimizer Statistics�� 22

Summary��� 23

Chapter 2: ��The Query Optimizer��� 25

Query Lifecycle�� 26

Query Overview�� 27

Query Failure�� 28

Query Compilation�� 29

Tokenization��� 30

Parsing��� 30

Semantic Analysis�� 30

Referential Integrity�� 31

Logical Rewriter��� 31

Micro-Partition Pruner�� 32

Initial Plan Generation�� 32

Plan Rewriter�� 32

Cost-Based Join Ordering��� 32

Physical Query Plan�� 33

Query Execution��� 33

Warehouses�� 34

Single Instruction, Multiple Data (SIMD)��� 34

Compression��� 35

Vectorization��� 35

Flow Control��� 36

Summary��� 36

Chapter 3: ��The Query Profiler�� 39

Query Profile Overview�� 40

Approach�� 41

Setup�� 41

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_1#Sec24
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec25
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec29
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec30
https://doi.org/10.1007/979-8-8688-0379-6_1#Sec31
https://doi.org/10.1007/979-8-8688-0379-6_2
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec8
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec9
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec10
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec11
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec13
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec20
https://doi.org/10.1007/979-8-8688-0379-6_2#Sec21
https://doi.org/10.1007/979-8-8688-0379-6_3
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec3

vii

TPC Data Model�� 46

Initial Population��� 46

Query Profiles�� 50

Accessing Query Profiles�� 51

Example Query��� 53

A Good Query Profile�� 63

Build Side��� 65

Probe Side�� 65

Right Deep Join Tree��� 65

Bloom Filter�� 66

Explain Plan��� 66

GET_QUERY_OPERATOR_STATS��� 68

Bad Query Profiles��� 69

Notes on Data Capture��� 69

Join Explosion�� 70

Long Compilation Time��� 76

Long Execution Time�� 81

Long Table Scan��� 85

Spills to Disk and Out of Memory��� 88

Join Order��� 92

Common Table Expressions��� 95

Simple CTE Use Case�� 95

Reusing CTEs�� 97

CTE Costs�� 100

Remediating CTEs�� 101

Summary��� 101

Chapter 4: ��Micro-partitions��� 103

Setup�� 104

Foundational Information��� 105

Centralized Storage�� 105

Direct Storage Access�� 106

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_3#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec20
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec21
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec22
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec23
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec24
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec25
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec26
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec31
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec36
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec41
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec46
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec51
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec56
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec57
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec58
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec59
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec60
https://doi.org/10.1007/979-8-8688-0379-6_3#Sec61
https://doi.org/10.1007/979-8-8688-0379-6_4
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec4

viii

Storage Costs��� 107

Block Devices��� 107

Database and Table Storage��� 108

Stages�� 110

Micro-partition Overview��� 111

What Are Micro-partitions?�� 111

Immutable Micro-partitions�� 112

Micro-partition Metadata�� 114

Accessing Table Metadata�� 115

Time Sensitivity�� 120

Data and Micro-partition Lifecycle��� 122

Setting a Baseline�� 122

Data Ingestion�� 123

Data Processing��� 124

Data Consumption�� 129

Time Travel��� 130

Recovered Objects�� 132

Fail-Safe��� 133

Cloned Objects��� 134

Data Sharing and Replication��� 139

Micro-partitions End to End�� 139

Micro-partition Pitfalls��� 141

Summary��� 143

Chapter 5: ��Cluster Keys��� 145

Foundational Information��� 146

Cardinality�� 146

Micro-partition Counts�� 147

Clustering Ratio�� 148

Cluster Width�� 149

Cluster Depth�� 149

Illustrating Cluster Width and Cluster Depth�� 149

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_4#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec8
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec9
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec10
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec11
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec13
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec20
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec21
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec22
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec23
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec24
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec25
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec26
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec27
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec28
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec29
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec30
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec31
https://doi.org/10.1007/979-8-8688-0379-6_4#Sec32
https://doi.org/10.1007/979-8-8688-0379-6_5
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec7

ix

Cluster Key Basics��� 151

What Is a Cluster Key?�� 151

Facts Relating to Cluster Keys�� 152

Cluster Keys and Unique Indexes��� 152

Logical Structure and Physical Storage�� 155

Cluster Key Management��� 156

Investigating Unclustered Tables�� 157

Default Clustering on Data Load��� 160

Attribute Cardinality�� 161

Cluster Key Lifecycle�� 162

Investigating a Cluster Key��� 162

Good and Bad Partition Depth Histograms��� 166

Defining a Cluster Key�� 167

Alternative Cluster Keys��� 173

Materialized View Query Rewrite��� 181

Automatic Clustering�� 181

Workflow�� 182

Reclustering��� 183

Cost Monitoring�� 184

Summary��� 185

Chapter 6: ��Warehouses�� 187

Foundational Information��� 188

Memory and Compute�� 189

Warehouse Types�� 189

Warehouse Initialization��� 190

Declaring Warehouses�� 191

Using Warehouses�� 192

Warehouse Capacity��� 192

Warehouse Size and Use Considerations��� 193

Warehouse Scaling��� 194

Query History�� 197

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_5#Sec8
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec9
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec10
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec11
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec13
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec23
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec24
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec25
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec29
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec30
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec31
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec32
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec33
https://doi.org/10.1007/979-8-8688-0379-6_5#Sec34
https://doi.org/10.1007/979-8-8688-0379-6_6
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec8
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec9
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec13

x

Background Processes��� 198

Query Tags�� 198

Understanding Workloads�� 199

Typical Consumption Pattern�� 200

Default Warehouse Sizing��� 200

Segregating Workload�� 201

Size Matters��� 202

Dynamic Resizing of Warehouses��� 204

Tuning the Design�� 204

Serial or Parallel Logging��� 205

Workload Predictability��� 210

Workload Monitoring�� 210

Workload Queueing�� 215

Resolving Concurrency Issues��� 219

Reducing Warehouse Concurrency��� 219

Using Summaries, Aggregates, Filters�� 220

Re-timing Processes�� 220

Auto-Suspend Setting�� 220

Snowpipe File Size��� 221

Artificial Warehouse Size Constraint�� 221

Object Locking�� 221

Consolidating Workloads�� 222

Load Testing��� 223

Snowflake and CSP Improvements�� 223

Performance Evaluation��� 224

Parallel Loading�� 225

Snowflake-Supplied Sample Load Test�� 226

Tasks and Streams��� 227

External Parallelism Explained��� 228

Create an External Parallelism Component�� 229

Testing External Parallelism��� 233

Monitoring Queueing�� 234

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_6#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec20
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec21
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec22
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec23
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec27
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec28
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec29
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec32
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec33
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec34
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec35
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec36
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec37
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec38
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec39
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec40
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec41
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec42
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec43
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec44
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec45
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec46
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec47
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec48
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec49
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec50

xi

Restricting Resource Consumption�� 237

STATEMENT_TIMEOUT_IN_SECONDS��� 238

STATEMENT_QUEUED_TIMEOUT_IN_SECONDS�� 239

USER_TASK_TIMEOUT_MS��� 239

MAX_CONCURRENCY_LEVEL�� 240

Resource Monitors��� 240

Serverless Compute��� 240

Snowpipe�� 241

Tasks�� 242

Query Acceleration Service�� 243

Summary��� 244

Chapter 7: ��Search Optimization Service�� 247

Search Optimization Service Explained��� 249

Optimal Use Scenarios��� 249

Excluded Use Scenarios��� 250

Search Optimization Implementation��� 251

Estimating Table Search Optimization Costs�� 252

Enabling Table Search Optimization��� 254

Enabling Attribute Search Optimization�� 256

Table Type Support��� 257

Disabling Table Search Optimization�� 265

Timeliness�� 266

Best Practices�� 266

Summary��� 267

Chapter 8: ��Parallelization�� 269

Foundational Information��� 270

Data Products��� 270

Ingest�� 271

Curate��� 271

Produce�� 272

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_6#Sec51
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec52
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec53
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec54
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec55
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec56
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec57
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec58
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec59
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec60
https://doi.org/10.1007/979-8-8688-0379-6_6#Sec61
https://doi.org/10.1007/979-8-8688-0379-6_7
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec8
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_7#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_8
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec5

xii

Distribution Venues��� 274

Logging��� 277

Optimizing Data Processing��� 278

Problem Statement��� 278

Warehouse Factors��� 279

Ingest Factors��� 283

Curation Factors��� 285

Parallel Processing�� 286

Setting Up Application Tables��� 288

Testing Core Table Load�� 294

Core Table Segmentation�� 295

Concurrent Warehouse Processing��� 300

Stream Interaction�� 302

Testing Streams�� 303

Creating Stored Procedures��� 304

Temporal Loads�� 312

Real-World Impact��� 314

Summary��� 315

Chapter 9: ��Client Expectations�� 317

Entitlement Models�� 319

Embedded Entitlement Model�� 320

Prefiltered Entitlement�� 322

Filter Engine Overview��� 323

External Entitlement Component�� 324

Entitlement Data Model�� 324

Source Data Feeds��� 325

Curated Data Product��� 325

Filter Engine��� 326

Client-Specific Shares�� 326

Unentitled Data Sharing��� 327

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_8#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec11
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec13
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec20
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec21
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec22
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec23
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec24
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec32
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec33
https://doi.org/10.1007/979-8-8688-0379-6_8#Sec34
https://doi.org/10.1007/979-8-8688-0379-6_9
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec8
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec9
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec10
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec11

xiii

Creating Managed Accounts��� 327

Creating Share Containers�� 329

Unentitled Objects�� 332

Importing a Share��� 334

Entitled Data Sharing��� 336

Designing a Filter Engine�� 336

Filter Engine Requirements�� 336

Filter Engine Model��� 337

Building a Filter Engine�� 343

Deploying Generated Code��� 348

Setting the Standard�� 349

Imported Database Entitlement�� 349

Sample SQL for Common Use Cases�� 349

Client Collaboration�� 349

Historized Data��� 350

Data Model��� 350

Data Catalog��� 351

Shared Tag References��� 351

Multiple Shares of Same Data�� 351

Hydration Approach�� 352

Summary��� 353

Chapter 10: ��Optimizing Performance�� 355

Early Design Decisions��� 356

Snowflake Edition Costs��� 356

Data Model Approach��� 357

Platform Differences��� 357

Logging��� 358

Role-Based Access Control�� 359

Declare Constraints�� 360

Transient or Permanent Tables?��� 361

Warehouse Considerations��� 361

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_9#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec13
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec27
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec28
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec29
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec30
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec31
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec32
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec33
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec34
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec35
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec36
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec37
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec38
https://doi.org/10.1007/979-8-8688-0379-6_9#Sec39
https://doi.org/10.1007/979-8-8688-0379-6_10
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec1
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec2
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec3
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec4
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec5
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec6
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec7
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec8
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec9

xiv

Workload Monitoring�� 362

Managed (or Reader) Accounts�� 363

Replication�� 364

Multiplatform Distribution�� 364

Consumption Monitoring�� 365

Optimizing Consumption�� 366

Benchmark CSP Performance�� 367

Query Performance�� 367

Warehouse Monitor�� 368

Cost Management Screen�� 368

Query History�� 369

Query Profile��� 369

Explain Plan�� 370

GET_QUERY_OPERATOR_STATS��� 372

Optimizing Code��� 373

Time Travel Setting��� 374

Use Clones�� 374

Warehouse AUTO_SUSPEND��� 374

Warehouse Size�� 375

Warehouse Usage��� 375

Warehouse Scaling Policy�� 376

Warehouse Mode�� 376

Bind Variables��� 377

Eliminate SELECT *��� 377

Eliminate DISTINCT��� 378

Examine Common Table Expressions (CTEs)�� 378

Window Functions�� 378

Returned Query Attributes�� 378

Reduce Nested Views��� 379

Replace Subqueries�� 379

Optimization Focus��� 379

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_10#Sec10
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec11
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec12
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec13
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec14
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec15
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec16
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec17
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec18
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec19
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec20
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec21
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec22
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec23
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec24
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec25
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec26
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec27
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec28
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec29
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec30
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec31
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec32
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec33
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec34
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec35
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec36
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec37
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec38
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec39
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec40

xv

Optimize INSERTs��� 380

UNION or UNION ALL��� 380

Joins��� 380

Missing Referential Integrity�� 382

Missing Aliases��� 382

Temporary Tables��� 382

Set LIMIT��� 383

Skewed Data�� 383

Ineffective Pruning��� 383

Fully Sorted Table��� 384

Clustering Keys��� 384

Introspection Calls�� 385

File Size Optimization��� 386

Check All Tasks��� 386

Session Settings��� 386

Referenced Objects�� 388

Identifying Object Types��� 388

Identifying Object Dependencies�� 390

Identifying Constraints��� 392

GET_DDL��� 393

User Defined Objects��� 394

Tables��� 394

Views and Dynamic Tables��� 395

Secure Views�� 395

Materialized Views��� 396

User-Defined Functions (UDFs)��� 396

Identifying Issues��� 397

Warehouse Queueing��� 397

Warehouse Workload�� 398

Blocked Transactions�� 399

Join Explosion�� 399

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_10#Sec41
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec42
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec43
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec50
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec51
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec52
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec53
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec54
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec55
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec56
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec57
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec58
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec59
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec60
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec61
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec68
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec69
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec70
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec71
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec72
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec73
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec74
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec75
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec76
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec77
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec78
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec79
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec80
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec81
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec82
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec83

xvi

Long Compilation Time��� 400

Long Execution Time�� 401

Long Table Scan��� 402

Spills to Disk and Out of Memory��� 402

Snowflake Support��� 403

Snowflake Feature Use Cases��� 403

Automatic Clustering�� 404

Materialized Views��� 404

Search Optimization��� 405

Query Acceleration��� 405

Resource Monitors��� 406

Serverless Compute��� 406

Testing Code Changes�� 407

Summary��� 407

Afterword��� 408

��Appendix: Installing Python and the Tooling You Will Need���������������������������������� 409

�Index�� 419

Table of Contents

https://doi.org/10.1007/979-8-8688-0379-6_10#Sec84
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec85
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec86
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec87
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec88
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec89
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec90
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec91
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec92
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec93
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec94
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec95
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec96
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec97
https://doi.org/10.1007/979-8-8688-0379-6_10#Sec98

xvii

About the Author

Andrew Carruthers is the director for Snowflake

distribution at the London Stock Exchange Group (LSEG).

In this role, Andrew delivers several Snowflake accounts

supporting Refinitiv “final mile” data product content

delivery via Snowflake Marketplace, Private Listings, and

Data Shares. He leads their Center For Enablement (C4E)

in developing tooling, best practices, and training. 

Previously, Andrew was responsible for the Snowflake Corporate Data Cloud at

LSEG, which comprises two Snowflake accounts supporting an ingestion data lake and

a consumption analytics hub and services a growing customer base of more than 7,000

end users. He also developed the Snowflake Landing Zone for provisioning Snowflake

accounts conforming to both internal standards and best practices.

Andrew has more than 30 years of hands-on relational database design, development,

and implementation experience starting with Oracle in 1993. Before joining the London

Stock Exchange Group, he operated as an independent IT consultant, predominantly

with major European financial institutions. Andrew is considered a visionary and thought

leader within his domain, with a tight focus on delivery. Successfully bridging the gap

between Snowflake technological capability and business usage of technology, he often

develops proofs of concepts to showcase benefits leading to successful business outcomes.

Since 2020 Andrew has immersed himself in Snowflake and is considered a subject-

matter expert. He is CorePro certified, contributes to online forums, and speaks at

Snowflake events on behalf of LSEG. In recognition of his contribution to implementing

Snowflake at LSEG, Andrew received the Snowflake Data Driver award, which recognizes

a technology trailblazer who has pioneered the use of the data cloud within their

organization.

Andrew has two daughters, both of whom are elite figure skaters. He has a passion

for Jaguar cars, having designed and implemented modifications for them, and has

published articles for Jaguar Enthusiast and Jaguar Driver. Andrew enjoys 3D printing

and has a mechanical engineering workshop with a lathe, milling machine, and TIG

welder, to name but a few tools, and enjoys developing his workshop skills.

xix

About the Technical Reviewer

Nadir Doctor is a database and data warehousing architect

and a DBA who has worked in various industries with

multiple OLTP and OLAP technologies. He has also

worked on primary data platforms, including Snowflake,

Databricks, CockroachDB, DataStax, Cassandra, ScyllaDB,

Redis, MS SQL Server, Oracle, Db2 Cloud, AWS, Azure,

and GCP. His major focus is health-check scripting for

security, high availability, performance optimization, cost

reduction, and operational excellence. He has presented

at several technical conference events, is active in user group participation, and can be

reached on LinkedIn.

Thank you to Andrew and all the staff at Springer. I’m grateful for the immense support

of my loving wife, children, and family during the technical review of this book. I hope that

you all find the content enjoyable, inspiring, and useful.  

—Nadir

xxi

Acknowledgments

Thanks to the Apress team for the opportunity to deliver this book. Specifically, to Nirmal

Selvaraj, Shaul Elson, and Mark Powers: thank you for your patient guidance, help,

and assistance. Also, Nadir Doctor, thank you for delivering a comprehensive technical

review. Your input provided more than just insight and valuable comments: I learned

some new things, too. For those unknown to me, including editors, reviewers, and

production staff, please take a bow. You are the unsung heroes who have made lightning

strike three times (this is my third book with Apress).

To my very dear friend Andy McCann: I am more indebted to you than I can say.

Your patience, insight, encouragement, and pragmatic approach provided much needed

help and guidance. This book would not be anywhere near as complete or consistent

without your input. I owe you more than a few beers.

To my friends at Snowflake who continue to both inspire and spur me on to bigger

and better things: Jonathan Nicholson, Will Riley, Cillian Bane, James Hunt, Ben

Conneely, and Adrian Randle. Keep on pressing forward; Snowflake is in good hands.

Also, thanks to Jiaqi Yan and Minzhen Yang, whose inspiring talk sparked the idea that

led to this third book in what has become a series. Little did I know back then just how

hard this book would be to investigate, test, and write!

To John Ryan (https://www.analytics.today/), who put shape to my thoughts and

inspired a section within this book, thank you.

To all my colleagues at London Stock Exchange Group (LSEG), specifically:

•	 Corporate Data Cloud: Nitin Rane, Srinivas Venkata, Matt Willis,

Dhiraj Saxena, Bally Gill, Ramya Purushothaman, Radhakrishnan

Leela, and Rajan Babu Selvanamasivayam

•	 Snowflake Landing Zone: Nareesh Komuravelly, Nathan Hawes, and

Ravi Singh

•	 Enterprise Data: Kevin Whitchurch, Mike Frayne, Sahir Ahmed,

Kalpesh Parekh, Matt Adams, Rajen Pather, R.Senthil Kumar,

Prosenjit Chattoraj, and Chaitanya Kadiyam

https://www.analytics.today/

xxii

Take a bow. Thank you for your confidence, contribution, support, and help

delivering world-class data products into LSEG distribution venues.

To my very dear friends Marco Costella, Martin Cole, Mike Sutherland, Lavkumaar

Pandey, and Steve Loosley: keep on doing what you do best. If it isn’t broken, don’t fix it.

To my family, Esther and Josh; Verity, Evan, and baby Violet; and also Jordan and

Beth: thank you. And to my wonderful girlfriend Diane, who continues her Snowflake

journey: your smile brightens my day, and your presence makes me whole.

Will there be a fourth book in the series? Possibly. For now, it’s time to rest and

recharge. Eight months of preparation went into this book. I am not committing to

writing a fourth book about Snowflake, though I do have enough material for half a book

along with a title. And who knows what will happen after Snowflake Summit 2024?

Acknowledgments

1
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_1

CHAPTER 1

Tuning the Snowflake
Data Cloud
This book continues from where both Building the Snowflake Data Cloud (Apress, 2022)

and Maturing the Snowflake Data Cloud (Apress, 2023) left off. In this new volume, I

deep dive into tuning Snowflake queries to deliver blisteringly fast performance along

with a concurrent focus on cost-reduction efforts.

I unpack the core principles of how to approach performance optimization from

several perspectives.

•	 Developers migrating existing applications to Snowflake must

understand the pitfalls and “gotchas” that await the unwary.

•	 Cost management in an on-demand environment is a perpetual

challenge, and squeezing every drop of performance from Snowflake

is imperative.

•	 Optimizing warehouse size can reduce costs and improve

throughput but often treats the symptoms and not the root cause of

performance issues.

•	 Reducing micro-partition churn also reduces both storage and

replication costs with the further benefit of reducing propagated data

set latency, and I show you how.

•	 Remediating performance issues and refactoring production code to

optimize performance involves trade-offs; there are no silver bullets!

•	 Updating existing Snowflake implementations to take advantage of

new techniques is dependent upon understanding emerging product

capabilities.

https://doi.org/10.1007/979-8-8688-0379-6_1#DOI

2

In this book you will learn to develop tools and techniques based upon sound,

proven, real-life scenarios. I use these tools and techniques daily, and as you become

familiar with them, I hope you will too.

Performance tuning needs to be a continual activity. Data profiles change over

time, and INSERT, UPDATE, and DELETE operations can cause skewed data where the

distribution of data within a table or database becomes increasingly imbalanced or

uneven. The impact of data skew over time can be significant, particularly when it comes

to query performance.

All the examples used within this book were developed using a Snowflake trial

account available at www.snowflake.com. Click the Start For Free button, and enter a few

details to start a 30-day free trial account.

For those operating within a corporate environment, select Business Critical Edition
because it is most likely the version used by your organization.

All the code samples in this book have been tested using Business Critical Edition

and are believed to work with lower editions. You can find further details on Snowflake

editions at https://docs.snowflake.com/en/user-guide/intro-editions.

I also assume you are familiar with the Snowflake user interface SnowSight (though

the examples should work using SnowSQL or Visual Studio configured for Snowflake).

You can find further details on SnowSight at https://docs.snowflake.com/en/user-

guide/ui-snowsight. And for those starting their Snowflake journey for the very first

time, start here: https://docs.snowflake.com/en/user-guide-getting-started.

I have attempted to divide this book content into readily consumed thematic

chapters, and for the curious, the last chapter of this book on “gotchas” summarizes

best practices. Before you jump straight to the end of this book, though, please read the

intervening chapters as they will give you helpful context.

Last but certainly not least, you can find the Snowflake documentation at https://

docs.snowflake.com/en/. Reading this book will definitely improve your learning curve;

however, there are times where there is no substitute for reading official documentation

(which is actually rather good); I will highlight some of it later, but for now, at least you

know where it is.

Chapter 1 Tuning the Snowflake Data Cloud

http://www.snowflake.com
https://docs.snowflake.com/en/user-guide/intro-editions
https://docs.snowflake.com/en/user-guide/ui-snowsight
https://docs.snowflake.com/en/user-guide/ui-snowsight
https://docs.snowflake.com/en/user-guide-getting-started
https://docs.snowflake.com/en/
https://docs.snowflake.com/en/

3

�Setting the Scene
I began writing this book in July 2023, a week after Snowflake Summit ended. My head

was full of ideas, buzzing with the prospect of writing this book to impart my perspective

and available wisdom on performance tuning Snowflake to a wider audience. What

struck me was that, in just four years, Snowflake had transitioned from the cloud data

warehouse of choice to a much richer and hard-to-define platform encompassing a wide

variety of tooling, data formats, and capabilities.

Within this book I do not dive into the ever-expanding Snowflake product

capabilities, instead preferring to focus on what some describe as the “black art” of

performance tuning. By now, plenty of organizations have both ported applications to

Snowflake and/or developed applications on Snowflake from scratch. The time is right

for a book on Snowflake performance tuning to extract maximum value from these

investments.

It would be too easy to cover what has already been described at an overview level

by many vendors, some of whom are offering solutions that treat the symptoms and not

the root cause. Conversations supported by Microsoft PowerPoint is one thing; practical

techniques supported by hard and fast empirical evidence is entirely another. I prefer to

demonstrate pragmatic approaches to resolving performance issues while developing

tools to both educate and deliver a firm foundation for you to later build upon.

Snowflake is designed from the ground up to deliver optimal query performance

with minimal user intervention. The “out-of-the-box” developer and user experience is

truly exceptional, delivering astounding results for both data warehousing applications

and, increasingly, much wider use cases including AI/ML applications.

In contrast to a provision-based model where you are constrained by your deployed

infrastructure, Snowflake implements a consumption-based model: you pay for

what you consume. Typically, provision-based infrastructure is idle for an average

of 70 percent to 80 percent of the time, with occasional activity or, more commonly,

overloaded activity peaks. In contrast, consumption-based models scale according to

demand, providing performance elastically.

But this flexibility comes at a price: scalability and performance cost real money. you

must therefore reconsider your approach in a consumption-based model and focus on

reducing cost wherever possible. Costs are incurred when you execute code where you

consume CPU and memory. In Snowflake parlance, CPU and memory are encapsulated

within warehouses. You also incur costs for storage on a per-terabyte basis. At the time

Chapter 1 Tuning the Snowflake Data Cloud

4

of writing, this is a direct pass-through cost from your cloud service provider (CSP). You

also incur costs when you replicate data across regions and when you egress data from

one CSP to another external location.

Unlike legacy products, Snowflake provides few levers and switches to influence

system behavior and application performance, instead preferring to hide complexity

to enable developers to focus on delivering business benefit. You might be lulled into

a false sense of security by the ease with which you can port your applications into

Snowflake, but this can be an expensive mistake.

Tuning the Snowflake Data Cloud is a project-oriented book with a hands-on

approach to identifying migration and performance issues with experience drawn

from real-world examples. As you work through the examples, you will develop the

skill, knowledge, and deep understanding of Snowflake tuning options and capabilities

while preparing for later Snowflake features as they become available. Your Snowflake

platform will cost less to run and will improve your customer experience.

It is important to note that Snowflake is a constantly evolving product, and therefore

best practices will change over time. You should not expect the advice, hints, and tips

in this book to be static; this book offers what I know right now, with both eyes on

the future.

Regardless of your relational database management system (RDBMS) experience, it’s

safe to say some of your performance tuning skill, knowledge, and expertise is directly

transferable. Equally, some prior learning is not transferable; a degree of unlearning will

be required, and for those working on both legacy RDBMS and Snowflake, the operating

paradigms are distinctly different.

I next discuss some common themes.

�Use Cases for Snowflake
Fundamentally, the underlying CSP storage (whether S3, Azure Blob, or Google Cloud

storage) and Snowflake’s immutable storage policy dictate the supported transaction

style, with data warehousing preferred over online transaction processing (OLTP).

As a general rule of thumb, Snowflake prefers high-volume bulk-load operations

supporting analytics workloads. Low-latency, high-volume transactions are not yet

common workloads for Snowflake.

Chapter 1 Tuning the Snowflake Data Cloud

5

The forthcoming Unistore workload joining transactional and analytical data via

hybrid tables may change this perception.

Hybrid tables are not yet generally available.

You can find further details on Unistore at https://www.snowflake.com/en/data-

cloud/workloads/unistore/.

Rapid data ingest options via data streaming requiring low latency for low-data

volume is another common use case. I recommend the “Tour of Ingest” at https://

quickstarts.snowflake.com/guide/tour_of_ingest/index.html.

For those looking to understand a much wider suite of Snowflake use cases, please

investigate all the various quick starts at https://quickstarts.snowflake.com/.

�Provision or Consumption Model
Performance tuning in a provision-based model has fixed constraints; you cannot simply

pop down to the data center and plug in more memory or replace your hardware with

faster devices. Without preplanned system downtime for upgrades along with the service

disruption caused, you are limited to eking out every small performance increment

from your existing hardware using any and all levers provided by your operating system

vendor, RDBMS vendor, network tooling, and storage vendor. And all of these require

deep subject-matter experts (SMEs) in each topic to interact and define optimal patterns

for repeatability. Well, that’s the intent, but as you all know, reality does not always

match expectations.

In sharp contrast, a consumption-based model such as Snowflake removes

many historically familiar tuning options and levers; no longer are you able to tune

the operating system and change the RDBMS kernel settings. Instead, Snowflake

implements a managed service where you pay for what you consume, and this brings

about totally different challenges. Gone are the provision-based constraints, but leaving

aside the shift to a security focus, which a consumption-based model requires, you

replace the provision-based hardware constraints with two new major challenges: cost

and performance optimizations.

Chapter 1 Tuning the Snowflake Data Cloud

https://www.snowflake.com/en/data-cloud/workloads/unistore/
https://www.snowflake.com/en/data-cloud/workloads/unistore/
https://quickstarts.snowflake.com/guide/tour_of_ingest/index.html
https://quickstarts.snowflake.com/guide/tour_of_ingest/index.html
https://quickstarts.snowflake.com/

6

There is one crucial but often overlooked benefit to adopting a consumption-based

model. Snowflake performance has steadily improved since reported performance

metrics were first established in August 2022, for two reasons.

•	 Optimizer performance has steadily been enhanced over time,

realizing tangible benefit to overall query execution times.

•	 CSP hardware replacement programs for obsolete or end-of-life

hardware utilize the latest hardware automatically providing

performance uplifts.

In August 2022, Snowflake began to record these zero-cost performance benefits.

Figure 1-1 illustrates the Snowflake Performance Index, which can be found at https://

www.snowflake.com/en/data-cloud/pricing/performance-index/.

Figure 1-1.  Snowflake Performance Index

The trend is set to continue as Snowflake is committed to improving its code base

and CSPs periodically replace hardware due to their preventative maintenance policies.

The key takeaway is to periodically monitor your system performance for

improvement or degradation over time and take into consideration the probability of

Snowflake and CSP changes positively affecting your consumption costs.

Still with me? Good, let’s explore common Snowflake starting points (although these

are not exhaustive, and your steps may differ).

Chapter 1 Tuning the Snowflake Data Cloud

https://www.snowflake.com/en/data-cloud/pricing/performance-index/
https://www.snowflake.com/en/data-cloud/pricing/performance-index/

7

�Refactor or Redesign
Refactoring is the process by which you simplify an existing code base while retaining

the original functionality. You might choose to refactor code to take advantage of new

performance enhancements, implementing both common design patterns and code

structures while improving the overall implementation. Regardless of the rationale

for refactoring, the aim is to preserve the original functionality; there should be no

discernable behavior differences from the original. Thus, retesting should be as simple

as re-running the original test cases utilizing the same inputs.

Refactoring is not intended to address software flaws. It is perfectly valid (and

desirable) when refactoring code to improve performance and scalability while

preserving the original functionality.

In contrast, redesign may not preserve the original functionality and often modifies,

extends, or otherwise improves the functional utility of the component in accordance

with the design specification.

Redesign is intended to address software flaws. It is perfectly valid (and desirable)

while redesigning code to improve performance and scalability.

Within this book I will use the previous definitions; however, as you will see later,

sometimes the boundaries are blurred.

�Application Migration to Snowflake
Migration from legacy RDBMS to Snowflake is a common driver to unleash huge

performance benefits while moving to CSP infrastructure. I do not discuss in detail

“how” to migrate applications to Snowflake nor leverage CSP infrastructure within this

chapter, but note these steps are typically performed:

•	 Planning: Developing a project plan incorporating scope, funding,

resources, and timeline.

•	 Code conversion: Writing SQL statements, Data Definition Language

(DDL), user-defined functions, stored procedures syntax, language

conversion.

•	 Entitlements: Refactoring the legacy application security model to

use a Snowflake role-based access model (RBAC) model.

Chapter 1 Tuning the Snowflake Data Cloud

8

•	 Data migration: Porting the application data into Snowflake and

establishing ingestion pipelines and processes.

•	 Data consumption: Re-engineering the application outbound data

consumption processes.

•	 Platform security: Adding security. I cover this point in great detail

in the Maturing the Snowflake Data Cloud book.

•	 Performance: Optimizing Snowflake is the core subject matter of

this book.

•	 Testing: Perform back-to-back testing to ensure equivalent outputs

for known inputs are delivered, along with the all-important and

expected performance benefits.

•	 Documentation: No migration activity is complete without

exhaustive documentation.

The most time-consuming and difficult step to determine is code conversion; no two

applications have the same profile or migration objectives. Migrating an application for

archive legacy purposes to retain data for a specific period will be very different from

migrating an active, in-use application.

Refactoring code is expensive, and finding empirical metrics is hard. As a rough

guideline, you can expect refactoring costs to be at least four times the cost of developing

code from scratch. This guesstimate includes understanding the original code; you can

substitute your own multiplication factor taking into consideration the availability of

experienced resources and detailed documentation.

Another considerable challenge is ensuring your migrated application functionality

matches the source application. I call this out as source applications are not typically

fixed in time; enhancements and bug fixes cause divergence that must be considered

when porting to Snowflake.

�Migration Guides
Snowflake offers a number of legacy RDBMS guides to help you port applications to

Snowflake. Some of these are listed here and may require your contact information

before access is enabled:

Chapter 1 Tuning the Snowflake Data Cloud

9

•	 https://www.snowflake.com/wp-content/uploads/2020/05/

oracle-to-snowflake-technical-migration-guide.pdf

•	 https://www.snowflake.com/resource/microsoft-sql-server-

to-snowflake-migration-reference-manual/

•	 https://www.snowflake.com/wp-content/uploads/2020/08/

teradata-to-snowflake-migration-guide.pdf

•	 https://www.snowflake.com/resource/spark-to-snowflake-

migration-guide/

Aside from these product specific listings, other migration guides and

additional related information are available at https://www.snowflake.com/en/

resources/?tags=content-type%2Fmigration-guide&searchTerm=migration.

�Migration Options
In this section I will identify some options to migrate applications to Snowflake and later

focus on performance and cost optimization.

Character set conversions require special attention outside of the scope of
this book.

�SnowConvert

In January 2023 Snowflake acquired SnowConvert from Mobilize.net, a toolkit for

migrating customer workloads from legacy RDBMS to Snowflake. SnowConvert

automates schema and functional component conversion to Snowflake from a variety of

legacy RDBMSs.

Since the Snowflake acquisition, SnowConvert has become the Snowflake

Professional Services (PS) tool of choice for application migration. Naturally, you do not

have access to SnowConvert directly, but you can find further information at https://

www.mobilize.net/.

Chapter 1 Tuning the Snowflake Data Cloud

https://www.snowflake.com/wp-content/uploads/2020/05/oracle-to-snowflake-technical-migration-guide.pdf
https://www.snowflake.com/wp-content/uploads/2020/05/oracle-to-snowflake-technical-migration-guide.pdf
https://www.snowflake.com/resource/microsoft-sql-server-to-snowflake-migration-reference-manual/
https://www.snowflake.com/resource/microsoft-sql-server-to-snowflake-migration-reference-manual/
https://www.snowflake.com/wp-content/uploads/2020/08/teradata-to-snowflake-migration-guide.pdf
https://www.snowflake.com/wp-content/uploads/2020/08/teradata-to-snowflake-migration-guide.pdf
https://www.snowflake.com/resource/spark-to-snowflake-migration-guide/
https://www.snowflake.com/resource/spark-to-snowflake-migration-guide/
https://www.snowflake.com/en/resources/?tags=content-type/migration-guide&searchTerm=migration
https://www.snowflake.com/en/resources/?tags=content-type/migration-guide&searchTerm=migration
http://mobilize.net
https://www.mobilize.net/
https://www.mobilize.net/

10

�Manual Schema Conversion

Depending upon your requirements and perceived application code complexity,

it is possible to convert schema objects to Snowflake syntax relatively easily. One

successfully used approach involves the use of the shell scripts awk and sed to refactor

Data Definition Language to Snowflake syntax. Note this approach does not address

performance tuning concerns but does provide a baseline from which to start.

Manual schema migrations are relatively straightforward; however, there are some

caveats.

Identifying source character sets can be challenging. Sometimes character set

corruption has occurred before data was ingested within the application to be ported;

therefore, reconciliation when converted to the Snowflake default UTF-8 character set is

impossible.

User-defined types must be reconciled back to their base data types, which in

most scenarios will be the supertype rather than subtype. For example, declare FLOAT,

DECIMAL, MONEY, NUMBER with or without precision, etc.

Some objects do not lend themselves to direct conversion; for example, this

nonexhaustive list of Oracle to Snowflake migration challenges will require remediation:

•	 Snowflake does not support ROWID.

•	 Within tree walks, Snowflake does not explicitly support LEVEL.

•	 Complex materialized views are not directly supported; dynamic

tables are an equivalent, but at the time of writing this feature is not

generally available.

•	 Snowflake NULL treatment is ANSI compliant; Oracle NULL

treatment is not.

•	 Embedded documents are often encoded, encrypted, or compressed

using proprietary algorithms.

•	 Snowflake doesn’t have synonyms and relies upon search_path.

Likewise, SQLServer to Snowflake migration challenges may be found by doing the

following:

•	 Resolving user-defined types and platform-specific data types to their

equivalent Snowflake supertypes

•	 Using SQL Server syntax that diverges from the ANSI standard

Chapter 1 Tuning the Snowflake Data Cloud

11

In general, across many legacy RDBMSs, you will also find these differences:

•	 Date functions, format specifiers, and time zones, in common with

other legacy RDBMSs.

•	 Absence of index support in Snowflake for standard tables (though

forthcoming Unistore hybrid tables do use indexes).

•	 Cluster key terminology and usage are not the same across legacy

RDBMSs and Snowflake.

•	 Declared but not enforced constraints except for NOT NULL in

Snowflake.

I offer these as a short and incomplete list to give you an idea of the differences

between legacy RDBMSs and Snowflake.

The ACID tests are whether data correctly loads into the Snowflake objects migrated

from the source and all regression tests run clean.

�Functionality Lift and Shift

Assuming the schema has been ported to Snowflake, the task of porting functional

components remains. Tools like SnowConvert claim to port stored procedures to

JavaScript equivalents, and I have no evidence to suggest otherwise.

My concerns relate to the quality of SQL ported from source.

Do not expect unmodified SQL statements to be optimally performant in a

Snowflake environment. Experience has proven that you must tune all SQL code for the

platform and not assume everything will run “just fine” in Snowflake.

Typically, you will see a performance boost because of the massively parallel

processing (MPP) capability Snowflake brings. You must not be complacent in lifting

and shifting code and then accepting the new MPP performance benefit as evidence of

success.

Instead, I suggest identifying the top 10 longest running queries and then optimizing

their performance using the techniques outlined in this book. A note of caution: you are

looking for repeating SQL statements; one-off data loads should be excluded.

Chapter 1 Tuning the Snowflake Data Cloud

12

My experience of tuning highly complex ported queries shows an upward of a 20

percent performance improvement, which directly translates to a cost reduction. Once

the top 10 queries have been optimized, recheck and identify the next top 10 longest

running queries and repeat performance tuning.

�Greenfield Development
Several steps are the same as with application migration though with different boundaries.

•	 Planning: Develop a project plan incorporating scope, funding,

resources, and timeline.

•	 Entitlements: Determine the application entitlement model

using RBAC.

•	 Data model: Design and implement the application data model.

•	 Data consumption: Create the application outbound data

consumption processes.

•	 Platform security: I cover this point in great detail in the Maturing

the Snowflake Data Cloud book.

•	 Performance: How to optimize Snowflake is the core subject matter

of this book.

•	 Testing: Perform testing to ensure all functional and nonfunctional

requirements are met.

•	 Documentation: No development activity is complete without

complete documentation.

I do not dwell on greenfield development as this is a well-trodden path with many

skilled practitioners ready and willing to undertake Snowflake development.

�Replication Considerations
A distinct advantage of porting applications to Snowflake is the ability to utilize Secure

Direct Data Shares, Private Listings, and Snowflake Marketplace. As noted, you will also

incur costs when you replicate data across regions and when you egress data from one

CSP to another external location.

Chapter 1 Tuning the Snowflake Data Cloud

13

While data sharing and replication may not be used ubiquitously, for those who do

use them, replication costs can far exceed the warehouse runtime costs to generate the

original data sets. Optimizing data transfer will reduce replication costs; I show you how

to do this later. For a taste of things to come, by redesigning your approach to storing

data, it is possible to significantly reduce both storage and replication costs.

�Tune the Design
Regardless of whether you migrate an application or are delivering a greenfield

development, you must tune your design and adopt an approach that has the best

chance of success. Various studies have shown that between 66 percent and 85 percent

of all application deliveries fail. How you set out is a key determinant for success or

failure.

Operating in a high-pressure, delivery-focused environment can lead you to ignore

the importance of tuning your design. As your projects progress, the incremental cost

of refactoring your design increases, so you must approach any new delivery with

caution. Take the time to validate your approach and seek wisdom from those who

have successfully implemented Snowflake applications, recognizing there are not many

people who have done this.

Tuning Snowflake designs is dependent upon fully understanding the underlying

Snowflake platform architecture. Sadly, there are plenty who understand enough to

treat the symptoms but not enough to address root-cause issues. As my good friend

Andy McCann says, “Good practice travels far,” but note the pace of change of Snowflake

delivery is accelerating, and what was considered a best practice a year ago may not

stand the test of time now.

For those with deeper pockets and appetite, I strongly advocate that Snowflake PS

is engaged at the earliest opportunity to validate and identify optimally performant

patterns. You can find further information on Snowflake PS at https://www.snowflake.

com/snowflake-professional-services/.

Snowflake training that may lead to certification will accelerate learning. Depending

upon your current RDBMS knowledge and career aspirations, different courses will

appeal. You can find further information at http://learn.snowflake.com/en/.

An alternative but slower route to success for those without a strong RDBMS

background is via Snowflake University, where an introduction to Snowflake

development course is available. This course is free and self-paced, and Snowflake trial

Chapter 1 Tuning the Snowflake Data Cloud

https://www.snowflake.com/snowflake-professional-services/
https://www.snowflake.com/snowflake-professional-services/
http://learn.snowflake.com/en/

14

accounts can be used. You can find further information at https://www.snowflake.com/

snowflake-essentials-training/.

Otherwise, for those seasoned practitioners looking for inspiration, code samples,

and walk-throughs, there is no better suite of resources than those found at https://

quickstarts.snowflake.com/.

Ignore tuning your design at your peril; this step is the lowest cost while providing

the biggest “bang per buck” regardless of platform. This advice will serve you well

throughout your IT career.

�Your First Optimization
You declare compute in T-shirt-sized warehouses according to the perceived demand

your SQL statement will place upon CSP resources.

Every time you execute a SQL statement requiring a warehouse, you incur cost.

By default, Snowflake delivers a single warehouse called compute_wh, and your first

optimization must be to ensure the default warehouse. Every other defined warehouse

runs for the minimum time before suspending. The default setting for auto-suspending

compute_wh is 10 minutes, or 600 seconds.

We use the auto_suspend attribute with a minimum of 60 seconds as shown next:

SHOW warehouses;

ALTER WAREHOUSE compute_wh SET auto_suspend = 60;

Every warehouse regardless of size runs for a minimum of 60 seconds, with per

second billing thereafter.

Warehouse events tell us information relating to warehouses; we use this

information primarily to check the RESUME and SUSPEND conditions where the next SQL

statement can be used.

SELECT *

FROM snowflake.account_usage.warehouse_events_history

WHERE warehouse_name = 'COMPUTE_WH'

ORDER BY timestamp DESC;

Figure 1-2 shows sample output.

Chapter 1 Tuning the Snowflake Data Cloud

https://www.snowflake.com/snowflake-essentials-training/
https://www.snowflake.com/snowflake-essentials-training/
https://quickstarts.snowflake.com/
https://quickstarts.snowflake.com/

15

Figure 1-2.  Warehouse events history

In addition to determining warehouse runtime, you can also see CLUSTER_NUMBER

indicating scaling out; I discuss warehouse clustering later.

Optimally sizing warehouses and the clustering factor provides a significant

opportunity to reduce costs, a theme I will return to later.

�Optimizer Approach
Many of us remember a legacy “rules-based” approach to defining an efficient execution

plan, a suite of predefined rules applied to the SQL statement used to derive the optimal

execution path. The “rules-based” approach did not require statistics; if the rules

quality and coverage did not cater for the SQL statement being executed, then poor

performance would most likely ensue.

For most if not all RDBMSs, “rules-based” optimizers have largely been replaced by

“cost-based” optimizers where real-world statistics inform sophisticated algorithms to

evaluate and select execution plans. Cost-based optimizers generally outperform rule-

based approaches in terms of query optimization effectiveness and adaptability.

Snowflake has adopted a simplified approach to delivering their optimizer by only

supplying a cost-based optimizer. Furthermore, for their optimizer, Snowflake by design

leaves as little to the user as possible. For example, unlike some legacy RDBMS, you

cannot add hints to influence the generated optimizer query plan.

Plan stability is essential for predictable repeat performance, and all RDBMS vendors

strive to achieve this objective. Snowflake is no exception where the key objective is to

create a robust cost-based optimizer delivering stable execution plans. Additionally,

Snowflake focuses on optimizations for analytics workloads and support for all data

models including third normal form, data vault, and star schema. You also know

Snowflake has implemented many non-cost-based optimizations and continues to

work on eliminating nonperformant edge cases too, all part of the continual product

improvements.

Chapter 1 Tuning the Snowflake Data Cloud

16

�Query Parsing Order
I have discussed DDL and now will move on to discussing Data Manipulation Language

(DML). The most common DML statement you will encounter is SELECT, where you

retrieve data from Snowflake. I often refer to a SELECT statement as a query.

To effectively tune queries, you must understand how SELECT statements are

executed. The following code sample demonstrates a simple single table query syntax:

SELECT DISTINCT column

FROM mytable

WHERE constraint_expression

GROUP BY column

HAVING constraint_expression

ORDER BY column ASC/DESC

LIMIT count OFFSET start_point;

SQL is passed through several subsequent stages that I describe later, but for now, I’ll

focus on identifying the order in which each part of the SQL statement is parsed.

To reduce complexity, you will not consider inline functions, common table
expressions (CTEs), tree walks, set operators, and other advanced constructs.

Figure 1-3 illustrates the order in which SQL operations are actioned.

FROM WHERE GROUP
BY HAVING SELECT DISTINCT ORDER

BY
LIMIT /
OFFSET

Figure 1-3.  SQL order of operations

The next section provides some detail on “how” SQL is parsed and offers some broad

usage advice based upon real-world experience.

�FROM Clause
The first step is to identify the object(s) where data is stored. The FROM clause identifies

the objects, in your example, a single table. But you often join to additional tables,

and the order in which you join the tables has significance to the Snowflake optimizer.

Chapter 1 Tuning the Snowflake Data Cloud

17

Always put the smallest table first when joining tables, noting tables may grow
over time.

You might also see JOIN criteria to reference further tables, regardless of whether

a single table or multiple tables. A lookup is performed to ensure specified named

object(s) exist within the metadata repository. The FROM and JOIN clauses provide the

total accessible data set for the query referencing the attributes (table columns) and rows

(the actual data).

I prefer to fully qualify object names using database.schema.object notation to

prevent ambiguity when referencing source objects.

�WHERE Clause
The FROM clause identifies the full scope of accessible objects and attributes for the

query. The WHERE clause—also known as the predicate—identifies how the in-scope

objects relate to each other, also defining filters or constraints.

You might see multiple predicates applied using AND / OR syntax; each is a filter or

constraint to the returned data set.

Predicates implement join conditions between tables and are essential for

developing optimally performant code. Where two or more objects are accessed and not

joined, a Cartesian product (also called a join explosion) results.

Failure to join tables in a WHERE clause results in a Cartesian product.

When generating high volumes of test data, you might deliberately choose to

omit a join condition. This is a rare but acceptable use case noting the performance

implications.

�GROUP BY Clause
When aggregating attributes, you add a GROUP BY clause. Grouping ensures the returned

data set contains rows equal to the unique values in that column.

Chapter 1 Tuning the Snowflake Data Cloud

18

This optional clause is used for aggregations only.

GROUP BY is used only with aggregate queries.

�HAVING Clause
A HAVING clause is permissible only in conjunction with a GROUP BY clause, to filter

results. A common use case is to filter by a specific count to identify duplicate records.

This optional clause is used for filtering aggregated data.

HAVING is used only with aggregate queries.

�SELECT Clause
With your subset of objects, attributes, and data identified, any single row or aggregate

expressions within the SELECT statement are computed.

The optimal number of attributes for SELECT statements is 10 or fewer. This figure

was disclosed during a discussion with Snowflake staff. Wide tables with many rows do

not perform particularly well, and the use of temporary tables was also suggested as an

appropriate intermediate step.

Through hands-on experience, you found SELECT * performance to be suboptimal

across a wide range of queries migrated from legacy RDBMS. I therefore strongly

recommend explicit attribute references.

Always refactor SELECT * to reference explicit attribute names.

One exception is that I have found SELECT * with an appropriate LIMIT acceptable

when sampling data as a pre-cursor to assist the development process.

As with everything performance related, test, test, and test again. Don’t rely upon

what you read either here or elsewhere, but instead prove it empirically. Your experience

using real-world conditions is what matters.

Chapter 1 Tuning the Snowflake Data Cloud

19

�DISTINCT Clause
Where only unique rows are required to be returned, a DISTINCT clause may be used.

This optional clause is used to return unique rows only.

DISTINCT forces an aggregation operation visible within the query profile. I discuss

this later, but for now it is sufficient to know there is an impact for using a DISTINCT

clause. I find SELECT DISTINCT acceptable when sampling data as a pre-cursor to assist

the development process.

The use of DISTINCT in production code often indicates a missing join condition

within a query, an incomplete/incorrect database design, or an expedient solution being

used to resolve a data quality issue. Regardless of the root cause, I recommend always

investigating such occurrences.

�ORDER BY Clause
For a variety of reasons you may need to order returned data sets in either ascending or

descending order. For example, in a graphical user interface, you may want to display

search results in alphabetical order.

This optional clause is used to sort returned data sets.

Ordering returned data sets forces a sort operation visible within the Query Profile. I

discuss this later, but for now it is sufficient to know there is an impact for using an ORDER

BY clause.

�LIMIT/OFFSET
Sometimes you will need to sample data, and LIMIT provides the operator to restrict

the returned data set to a known sample size. Likewise, you might want to start your

sample from a nominal position within the returned data set, and OFFSET provides this

capability.

Chapter 1 Tuning the Snowflake Data Cloud

20

This optional clause is used to return a subset of the returned data set.

Using LIMIT/OFFSET can be useful while testing code but generally is not used

in production code; the local code comments will no doubt self-document to

explain “why.”

�SQL Joins
You can join tables within the WHERE clause by declaring a relationship between

attributes in both tables, preferably by using primary keys and foreign keys but

alternatively by using natural keys too. The syntax for expressing join conditions comes

in two forms, discussed next.

�Explicit Join Notation

Explicit join notation is considered a best practice and should be considered for

inclusion within SQL coding standards. As the name suggests, the join type for each

object accessed is explicitly stated.

You can find further information on SQL at https://en.wikipedia.org/wiki/

Join_(SQL).

Here’s an example query using explicit join notation:

SELECT count(1)

FROM partsupp_baseline ps

INNER JOIN part_baseline p

 ON ps.ps_partkey = p.p_partkey

INNER JOIN supplier_baseline s

 ON ps.ps_suppkey = s.s_suppkey;

�Implicit Join Notation

Considered by many to no longer be a best practice, this is my preference and widely

used throughout both this book and my previous books.

I have found implicit join notation to offer these advantages over explicit join

notation:

Chapter 1 Tuning the Snowflake Data Cloud

https://en.wikipedia.org/wiki/Join_
https://en.wikipedia.org/wiki/Join_

21

•	 Implicit join notation avoids forward declaration errors.

•	 To me, implicit join notation is cleaner and easier to read.

Here’s the same query using implicit join notation:

SELECT count(1)

FROM partsupp_baseline ps,

 part_baseline p,

 supplier_baseline s

WHERE ps.ps_partkey = p.p_partkey

AND ps.ps_suppkey = s.s_suppkey;

You will encounter this SQL statement in Chapter 3.

�Forward Declaration Errors

A forward declaration error is a parsing failure and occurs when a reference is made

to an object or attribute that has not yet been declared. From the earlier discussion on

query parsing order, you know the FROM clause is parsed first.

•	 For explicit join notation, each joined table is evaluated in

declaration order along with its joining criteria.

•	 For implicit join notation, all tables are evaluated at the same time;

then all predicates are evaluated.

As a consequence of the evaluation order, it is possible to reference join keys that

have not yet been parsed but are declared later in the SQL statement.

Valid arguments for mandating explicit join notation are to both reduce code

errors and enforce discipline when accessing data models. However, readability is

important too.

We leave you to decide which approach suits your requirements best.

�Introspection Calls
In Snowflake, an introspection call is a SQL statement used to interrogate the account

usage store or information schema of a particular database to identify metadata for

objects, columns, and their attributes. Since Snowflake is typically operated in a highly

controlled, secure manner and one significant use case is data warehousing, there is an

Chapter 1 Tuning the Snowflake Data Cloud

https://doi.org/10.1007/979-8-8688-0379-6_3

22

expectation for object metadata to remain static. Best practice dictates both schema and

object structural changes should be made only in accordance with a rigorous change

control process. Introspection calls should therefore be able to rely upon a relatively

static suite of metadata.

In practice, you have found some Snowflake metadata lookups run slower than

expected when compared to an alternative RDBMS. The root cause appears to be

unexpected or unpredictable changes made to object definitions causing ad hoc

metadata changes. You might experience this phenomena where self-service has been

implemented for end users to own, manage, and maintain their own schemas where

unpredictable and ungoverned schema changes occur.

Further investigation is required as you cannot yet categorically identify the root

cause of slow-running metadata queries. I suggest queries using the account usage store

may be improved by making local copies of referenced views into tables (thanks to Nadir

Doctor for this tip). There is further sparse anecdotal evidence of this phenomena that

may be obtained using common Internet search engines.

�Optimizer Statistics
Optimizer statistics are information and data values collected about the database

objects used by the query optimizer to inform decisions on how to execute SQL queries

efficiently. In contrast with some legacy RDBMSs, Snowflake guarantees the optimizer

statistics are always up-to-date; there is no delay. And also unlike some legacy RDBMSs,

for Snowflake there is no exposed capability to collect, delete, or manage statistics; this is

by design.

Snowflake captures the following statistics:

•	 Table and micro-partition

•	 Row count

•	 Size in bytes (including compression information)

•	 File reference

•	 Table version

Chapter 1 Tuning the Snowflake Data Cloud

23

•	 Clustering

•	 Total micro-partitions

•	 Micro-partition overlap values

•	 Micro-partition depth

•	 Column

•	 Max/min value range

•	 The number of distinct values

•	 NULL count

•	 Subcolumn

•	 Statistics for common paths in semi-structured data

Snowflake caches statistics within the Cloud Services layer. Statistics are used

as inputs to the optimizer cost model and for micro-partition pruning; both are

discussed later.

�Summary
In this chapter, I laid out the rationale for this book while determining the core focus:

our primary objective is to focus on cost optimization for all Snowflake activity, not just

single query tuning.

I drew comparisons between provision-based models and consumption-based

models, noting the focus shift to security, cost, and performance. Your decisions on how

to approach application development and migration have material implications for cost

optimizations. When replicating data sets, replication costs can far exceed the initial cost

of generating the data sets.

I then covered how SQL is parsed, noting the statement parsing order and some

potential issues you may encounter before discussing optimizer statistics.

Having established baseline information in preparation for looking deeper into

performance tuning, it’s time to move on to the next chapter.

Chapter 1 Tuning the Snowflake Data Cloud

25
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_2

CHAPTER 2

The Query Optimizer
Query optimizers reduce the cost of queries while retaining the original intended

functionality. Furthermore, query optimization seeks to reduce the volume of data

accessed, further reducing costs.

A lot happens within the Snowflake query optimizer, and not every detail is known to

the wider user community. I have drawn upon available sources to piece together what

can be shared, although the optimizer behavior might have changed by the time you

read this as a natural consequence of development and maintenance. However, there is

value in reading this chapter as I hope it will help shape your thinking when designing

SQL statements.

Building upon the information presented in Chapter 1, in this chapter I discuss

various aspects of the query optimizer beginning with the lifecycle of a query. I then

move on to discussing what happens within the planner and optimizer, a fascinating

subject in its own right.

The key message for this chapter is to adopt the KISS principle, better articulated

here: https://en.wikipedia.org/wiki/KISS_principle. The same principle is equally

well stated by Tony Robbins: “Complexity is the enemy of execution” (https://www.

youtube.com/watch?v=o0PweQFmJpI). We will return to this theme frequently.

A guiding principle I use for determining the quality of code is to see how cleanly

written and laid out each SQL statement appears. If the SQL looks good, is well

formatted, and is readable, then it is most likely the developer has taken great care to

ensure optimal execution performance. You should not lose sight of how long it takes to

refactor code; all good developers hate cleaning up other people’s mess.

For those just starting out: help those who support your code by delivering high-
quality, easily understood, and well-documented artifacts.

https://doi.org/10.1007/979-8-8688-0379-6_2#DOI
https://doi.org/10.1007/979-8-8688-0379-6_1
https://en.wikipedia.org/wiki/KISS_principle
https://www.youtube.com/watch?v=o0PweQFmJpI
https://www.youtube.com/watch?v=o0PweQFmJpI

26

No query optimizer is able to guess at the intended data set outcome. As the saying

goes, garbage in, garbage out, and you are responsible for ensuring the quality of your

submitted SQL statements.

Finally, I must pay tribute to both Jiaqi Yan, principal software engineer, and

Minzhen Yang, principal engineer and tech lead, both at Snowflake, for their

comprehensive explanation of the Snowflake query optimizer at Snowflake Summit

2023. I have derived some information for this chapter from their presentation as

well as embellished it with my own understanding and knowledge. Any omissions,

misrepresentation, or errors are mine alone.

�Query Lifecycle
At a superficial level, we submit queries, and sometime later we receive results.

Simple. Or is it? The book you are reading should automatically answer the question of

simplicity. Ideally this book would not be necessary, because the developers try very

hard indeed to remove complexity from Snowflake.

The absence of levers and switches to influence system behavior and

application performance is a key indicator of how successful the developers have

been. Understanding the query optimizer implementation unlocks pathways to

delivering SQL.

Wherever possible, simplify your SQL; do not write convoluted or hard-to-
follow code.

Figure 2-1 shows an overview of the query lifecycle, which is explained further in the

corresponding bullet points.

Chapter 2 The Query Optimizer

27

1

Exists in
Cache?

2 3

45

Result Cache

Plan /
Op�mize

SQL
Query

Inges�on

Warehouse
Results

Figure 2-1.  Query lifecycle

�Query Overview
I will now explain at a high level the steps highlighted within Figure 2-1.

	 1.	 Snowflake ingests a SQL statement; you do not specify the source

as there are many and varied inbound connection paths.

	 2.	 If the query exactly matches a previously run query and the

data has not changed, then the result set is returned from the

result cache.

	 3.	 Otherwise, the query planner and optimizer use metadata to work

out the exact data set and lowest cost access path to satisfy the

SQL query.

	 4.	 The warehouse identifies and retrieves the exact data from

the local or remote disk and then returns the data to the cloud

services.

	 5.	 The result set is returned to the client and stored in the result

cache for reuse.

Chapter 2 The Query Optimizer

28

Figure 2-1 is just an overview; a more comprehensive explanation is provided

shortly.

Naturally, queries may fail to execute for a variety of reasons, some of which I briefly

discuss next.

�Query Failure
Queries may fail to process for a variety of reasons. I cannot list all possible query

execution failures though they largely fall into two categories: Queries that fail due to

not passing through the query optimizer processing through to execution, and queries

that successfully begin execution but subsequently fail due to infrastructure capacity or

interconnectivity failure.

An example of infrastructure failure could be an occasional warehouse failure where

Snowflake automatically recovers to complete the query execution transparently noting

the result set may be slightly delayed while detection and recovery occurs.

The quality of our SQL statements can also lead to execution failure. As an example,

a missing join condition often results in a Cartesian product (also known as a cross-join)

where unexpectedly large result sets are generated resulting in spills or out-of-memory

warehouse failures.

In my 30+ years of experience across a variety of RDBMS platforms, it’s usually my
code that is at fault.

Some examples of why queries may fail to execute include the following:

•	 Invalid syntax

•	 Inaccessible object

•	 Out of memory

•	 Client process failure

•	 Network or interconnect failure

•	 Warehouse failure

•	 Other unspecified reason

Chapter 2 The Query Optimizer

29

I will not dive into the root causes of each potential failure. The following

information enables you to identify where some query failures occur along with

sufficient context to explain “why” such failures may occur.

�Query Compilation
In this section I explain how a noncached query is processed.

If the statement in step 2 of Figure 2-1 (“If the query exactly matches a previously

run query AND the data has not changed, then the result set is returned from the Result

Cache”) is TRUE, then this section is not executed.

Figure 2-2 illustrates the processing path followed when step 2 of Figure 2-1 is FALSE,

corresponding to step 3, which is “Plan/Optimize”:

Parser

1
SQL

Query
Inges�on

Seman�c
Analysis

Logical
Rewriter

Micro-
Par��on
Pruning

Ini�al Plan Plan
Rewriter

Cost-based
Join

Ordering

Physical
Plan

Genera�on

2 3 4 5 6 7 8 9

Pruner

Tokenizer

Founda�onDB

Figure 2-2.  Query compilation steps

Before we deep dive into the Snowflake query optimizer, it is worth saying that all

RDBMSs have a query optimizer. We therefore rely upon common, in-use terminology,

and for those new to understanding query optimizers, we briefly explain terminology

shortly.

Before we dive in, our aim is to impart sufficient information to cause you to think

about how your code will execute once submitted to the query optimizer. The easiest,

cheapest, and most effective performance tuning occurs before a single line of code is

written, that is, during the design phase. All the information presented within this book

is intended to provide you with the tools to tune your code before submission to the

Snowflake query optimizer.

Also note not every stage or step within a stage is mandatory. The query optimizer

may choose to skip stages or individual steps where appropriate. As an example, if no

CTE is detected within the submitted SQL statement, there is no need to expand CTEs.

Snowflake refers to this process as automatic skipping of redundant stages. I indicate

where stages and steps can be skipped in the following sections.

Chapter 2 The Query Optimizer

30

�Tokenization
Within the context of a query optimizer, tokenization is the process of breaking down the

SQL statement into smaller units called tokens. Tokenization breaks down a query into

keywords, identifiers, literals, operators, and punctuation symbols. The tokens are used

to identify the structure and meaning of the query constituent parts in machine-

usable format.

Tokenization is used by many RDBMS query optimizers but is not explicitly called

out as a discrete component within Snowflake query optimization. It may be an inferred

component within the Snowflake query optimization process and is mentioned to

provide context for those migrating from legacy RDBMSs.

An alternative use of the word tokenization relates to both cybersecurity and

substitution of data content with undecipherable tokens.

�Parsing
Parsing is also referred to as syntactic analysis and is the action of analyzing the

SQL statement structure or tokens. It validates the integrity of the query to ensure

completeness and correctness prior to producing a parse tree from which intermediate

code can be generated.

The parse tree provides the hierarchy and structure of the query along

with all internal relationships and converts the form to Query Block Internal

Representation (QBIR).

�Semantic Analysis
Semantic analysis receives the QBIR and validates the structure matches both available

and accessible Snowflake objects. We assume a lookup to FoundationDB is performed

at this time. FoundationDB holds our Snowflake account metadata, that is, information

about every object, relationship, and security feature. This is the catalog that documents

and articulates your account.

Semantic analysis involves resolving object and attribute names, performs tag

checking, expands referenced views, expands user-defined functions (UDFs), and

expands common table expression (CTEs).

We anticipate additional checks are performed during semantic analysis including

optional steps, which may be skipped.

Chapter 2 The Query Optimizer

31

We also understand this component performs entitlement checking to ensure only

accessible objects are referenced and applies both row access policies and data masking

policies. There may be additional functionality performed, but this list provides a flavor

of known (or expected) capabilities delivered by this component.

�Referential Integrity
An original design decision made by Snowflake was to allow referential integrity to

be declared but not enforced. The only constraint enforced is NOT NULL. You can find

further information at https://docs.snowflake.com/en/sql-reference/constraints-

overview.

However, the forthcoming Unistore and hybrid tables change the Snowflake

approach, at least for hybrid tables. It is not clear whether constraints previously not

enforced will become optionally enforceable in the future for standard Snowflake

tables. You can find further details on Unistore at https://www.snowflake.com/blog/

introducing-unistore/ and https://www.snowflake.com/en/data-cloud/workloads/

unistore/.

Regardless of the future state of constraints, I strongly recommend declaring

constraints even if they are not enforced as their presence greatly assists data discovery

via self-service tools, aids cataloging tooling, and is generally accepted as good

practice. Some third-party tooling relies upon the presence of constraints to eliminate

nonrequired tables prior to submitting queries to Snowflake.

Where possible, declaring constraints is good practice.

I also believe the presence of unenforced constraints informs query optimizer

processing, but it is certain their presence is essential for hybrid tables, so you should

adopt best practice wherever possible. You can find further information at https://

docs.snowflake.com/en/sql-reference/constraints.

�Logical Rewriter
After semantic analysis, the QBIR is passed to the Logical Rewriter where rules and

algorithms are applied to restate the QBIR into an optimal internal representation. It is

reasonable to assume the optimizer statistics (as listed in Chapter 1) inform the rules

Chapter 2 The Query Optimizer

https://docs.snowflake.com/en/sql-reference/constraints-overview
https://docs.snowflake.com/en/sql-reference/constraints-overview
https://www.snowflake.com/blog/introducing-unistore/
https://www.snowflake.com/blog/introducing-unistore/
https://www.snowflake.com/en/data-cloud/workloads/unistore/
https://www.snowflake.com/en/data-cloud/workloads/unistore/
https://docs.snowflake.com/en/sql-reference/constraints
https://docs.snowflake.com/en/sql-reference/constraints
https://doi.org/10.1007/979-8-8688-0379-6_1

32

and algorithms. Furthermore, you can assume this step is a multipass process where

many different QBIR representations are generated and compared to derive the optimal

internal representation.

�Micro-Partition Pruner
The optimal QBIR is received by the micro-partition pruner, which acts as the name

suggests by invoking the pruner to exclude micro-partitions from consideration in

resolving the eventual query result set. You can assume the optimizer statistics (as listed

in Chapter 1) inform the micro-partition pruning strategy.

Micro-partition pruning occurs during several stages of the query plan generation

and is implemented via the pruner, as explained in Chapter 3. For now, it is sufficient to

understand micro-partition pruning conceptually within this overview.

�Initial Plan Generation
After first-pass pruning has occurred, an initial execution plan is generated called the

query plan (QP) internal representation, which is then passed to the plan rewriter.

We anticipate additional checks are performed during initial plan generation,

including optional steps that may be skipped.

�Plan Rewriter
Within the plan rewriter, a suite of rules applied to the QP causes rewrites, which may

result in further micro-partition pruning implemented via the pruner shown separately.

You can assume additional checks are performed during plan rewrite including

optional steps that may be skipped.

�Cost-Based Join Ordering
Cost-based join ordering implies a rules-based approach to finalizing the QP. In truth,

not much is known about this step; perhaps the clue is in the name, and the step simply

orders the data access paths.

You can assume additional checks are performed during cost-based join ordering

including optional steps that may be skipped.

Chapter 2 The Query Optimizer

https://doi.org/10.1007/979-8-8688-0379-6_1
https://doi.org/10.1007/979-8-8688-0379-6_3

33

�Physical Query Plan
Finally, the physical query plan is delivered for execution. This is the optimal or “best”

plan developed through application of all the prior steps.

The physical query plan is a directed acyclic graph (DAG) for which further

information can be found here: https://en.wikipedia.org/wiki/Directed_

acyclic_graph.

A DAG may be thought of as a flowchart with unidirectional links to branching logic

where a determination is made to proceed or finish. There are no cycles or loops within

the DAG, and it is not possible to follow a series of directed edges and return to the

same node.

DAGs provide a useful way to represent dependencies, workflows, and hierarchical

relationships between different elements in a system or problem.

Within the Snowflake physical query plan, the branching logic is one of the

following:

•	 Operators that either process data or implement a feature such as

aggregation, filtering, or summary.

•	 Links that are pipelines connecting operators or implementing

parallelization features.

You can help the query optimizer by delivering the minimally simplest code.

As it happens, the simplest code is most often the easiest to read and best laid out.

Remember: smallest table first.

�Query Execution
Data stored in a hybrid, columnar, compressed format lends itself to parallel processing.

Snowflake processes queries using massively parallel processing (MPP) compute

clusters where each node in the cluster stores a portion of the entire data set locally in

columnar format.

In other words, if you can “chunk” data into discrete groups, each “chunk” can be

processed independently by a separate processing unit.

Storing data in an organized manner improves clustering too; I will discuss this

further in Chapter 4.

Chapter 2 The Query Optimizer

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://doi.org/10.1007/979-8-8688-0379-6_4

34

�Warehouses
Each Snowflake node is a warehouse, and I discuss warehouses and their use later within

this book. To not get bogged down in too much detail, for now just remember an extra

small (XSmall) warehouse has eight CPUs and an associated cache, about 16 to 24 GB

RAM, local SSD storage, and remote attached storage. For every T-shirt size we increase

our warehouse to use, the number of CPUs doubles and memory increases too. These

values will become very important as we progress through this book.

I use the term execution unit to respect the multithreaded/multicore/multimode
operation of the underlying hardware; I don’t always know the CSP hardware
capabilities.

In the old world of on-prem databases, we had an appreciation of the physical

hardware, including the number of available processing units, minus one for the

operating system. Memory constraints also applied, and these limitations were

judiciously managed by others. In the new world of cloud computing, we are abstracted

away from the physical hardware and largely free to allocate resources on demand.

Without wanting to sound flippant, don’t get absorbed in the details. Instead, you

should accept there are some limitations to warehouses, but the elastic nature allows us

to reconsider our approach by allocating resources on demand.

�Single Instruction, Multiple Data (SIMD)
Snowflake query execution implements SIMD instructions, a technique optimized for

data-level parallelism where each processing unit performs identical instructions on

different data.

In Figure 2-3 we assume four processing units all performing the same “times two”

operation against different data for two execution cycles.

Chapter 2 The Query Optimizer

35

2

3

5

8

0 1 2

4

6

10

16

8

12

20

32

Execu�on Cycle

CPUs

Figure 2-3.  SIMD example

�Compression
Snowflake query execution also makes use of compression; however, again available

details are sparse. Compression may refer to in-memory compressed data, which is

decompressed “on the fly” or to data stored in CPU caches, local SSD, and remote

storage.

I know Snowflake applies a combination of compression methods including some

tailored to the specific data type used. You can also be confident Snowflake provides the

best compression available as part of their service and continually strives to improve

their service.

�Vectorization
The query execution engine is also vectorized, handling batches of a few thousand rows

at a time. The actual batch size is unspecified, but given the propensity for programmers

to prefer factors of 2, and speculation on my part, it may be in the range of 2,048 to 8,192

rows, and these rows will be in columnar format.

Query execution may also spill result sets to both local storage (SSD) and remote

storage where result sets exceed CPU cache and allocated memory.

Chapter 2 The Query Optimizer

36

�Flow Control
Two types of flow control model exist.

•	 Pull-based: The consumer continually polls for messages at the

publisher.

•	 Push-based: The publisher pushes messages to the consumer as

they become available.

The Snowflake query execution engine implements push-based flow control. As

soon as results are available, they are pushed to consumers and further processed in a

pipelined manner.

Note that after statement execution, summary information for it is available in

snowflake.account_usage.query_history with a maximum latency of 45 minutes and

visible for a year.

The performance profile provides more informative details and is retained for only

two weeks, so analysis of long-running statements should be completed within this

time to focus on optimization efforts, which assist with quicker execution and reduce

Snowflake billing.

�Summary
Snowflake implements a cost-based approach to delivering their query optimizer,

which has many steps in common with other RDBMS vendors. Every RDBMS vendor

implements bespoke optimizations, and Snowflake is no exception where these

optimizations focus on satisfying edge cases and analytic specific features.

With a tight focus on delivering a robust optimizer that delivers stable execution

plans, Snowflake deliberately removes levers and switches to influence system behavior

and instead relies upon the built-in core query optimizer capability to handle as much as

possible.

In this chapter I explained at a summary level the steps taken, from submitting a

query through getting the corresponding result set. You then looked into the processing

steps required to plan and optimize your query before execution.

Chapter 2 The Query Optimizer

37

You then looked at how a query is executed and began to see just how complex

the query optimizer is. I also exposed some scenarios such as spills and parallelization

where tuning will help.

Having established baseline information in preparation for looking deeper into

performance tuning, I will cover query profiles in the next chapter.

Chapter 2 The Query Optimizer

39
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_3

CHAPTER 3

The Query Profiler
In Chapter 2, I showed how the query optimizer processes a SQL statement to produce a

physical query plan. You will investigate how the query profiler operates by executing a

query plan and generating execution statistics that expose various metrics.

This chapter initially focuses on the visual aspects of query profiling and later
focuses on remediating issues.

The hands-on examples utilize TPC-H data supplied by Snowflake; you can find

additional information about this data set at https://docs.snowflake.com/en/user-

guide/sample-data-tpch. I assume you have access to a Snowflake account, but if not,

a trial account is available at www.snowflake.com. Click the Start For Free button, and

enter a few details to start your 30-day free trial.

Throughout this chapter, I will reference use cases to illustrate the query profiler

behavior and later in this book will reference the same queries to demonstrate how you

can identify and remediate performance issues.

Please note that some of the “bad” queries will consume all your credits; therefore,

please read through this chapter carefully as I explain “why” and offer mitigating actions

to prevent excessive credit consumption.

You may prefer to set statement_timeout_in_seconds in the current session to

avoid overspend. In this example, you can set the timeout to 600 seconds (10 minutes).

ALTER SESSION SET statement_timeout_in_seconds = 600;

You can find further details at https://docs.snowflake.com/en/sql-reference/

parameters#statement-timeout-in-seconds. You can find supplemental information

at https://community.snowflake.com/s/article/Parameter-STATEMENT-TIMEOUT-IN-

SECONDS-covers-the-overall-time-of-query-execution.

https://doi.org/10.1007/979-8-8688-0379-6_3#DOI
https://doi.org/10.1007/979-8-8688-0379-6_2
https://docs.snowflake.com/en/user-guide/sample-data-tpch
https://docs.snowflake.com/en/user-guide/sample-data-tpch
http://www.snowflake.com
https://docs.snowflake.com/en/sql-reference/parameters#statement-timeout-in-seconds
https://docs.snowflake.com/en/sql-reference/parameters#statement-timeout-in-seconds
https://community.snowflake.com/s/article/Parameter-STATEMENT-TIMEOUT-IN-SECONDS-covers-the-overall-time-of-query-execution
https://community.snowflake.com/s/article/Parameter-STATEMENT-TIMEOUT-IN-SECONDS-covers-the-overall-time-of-query-execution

40

�Query Profile Overview
In this section, you will learn how to utilize SnowSight to access the query profiler. I am

assuming your Snowflake account is available and ready for use.

In this section, you will use the imported share SNOWFLAKE_SAMPLE_DATA database,

which is provisioned on account creation.

First, within your new worksheet, change the role to ACCOUNTADMIN:

USE ROLE accountadmin;

Your database tab should refresh to display the database SNOWFLAKE_SAMPLE_DATA.

Figure 3-1 shows the database SNOWFLAKE_SAMPLE_DATA within the database browser.

Hover the mouse over the three dots […] outlined in red in the figure; you’ll see the pop-

up window showing details of the database SNOWFLAKE_SAMPLE_DATA. You can see the

imported database is a share.

Figure 3-1.  SNOWFLAKE_SAMPLE_DATA database

Many Snowflake accounts drop the imported SNOWFLAKE_SAMPLE_DATA database. If

your account does not show SNOWFLAKE_SAMPLE_DATA within the database browser while

using the role ACCOUNTADMIN, you may want to either create a new trial account or follow

the instructions at https://docs.snowflake.com/en/user-guide/sample-data-using

to reimport the dropped share.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/user-guide/sample-data-using

41

�Approach
You could simply run queries against SNOWFLAKE_SAMPLE_DATA using the ACCOUNTADMIN

role. There are no special tuning optimizations for using the ACCOUNTADMIN role, but

I prefer to develop my code as if it were to be deployed into production regardless of

whether I throw the code away or retain it for later use.

I strongly encourage new developers to treat all code as if it were going to be

reviewed and tested for production, and part of my approach is to insist on properly

formatted and commented code. I prefer keywords to shout at me and for all other

words to be in lowercase. Some people agree, others disagree, and everyone is entitled to

their view.

Regardless, you will reuse some code as you progress through this book, so let’s

assume you are aiming for a production release. More will be revealed later as you

progress through the chapters.

�Setup
Using the new worksheet, let’s create an environment in which to develop the code

and build components for later reuse. You will start with creating a database, several

warehouses, and a role, and then you will enable access to the Account Usage Store.

You will reuse the environment you are about to create throughout this book.

Snowflake makes reference to the Account Usage Store, which is the imported share

visible within the database share referred to as SNOWFLAKE. Figure 3-1 shows this

imported database above SNOWFLAKE_SAMPLE_DATA.

As SNOWFLAKE_SAMPLE_DATA is an imported share, you cannot modify the

contents. To investigate the query profiler, let’s create an environment for which you also

supply an accompanying script.

You will first declare identifiers to be used throughout this chapter. Note that you

may need to rerun these declarations when you open the browser session again.

SET tpc_owner_role = 'tpc_owner_role';

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

SET tpc_warehouse_S = 'tpc_wh_small';

Chapter 3 The Query Profiler

42

SET tpc_warehouse_M = 'tpc_wh_medium';

SET tpc_warehouse_L = 'tpc_wh_large';

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

SET tpc_database = 'tpc';

SET tpc_owner_schema = 'tpc.tpc_owner';

You can use the sysadmin role to create first-order database objects such as

databases, schemas, warehouses, and shares.

Create a database called TPC and a schema within TPC called tpc_owner.

USE ROLE sysadmin;

CREATE OR REPLACE DATABASE IDENTIFIER ($tpc_database) DATA_RETENTION_

TIME_IN_DAYS = 90;

CREATE OR REPLACE SCHEMA IDENTIFIER ($tpc_owner_schema);

Now create five warehouses of increasing size up to XL. You could add larger

warehouses from 2XL up to 6XL, but these five declared warehouses are sufficient for our

purposes right now.

Remember, unless explicitly declared with "INITIALLY_SUSPENDED" = TRUE,

warehouses run when they are declared and run when invoked to process a query.

For the warehouse declarations, set the default clustering to 1. I will explain

warehouse clustering later as the subject is worthy of its own chapter.

CREATE OR REPLACE WAREHOUSE IDENTIFIER ($tpc_warehouse_XS) WITH

WAREHOUSE_SIZE = 'X-SMALL'

AUTO_SUSPEND = 60

AUTO_RESUME = TRUE

MIN_CLUSTER_COUNT = 1

MAX_CLUSTER_COUNT = 1

SCALING_POLICY = 'STANDARD'

INITIALLY_SUSPENDED = TRUE;

CREATE OR REPLACE WAREHOUSE IDENTIFIER ($tpc_warehouse_S) WITH

WAREHOUSE_SIZE = 'SMALL'

AUTO_SUSPEND = 60

AUTO_RESUME = TRUE

MIN_CLUSTER_COUNT = 1

Chapter 3 The Query Profiler

43

MAX_CLUSTER_COUNT = 1

SCALING_POLICY = 'STANDARD'

INITIALLY_SUSPENDED = TRUE;

CREATE OR REPLACE WAREHOUSE IDENTIFIER ($tpc_warehouse_M) WITH

WAREHOUSE_SIZE = 'MEDIUM'

AUTO_SUSPEND = 60

AUTO_RESUME = TRUE

MIN_CLUSTER_COUNT = 1

MAX_CLUSTER_COUNT = 1

SCALING_POLICY = 'STANDARD'

INITIALLY_SUSPENDED = TRUE;

CREATE OR REPLACE WAREHOUSE IDENTIFIER ($tpc_warehouse_L) WITH

WAREHOUSE_SIZE = 'LARGE'

AUTO_SUSPEND = 60

AUTO_RESUME = TRUE

MIN_CLUSTER_COUNT = 1

MAX_CLUSTER_COUNT = 1

SCALING_POLICY = 'STANDARD'

INITIALLY_SUSPENDED = TRUE;

CREATE OR REPLACE WAREHOUSE IDENTIFIER ($tpc_warehouse_XL) WITH

WAREHOUSE_SIZE = 'X-LARGE'

AUTO_SUSPEND = 60

AUTO_RESUME = TRUE

MIN_CLUSTER_COUNT = 1

MAX_CLUSTER_COUNT = 1

SCALING_POLICY = 'STANDARD'

INITIALLY_SUSPENDED = TRUE;

You can use the securityadmin role to create roles and add object entitlements to

roles. You can first create a new role called tpc_owner_role.

USE ROLE securityadmin;

CREATE OR REPLACE ROLE IDENTIFIER ($tpc_owner_role);

Chapter 3 The Query Profiler

44

You may prefer to vary the entitlements granted to roles; this is a simple template
for you to later expand.

Then grant entitlements to the role called tpc_owner_role starting with database

entitlements.

GRANT IMPORTED PRIVILEGES ON DATABASE snowflake TO ROLE IDENTIFIER

($tpc_owner_role);

GRANT USAGE ON DATABASE IDENTIFIER ($tpc_database) TO ROLE

IDENTIFIER ($tpc_owner_role);

Add warehouse entitlements.

GRANT USAGE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_XS) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT OPERATE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_XS) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT USAGE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_S) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT OPERATE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_S) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT USAGE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_M) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT OPERATE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_M) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT USAGE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_L) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT OPERATE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_L) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT USAGE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_XL) TO ROLE

IDENTIFIER ($tpc_owner_role);

GRANT OPERATE ON WAREHOUSE IDENTIFIER ($tpc_warehouse_XL) TO ROLE

IDENTIFIER ($tpc_owner_role);

Chapter 3 The Query Profiler

45

Add schema entitlements.

GRANT USAGE ON SCHEMA IDENTIFIER ($tpc_owner_schema) TO ROLE

IDENTIFIER ($tpc_owner_role);

Add object entitlements, and note the inclusion of dynamic tables, which are

currently in public preview.

GRANT USAGE ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT MONITOR ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT MODIFY ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE TABLE ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE DYNAMIC TABLE ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE VIEW ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE SEQUENCE ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE FUNCTION ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE PROCEDURE ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE STREAM ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE MATERIALIZED VIEW ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

GRANT CREATE FILE FORMAT ON SCHEMA IDENTIFIER ($tpc_owner_

schema) TO ROLE IDENTIFIER ($tpc_owner_role);

Before you can use the new tpc_owner_role, you must grant the role to yourself.

GRANT ROLE IDENTIFIER ($tpc_owner_role) TO USER <Your Name Here>;

Chapter 3 The Query Profiler

46

�TPC Data Model
Figure 3-2 represents the TPC data model taken from the Snowflake sample TPCH data

found at https://docs.snowflake.com/en/user-guide/sample-data-tpch.

Figure 3-2.  TPC-H entity relationship diagram

You will next copy tables after which you will begin your investigation of query

profile behavior.

�Initial Population
Within this section you will copy over SNOWFLAKE_SAMPLE_DATA from the TPCH_

SF1000 schema, which contains the largest sample datasets.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/user-guide/sample-data-tpch

47

Before you do anything, you must change to tpc_owner_role.

USE ROLE IDENTIFIER ($tpc_owner_role);

USE DATABASE IDENTIFIER ($tpc_database);

USE SCHEMA IDENTIFIER ($tpc_owner_schema);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

I (almost) always explicitly set my execution context by setting the database, schema,

warehouse, and role. I strongly recommend this approach as a best practice. I have lost

count of the number of times I ended up using the wrong role, wasting time and effort, so

I make a practice of explicitly setting up each environment at the outset.

When asked to investigate queries, I insist upon having the context along with
the query.

The current execution context can be derived by this query:

SELECT current_role(),

 current_warehouse(),

 current_database(),

 current_schema();

As you know from Chapter 2, even though constraints are not enforced, the query

optimizer can use declared constraints.

To ensure you have equivalence between your data source and copied data, you

must check whether constraints have been declared on the source tables. You perform

this check by investigating information_schema for declared constraints. In this

example, you are looking for referential integrity constraints declared within any schema

in the SNOWFLAKE_SAMPLE_DATA database:

SELECT DISTINCT unique_constraint_schema

FROM snowflake_sample_data.information_schema.referential_constraints;

You should expect to see a single row TPCDS_SF100TCL indicating the chosen

schema TPCH_SF1000 does not have any constraints declared.

Chapter 3 The Query Profiler

https://doi.org/10.1007/979-8-8688-0379-6_2

48

Having previously set the environment, let’s copy the tables across. Wherever

possible, I use self-generating SQL. Note the addition of the _baseline suffix as you will

be creating more objects later.

SELECT 'CREATE OR REPLACE TABLE '||

 LOWER (table_name)||'_baseline'||

 ' AS SELECT * FROM snowflake_sample_data.tpch_sf1000.'||

 LOWER (table_name)||';'

FROM snowflake_sample_data.information_schema.tables

WHERE table_schema = 'TPCH_SF1000';

Remember that we are using an X-Small warehouse; therefore, runtimes will be

considerable. Cut and paste the generated output back into SnowSight.

Before executing the generated code and because this is a book on performance

tuning, let’s look at runtimes for different size warehouses. To save you the expense

of running incorrectly sized warehouses, I have run Create Table As SELECT (CTAS)

benchmarks using code generated from the previous query. The timings shown in

Table 3-1 are in seconds. Note there may be some small variances in your runtimes

should you choose to repeat the tests.

Table 3-1.  TPC Baseline Table Copy Times and Data Volumes

Table/Warehouse X-Small Small Medium Large X-Large Row Count

customer_baseline 80 44 25 15 11 150000000

lineitem_baseline 2195 1099 561 296 165 5999989709

nation_baseline 1 1 1 1 1 25

partsupp_baseline 291 151 79 44 25 800000000

region_baseline 1 1 1 1 1 5

orders_baseline 543 279 147 80 48 1500000000

part_baseline 81 42 24 16 11 200000000

supplier_baseline 9.1 9 9 4 9 10000000

We recommend using an XL warehouse for high-volume data copies, as indicated by

the timings shown in Table 3-1.

Chapter 3 The Query Profiler

49

The most important lessons from Table 3-1 are to know your data volumes and to
size your warehouse accordingly. I will discuss costs later.

I will return to warehouse tuning later in this book as there is much more to unpack

and the subject deserves a chapter to itself.

You must clear out the cache before rerunning or your performance figures will be

incorrect. To do this, you set your session to ignore cached results causing every SQL

statement to be executed.

ALTER SESSION SET use_cached_result = FALSE;

You can find further information on disabling cached results at https://docs.

snowflake.com/en/sql-reference/parameters#use-cached-result.

You can find supplemental information at https://docs.snowflake.com/en/user-

guide/querying-persisted-results.

Disabling cached results is for performance tuning only.

*** Do not disable cached results in your production code. ***

Then declare your chosen warehouse.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Warehouse declaration does not clear out the warehouse cache, so you must

suspend and restart your warehouse, which also aborts all active SQL statements.

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_xs) SUSPEND;

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_xs) RESUME;

*** Warehouse suspension is for performance tuning only. ***

Now execute your baseline table creation statements and set the warehouse once for

each statement group according to the optimal size shown in Table 3-1.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/parameters#use-cached-result
https://docs.snowflake.com/en/sql-reference/parameters#use-cached-result
https://docs.snowflake.com/en/user-guide/querying-persisted-results
https://docs.snowflake.com/en/user-guide/querying-persisted-results

50

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

CREATE OR REPLACE TABLE customer_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.customer;

CREATE OR REPLACE TABLE lineitem_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.lineitem;

CREATE OR REPLACE TABLE partsupp_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.partsupp;

CREATE OR REPLACE TABLE orders_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.orders;

CREATE OR REPLACE TABLE part_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.part;

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

CREATE OR REPLACE TABLE nation_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.nation;

CREATE OR REPLACE TABLE region_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.region;

CREATE OR REPLACE TABLE supplier_baseline

AS SELECT * FROM snowflake_sample_data.tpch_sf1000.supplier;

Having briefly demonstrated how warehouse sizing affects performance while

creating a test dataset, I will move on to show query profiles.

�Query Profiles
In this section, I discuss how to access query profiles using the options available in

SnowSight. I then show how to develop a simple query using the TPC baseline data to

provide a more detailed explanation of how the query profiler behaves.

I stressed the importance of sizing the warehouse appropriately, but you may find in

practice the declared warehouse is not used. This may happen for several reasons.

•	 The requested results are satisfied from the query cache.

•	 The query may be satisfied from the metadata repository.

You can now begin investigating query profile characteristics.

Chapter 3 The Query Profiler

51

�Accessing Query Profiles
Every query has a profile; you can access query profiles in several ways depending upon

your starting point.

I next explain where and how to access query profile information. Note that I am

introducing the topic to inform you how to access information and not jumping into the

specifics of the subject yet.

�Running the Query

Figure 3-3 shows a partial screenshot for a currently executing query. To see the query

profile discussed next, click the text next to the “ID” label, which opens a new tab in the

browser.

Figure 3-3.  Query profile from running a query

To execute a query, you will see the available information only.

�Completed Query

For a query that has completed execution, you can access the query profile by clicking

the text next to the “Query ID” label, as shown in Figure 3-4, which opens a new tab in

the browser.

Chapter 3 The Query Profiler

52

Figure 3-4.  Query profile from the completed query

�Query History

You can access all complete and currently executing queries by navigating to the

Activity ➤ Query History page where all the queries are displayed ordered by execution

timestamp in descending order, as shown in Figure 3-5.

Figure 3-5.  Accessing the query history

From the query history page, select the desired query, and then select the Query

Profile tab.

Chapter 3 The Query Profiler

53

�Get Query Operator Stats

Snowflake has released a new system function called GET_QUERY_OPERATOR_ STATS()

that is now in Generally Available (GA) status, which I will discuss later. You can find

further information at https://docs.snowflake.com/en/sql-reference/functions/

get_query_operator_stats.

Having identified various access paths to viewing query profiles, let’s create an

example query to work through the query profiler.

�Example Query
Using our newly established baseline data set, let’s create and execute an example

query and then investigate the query profile. From the TPC ERD provided in Figure 3-2

and substituting the baseline tables, you will use the PARTSUPP_BASELINE, PART_

BASELINE, and SUPPLIER_BASELINE tables initially.

As before, you can establish the good practice of clearing the cache before testing.

ALTER SESSION SET use_cached_result = FALSE;

�Expected Result Count

In line with my earlier recommendation, you should know your expected data volumes,

so let’s do this first, and from Table 3-1 you have identified the table row counts.

Therefore, set your warehouse accordingly.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

Now execute your query.

SELECT count(1)

FROM partsupp_baseline ps,

 part_baseline p,

 supplier_baseline s

WHERE ps.ps_partkey = p.p_partkey

AND ps.ps_suppkey = s.s_suppkey;

Your query should return a record count of 800,000,000 in less than six seconds. If

you had used an X-Small warehouse, your query runtime would have been around 43

seconds.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats
https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats

54

Failure to set warehouse size correctly will result in excessive consumption
charges.

Cross-referencing the record count to the query execution times in Table 3-1, you

can see that a reasonable starting point for the warehouse is Large. You can adjust this

up or down according to actual performance, an exercise I will leave for you.

Don’t be frightened of using Large or bigger warehouses, but they can be more
time and cost effective than using a smaller warehouse.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_l);

Suspend and restart your warehouse.

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_l) SUSPEND;

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_l) RESUME;

�Developing an Example Query

Having set your warehouse and assuming your context (database, schema, and role) has

not changed, let’s define an imaginary scenario using the TPC data to base your example

query on.

You might imagine yourself working within the IT department of a machine parts

supplier. You hold stock purchased over time; therefore, you will have multiple records

for a single named part. Because of currency fluctuations, the purchase price has varied.

Your objective is to identify the costliest stock and sell this first for accounting reasons.

Let’s first create a view called v_supplier_part to both denormalize the data model

and simplify your data access path. You can remove extraneous attributes to keep the

query small.

Chapter 3 The Query Profiler

55

CREATE OR REPLACE VIEW v_supplier_part COPY GRANTS

AS

SELECT p.p_name AS part_name,

 p.p_retailprice AS retail_price,

 ps.ps_supplycost AS supply_cost,

 ps.ps_availqty AS available_quantity,

 ps.ps_supplycost / ps.ps_availqty AS unit_price,

 s.s_acctbal AS supplier_account_balance,

 s.s_name AS supplier_name

FROM partsupp_baseline ps,

 part_baseline p,

 supplier_baseline s

WHERE ps.ps_partkey = p.p_partkey

AND ps.ps_suppkey = s.s_suppkey;

Then run a simple query to access v_supplier_part to produce a query profile.

SELECT part_name,

 available_quantity AS avail_qty,

 unit_price,

 supplier_account_balance AS acct_bal,

 supplier_name

FROM v_supplier_part

ORDER BY part_name ASC,

 unit_price DESC

LIMIT 10;

Let’s examine the query profile; I showed you how to access the query profile earlier,

but as a quick reminder, Figure 3-6 shows the query and result set in context along with

highlighting the query ID, which should be clicked.

Chapter 3 The Query Profiler

56

Figure 3-6.  Sample query results

You should also note that the query duration is 10 seconds.

�Profiling Your Example Query

After clicking the query ID, a new tab will open in your browser where for the first time

you will see the query profile, as shown in Figure 3-7. Note that the color coding (for the

PDF version) is mine.

Chapter 3 The Query Profiler

57

Figure 3-7.  Sample query profile

The first point to note is that view expansion has occurred. The example query

references the view v_supplier_part, which the query optimizer has expanded into its

constituent tables and join criteria.

As you can see in Figure 3-7, there is a lot happening. Let’s break the profile down

into its constituent parts. Here’s an explanation of each step:

	 1.	 The warehouse used to execute the sample query is displayed. I

prefer to put the warehouse size into my naming convention to

provide context, but as I will discuss later, there is no guarantee

the name correlates to the actual warehouse size.

Chapter 3 The Query Profiler

58

	 2.	 The leaf nodes of the tree are the physical objects, in this example,

tables, which are expensive to access (see step 6).

	 3.	 Joins and join filters resolve both the total volume of data selected

and the attributes returned. In this example, there are no filters

to subset the results. The example query joined two source tables

(part_baseline and supplier_baseline) with an intersection

table (partsupp_baseline).

	 4.	 The ORDER BY and LIMIT clauses are evaluated last and shown as

SortWithLimit. ORDER BY always results in a Sort operation.

	 5.	 The result set limited to 10 records is returned to SnowSight; note

this is a parallel operation.

	 6.	 Here you can see the ordered list of operations from the most

expensive to the least expensive with table access and joins being

the most expensive.

	 7.	 The profile overview shows where the most effort is expended

when executing the query. You should pay particular attention to

local disk I/O and remote disk I/O when performance tuning.

	 8.	 Where “Partitions scanned” is less than “Partitions total,” you

know partition pruning has occurred. In the example query

without filters, you should not be surprised to see these values are

identical.

One further point to note: If you look carefully at the query profile, between the

nodes you will see the number of rows input to each parent node, with proportionally

thicker lines indicating record volume.

Overlaying the query parsing order from Chapter 1 allows you to visualize the query

profile in context. Figure 3-8 overlays the query parsing order onto the query profile.

Chapter 3 The Query Profiler

https://doi.org/10.1007/979-8-8688-0379-6_1

59

Figure 3-8.  Sample query with parsing order

You will now briefly investigate the creation and use of a dynamic table (previously

called materialized table), a new feature currently in public preview.

�Materializing Your Example Query

You can replace the earlier example query with a dynamic table. The purpose of this

section is to offer an alternative performance tuning approach.

Chapter 3 The Query Profiler

60

Within Snowflake, a materialized view can be declared only on a single table and is

essentially a way to declare alternative cluster keys on a base table. Using materialized

views facilitates micro-partition pruning via aggregation, a topic I will discuss in

Chapter 4.

In Snowflake, materialized views differ significantly from legacy RDBMS equivalent

implementations. Be prepared to set aside any assumptions on materialized

view implementation and capability. Within Snowflake, materialized views incur

maintenance, runtime, and storage costs. Before implementing and using materialized

views, you must strike a balance to ensure optimally cost-effective solutions are

developed and delivered. Similar considerations apply to the use of dynamic tables,

discussed next.

You can find further information on materialized views at https://docs.snowflake.

com/en/user-guide/views-materialized.

For those familiar with legacy RDBMSs, comparable functionality to that provided by

dynamic tables has been around for a long time, where the ability to join multiple tables

and create a table-like object offers significant performance improvements. A dynamic

table maintains the result set from a query on a scheduled timer. Think of a dynamic

table as the conflation of a stream, a task, and, in this example, a multitable-based view.

There is a trade-off: you will incur additional storage costs along with serverless
compute costs for provisioning dynamic tables.

In this example, you will use an X-Small warehouse for the periodic refreshes. This

was chosen as a reasonable compromise because you will consume one credit every

time your X-Small warehouse runs for an hour. You may want to investigate using a

different size warehouse.

CREATE OR REPLACE DYNAMIC TABLE dt_supplier_part COPY GRANTS

TARGET_LAG = '30 MINUTES'

WAREHOUSE = tpc_wh_xsmall

AS

SELECT p.p_name AS part_name,

 p.p_retailprice AS retail_price,

 ps.ps_supplycost AS supply_cost,

 ps.ps_availqty AS available_quantity,

Chapter 3 The Query Profiler

https://doi.org/10.1007/979-8-8688-0379-6_4
https://docs.snowflake.com/en/user-guide/views-materialized
https://docs.snowflake.com/en/user-guide/views-materialized

61

 ps.ps_supplycost / ps.ps_availqty AS unit_price,

 s.s_acctbal AS supplier_account_balance,

 s.s_name AS supplier_name

FROM partsupp_baseline ps,

 part_baseline p,

 supplier_baseline s

WHERE ps.ps_partkey = p.p_partkey

AND ps.ps_suppkey = s.s_suppkey;

When the dynamic table is declared, the TARGET_LAG value dictates the first

runtime; in this example, 30 minutes will elapse before the first refresh.

You must now resume the dynamic table.

ALTER DYNAMIC TABLE dt_supplier_part RESUME;

If you see the error message “Dynamic Table 'TPC.TPC_OWNER.DT_SUPPLIER_

PART' is not initialized. Please run a manual refresh or wait for a scheduled refresh

before querying.” then you must refresh the dynamic table to force a refresh.

ALTER DYNAMIC TABLE dt_supplier_part REFRESH;

On completion you should see status information similar to that shown in Figure 3-9.

Figure 3-9.  Dynamic table refresh output

After refreshing the dynamic table, you can clear the cache.

ALTER SESSION SET use_cached_result = FALSE;

Then ensure you are using a Large warehouse to guarantee comparable execution

context as before.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_l);

Suspend and restart the warehouse.

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_l) SUSPEND;

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_l) RESUME;

Chapter 3 The Query Profiler

62

Then run the same simple query accessing dt_supplier_part as shown earlier to

generate a query profile.

SELECT part_name,

 available_quantity AS avail_qty,

 unit_price,

 supplier_account_balance AS acct_bal,

 supplier_name

FROM dt_supplier_part

ORDER BY part_name ASC,

 unit_price DESC

LIMIT 10;

Figure 3-10 shows the reduction in query duration from 10 seconds down to 4

seconds.

Figure 3-10.  Sample query refactored for dynamic table

As you should expect, the query profile now references a single object, the new

dynamic table dt_supplier_part, as shown in Figure 3-11.

Chapter 3 The Query Profiler

63

Figure 3-11.  Sample query profile for dynamic table

Now that you have an understanding of what a query profile looks like and the

relationship to how the query is parsed, let’s investigate how to optimize the query

profiles.

�A Good Query Profile
In this section, you must first understand what a “good” query profile looks like and

explain why a query profile is considered “good.” You then demonstrate what a “bad”

query profile looks like and demonstrate how to identify what constitutes “bad.”

Snowflake optimizer join order heuristics are optimized for star schemas.

You begin by referencing the now familiar first query profile as this is a “good”

example.

Chapter 3 The Query Profiler

64

Knowing the Snowflake optimizer join order heuristics are optimized for star

schemas allows you to differentiate “good” from “bad” query profiles. Using the

familiar query profile, overlaid with new terminology “Build” and “Probe,” as shown in

Figure 3-12, is further explained next.

Figure 3-12.  Build, probe, and right deep tree

Chapter 3 The Query Profiler

65

�Build Side
Build-side operations complete first, where small tables or dimensions are preferred.

Snowflake creates hash tables on the probe side in preparation for joining data

sets. As illustrated in Figure 3-12, the order in which you join tables has significance.

The optimizer prefers the table returning the largest data set (partsupp_baseline 800M

records) at the bottom right and the table returning the smallest data set at the top

left (supplier_baseline 10M records). I will further discuss join ordering later when

considering performance tuning.

When the build side is larger than the probe side, performance is usually slower.

�Probe Side
Probe-side operations are where large tables, result sets, or facts are preferred. Using

small build-side data sets facilitates parallelization and optimal use of cluster memory

where our hybrid columnar compressed data is held. As you can see in Figure 3-12, all

build and probe operations are optimally positioned within the query profile.

�Right Deep Join Tree
Seventy percent of people prefer visual representations, whereas 30 percent prefer

textual representations of information. As advertising executive Frederick R. Barnard

stated, “One picture is worth a thousand words.” I agree and further propose the visual

representation of a query profile readily allows the viewer to determine patterns that

indicate “good” or “bad.”

Figure 3-12 shows a right deep join tree, which consumes less warehouse memory

and increases parallel processing options.

In my estimation, I consider the query profile tree and profile overview provide

invaluable tools for performance tuning queries and strongly recommend a firm grasp of

these fundamentals will serve you well.

Chapter 3 The Query Profiler

66

�Bloom Filter
Snowflake implements Bloom filters for probabilistic (not deterministic) testing of

whether an element exists within a set of data and may return one of two outcomes.

•	 The element is possibly in the set of data and may contain false-

positives.

•	 The element is definitely not in the set of data and enables pruning,

leading to improved query performance.

A full explanation of Bloom filters is beyond the scope of this book; you can find

more information at https://en.wikipedia.org/wiki/Bloom_filter.

�Explain Plan
Before you learn about “bad” query profiles, you will investigate tooling provided

to return—but not invoke—the execution plan for the current statement. To do this,

Snowflake provides the EXPLAIN keyword, which may be prefixed to any SELECT

statement, and by so doing, the query is only evaluated. With the query plan available,

you can examine the quality of the execution plan.

It is important to note EXPLAIN is a metadata operation and therefore does not

require a warehouse. However, like all other metadata operations, cloud service credits

are consumed.

You will use EXPLAIN as you progress through the remainder of this chapter to

investigate and identify both poorly constructed and badly executing queries.

To illustrate how EXPLAIN works, let’s reuse the earlier known-good example query

referencing v_supplier_part. In this example, you will request the TABULAR output but

might instead prefer JSON output.

EXPLAIN USING TABULAR

SELECT part_name,

 available_quantity AS avail_qty,

 unit_price,

 supplier_account_balance AS acct_bal,

 supplier_name

Chapter 3 The Query Profiler

https://en.wikipedia.org/wiki/Bloom_filter

67

FROM v_supplier_part

ORDER BY part_name ASC,

 unit_price DESC

LIMIT 10;

Figure 3-13 shows sample explain plan output noting further information is available

scrolling off the right of the screen (not shown).

Figure 3-13.  Explain plan output

Interestingly, Snowflake also provides a query ID and link next to the explain plan

output; however, no query profile is available. The absence of a query profile is due to

the query not having been executed.

Snowflake also provides functions to convert EXPLAIN JSON to text. You can find

further details at https://docs.snowflake.com/en/sql-reference/functions/

system_explain_plan_json.

EXPLAIN is very useful when developing new queries. Having the capability for

Snowflake to generate a query profile before execution can save time and prevent

expensive mistakes. I suggest all unit tests include EXPLAIN output, and you could go

further by profiling every SQL statement as part of the continuous integration testing and

scan the output for keywords.

You can find further details for EXPLAIN at https://docs.snowflake.com/en/sql-

reference/sql/explain.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/functions/system_explain_plan_json
https://docs.snowflake.com/en/sql-reference/functions/system_explain_plan_json
https://docs.snowflake.com/en/sql-reference/sql/explain
https://docs.snowflake.com/en/sql-reference/sql/explain

68

�GET_QUERY_OPERATOR_STATS
GET_QUERY_OPERATOR_STATS returns query operator information for completed queries.

You will use this new table function to later programmatically identify rogue queries.

GET_QUERY_OPERATOR_STATS is limited to queries executed in the past 14 days.

For immediate results, you might prefer to use last_query_id() to identify

information from the most recently run SQL statement. Note that GET_QUERY_OPERATOR_

STATS may return OPERATOR_TYPE of QUERY RESULT REUSE, which indicates the source

query profile is inaccessible. In this example the query optimizer determined to use the

result cache.

The following is the general form of this query:

SELECT <attributes>

FROM TABLE (get_query_operator_stats(<your value here>))

WHERE <predicates>

ORDER BY <ordering>;

GET_QUERY_OPERATOR_STATS accepts a single value, which must be one of the

following:

•	 The value returned by last_query_id()

•	 A session variable containing a valid query_id

•	 A string literal set to valid query_id

•	 The query_id values used throughout this book will vary when

executed against your Snowflake account.

You will return to GET_QUERY_OPERATOR_STATS throughout the rest of this book. You

can find further information at https://docs.snowflake.com/en/sql-reference/

functions/get_query_operator_stats.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats
https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats

69

�Bad Query Profiles
Unfortunately, I see far more “bad” query profiles than “good” query profiles. One good

reason for writing this book is to impart sufficient information to developers to enable

them to identify “bad” query profiles. The very best developers check each query profile

for optimal behavior and performance by both unit testing and checking query profiles

before submitting their code for promotion into production systems.

However, performance tuning is often an after-thought. Our hope is the information

found within this book will greatly assist and reduce the time it takes to identify and

remediate performance issues.

Please do not execute the queries within this section. Most will consume
significant credits along with execution time; they are for illustration purposes only.

Let’s now investigate what “bad” looks like in its many guises. While executing a

query using SnowSight, if you suspect the query has not completed within a reasonable

timeframe, clicking the ID will display the available query profile.

The most important message from this section is to simplify code.

�Notes on Data Capture
In this section, you will create tables and select from the Account Usage Store the query_

history table. You can also create a view to overlay query_history; note that you also

use a seven-day time band.

The choice of tables is deliberate. Your code base is intended to be extensible for

deployment and data capture from a central provisioning team for which my previous

book Maturing the Snowflake Data Cloud provides a detailed hands-on guide.

You can assume performance tuning is not a one-off activity; you should pro-actively

monitor, detect, and continually remediate performance issues. This chapter establishes

a variety of tools and techniques used in support of these activities, and the last chapter

brings everything together. I can’t wait to get there!

Chapter 3 The Query Profiler

70

�Join Explosion
Let’s start with a Cartesian product, which can be considered a “join explosion.” In

this section, I will explain what a Cartesian join is, how to identify one, and finally offer

information on how to remediate Cartesian joins.

�What Is a Cartesian Join?

A Cartesian join, Cartesian product, cross join, or join explosion occurs when a join

condition is missing from query predicates resulting in every combination of rows for the

absent join condition being returned.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Suspend and restart the warehouse.

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_xs) SUSPEND;

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_xs) RESUME;

You can use the TPC baseline data set to illustrate a Cartesian join output. In the

following example, region_baseline has five rows, and nation_baseline has 25 rows,

with the join key regionkey being omitted. Assuming regionkey is matched in both

tables, you should expect 25 rows. As regionkey is missing, 125 rows are returned.

SELECT r.r_name AS region_name,

 n.n_name AS nation_name

FROM region_baseline r,

 nation_baseline n

ORDER BY n.n_name;

Figure 3-14 shows the corresponding query profile. Note that the CartesianJoin and

row count are highlighted.

Chapter 3 The Query Profiler

71

Figure 3-14.  Cartesian join query profile

A valid, but rare, use case for a Cartesian join is when generating test data—lots of

test data. Selecting from two tables without a join condition results in the number of

rows returned from the first table multiplied by the number of rows in the second table.

To demonstrate a Cartesian product using EXPLAIN, let’s create a suboptimal SQL

statement by excluding one join condition from the previous example query used to

create v_supplier_part.

EXPLAIN USING TABULAR

SELECT p.p_name AS part_name,

 p.p_retailprice AS retail_price,

 ps.ps_supplycost AS supply_cost,

 ps.ps_availqty AS available_quantity,

 ps.ps_supplycost / ps.ps_availqty AS unit_price,

 s.s_acctbal AS supplier_account_balance,

 s.s_name AS supplier_name

Chapter 3 The Query Profiler

72

FROM partsupp_baseline ps,

 part_baseline p,

 supplier_baseline s

WHERE ps.ps_partkey = p.p_partkey;

As every SQL developer will attest, it’s easy to miss a join condition particularly

where composite natural keys are used. A query profile provides the means to spot

these conditions, and Figure 3-15 shows a CartesianJoin clearly indicated for our

example query.

Figure 3-15.  Cartesian join tabular output

As previously stated, profiling every SQL statement as part of our continuous

integration testing and then scanning the output for the CartesianJoin keyword would

capture this particular problem before delivery.

�Identifying Cartesian Joins

In a production system you might not immediately know which query is causing a

Cartesian join, particularly after a new software release where a robust continuous

integration practice has not been implemented. In this scenario, you are looking to

identify rogue queries from all of those queries that have been executed.

Let’s first create a table to hold all candidate query IDs for later investigation. I leave

it to you to add timestamps, etc.

CREATE OR REPLACE TABLE cartesian_join_queries

(

sp_name STRING,

query_id STRING,

Chapter 3 The Query Profiler

73

operator_type STRING,

operator_id NUMBER,

operator_attributes VARIANT,

row_multiple NUMBER

);

To work around the GET_QUERY_OPERATOR_STATS single-input value limitation, you

will create a JavaScript stored procedure called sp_get_cartesian_join_queries.

Snowflake scripting can also be used to deliver equivalent functionality and may

be preferrable; you can find further information at https://docs.snowflake.com/en/

developer-guide/stored-procedure/stored-procedures-snowflake-scripting. I

leave it to you to convert the example code from JavaScript to SQL scripting.

Regardless of implementation approach, you may want to amend the core query

driving predicates.

CREATE OR REPLACE PROCEDURE sp_get_cartesian_join_queries()

RETURNS string

LANGUAGE javascript

EXECUTE AS CALLER

AS

$$

 var sql_stmt = "";

 var err_state = "";

 var recset = "";

 var query_id = "";

 var result = "";

 sql_stmt = "SELECT query_id\n"

 sql_stmt += "FROM snowflake.account_usage.query_history\n"

 �sql_stmt += "WHERE query_type IN ('SELECT', 'CREATE_TABLE_AS_

SELECT')\n"

 �sql_stmt += "AND warehouse_name IS NOT NULL\n"

//Exclude cached results

 �sql_stmt += "AND execution_status = 'SUCCESS'\n"

//Include completed queries

 �sql_stmt += "AND bytes_scanned > 0\n"

//Must have scanned data

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/developer-guide/stored-procedure/stored-procedures-snowflake-scripting
https://docs.snowflake.com/en/developer-guide/stored-procedure/stored-procedures-snowflake-scripting

74

 �sql_stmt += "AND total_elapsed_time > 1000;"

//Execution time must be over 1s, queries which used compute

 stmt = snowflake.createStatement({ sqlText: sql_stmt });

 try

 {

 recset = stmt.execute();

 while(recset.next())

 {

 query_id = recset.getColumnValue(1);

 sql_stmt = "INSERT INTO cartesian_join_queries\n"

 sql_stmt += "SELECT 'sp_get_cartesian_join_queries',\n"

 sql_stmt += " query_id,\n"

 sql_stmt += " operator_type,\n"

 sql_stmt += " operator_id,\n"

 sql_stmt += " operator_attributes,\n"

 sql_stmt += " operator_statistics:output_rows /\n"

 �sql_stmt += " operator_statistics:input_rows AS row_

multiple\n"

 �sql_stmt += "FROM TABLE (get_query_operator_stats('" + query_id

+ "'))\n"

 sql_stmt += "WHERE operator_type = 'CartesianJoin';"

 stmt = snowflake.createStatement ({ sqlText:sql_stmt });

 try

 {

 stmt.execute();

 result = "Success";

 }

 catch { result = sql_stmt; }

 }

 result = "Success";

 }

 catch(err)

 {

 err_state += "\nFail Code: " + err.code;

 err_state += "\nState: " + err.state;

Chapter 3 The Query Profiler

75

 err_state += "\nMessage : " + err.message;

 err_state += "\nStack Trace:\n" + err.StackTraceTxt;

 result = err_state;

 }

 return result;

$$;

With the stored procedure created, you now invoke it with the following:

CALL sp_get_cartesian_join_queries();

Finally, examine the result sets but query the cartesian_join_queries table.

SELECT query_id,

 operator_type,

 operator_id,

 operator_attributes,

 row_multiple

FROM cartesian_join_queries;

Your results will vary according to the workload carried out before testing. There is

one additional point to note: the row_multiple value is always one less than the value

expected, because the first value represents the original row, and all other values are

duplicates.

�Cartesian Join and Join Explosion Costs

There are significant impacts from Cartesian joins; we list some of them here:

•	 Significantly larger data sets than might be expected are returned.

•	 The query runtime is excessively long.

•	 They cause spills to disk; I will discuss this later.

•	 They consume expensive warehouse resources.

•	 They cost you money.

Chapter 3 The Query Profiler

76

�Remediating Cartesian Joins and Join Explosions

Now that you understand what a Cartesian join is, how to identify one, and the costs

associated with them, you can turn your attention to remediating identified queries.

The logical answer is to identify missing join criteria as this is the most likely root

cause. Note that missing composite key attributes are far harder to identify than single

attribute primary key/foreign key relationships. A general rule of thumb is that the

number of WHERE/AND join conditions should always equal the number of tables

minus 1. This works for many scenarios.

Nonunique key joins may also produce partial Cartesian joins. To resolve this issue,

deconstruct your query into its constituent parts and check that each part returns the

expected cardinality. Equality joins most often result in faster processing speed than

nonequality joins, which should be avoided.

Numeric data type joins are the fastest of all. I prefer sequence generated surrogate

primary keys over natural or composite keys for all tables along with declared referential

integrity.

The Snowflake optimizer prefers conjunctive (additive) joins. These are predicates

with AND operators; predicates with OR operators are disjunctive (subtractive) joins

that are known to affect performance. Disjunctive joins should be rewritten using

UNION/UNION ALL to improve performance.

The table join order can also be significant. Start with the smallest tables first as

this may eliminate the greatest number of micro-partitions early within the query

optimization stage. Also check that the filter criteria are sufficiently selective to improve

micro-partition pruning.

Ultimately, consider refactoring the query to eliminate bottlenecks, which may

include using temporary tables as intermediary storage for the large result sets.

�Long Compilation Time
Within this section I define long compilation time, provide the means to identify queries

suffering from long compilation time, and then finally offer remediation steps to resolve

this issue.

Chapter 3 The Query Profiler

77

�What Is Long Compilation Time?

Any query can be considered to have a long compilation time where the query

compilation time exceeds the query execution time. In other words, more time is spent

compiling a query than performing real work in executing and delivering the result set.

As you know, compute is expensive. Our objective is to squeeze the maximum

performance from the system. Therefore, understanding the causes of long compilation

time is important, after which you may be able to remediate the root cause.

Sometimes, long compilation time is unavoidable and works as expected.

�Identifying Long Compilation Time

In a production system, you might not immediately identify queries suffering from long

compilation time. You are looking to identify these queries from all of those queries that

have been executed.

Let’s first create a table to hold all candidate query IDs for later investigation. I leave

it to you to add timestamps, etc.

CREATE OR REPLACE TABLE long_compilation_time

(

query_id STRING,

warehouse_name STRING,

warehouse_size STRING,

compilation_time_ms NUMBER,

execution_time_ms NUMBER,

time_multiple NUMBER //Compilation / Execution

);

Latency for QUERY_HISTORY may be up to 45 minutes.

Chapter 3 The Query Profiler

78

You can now insert candidate records from QUERY_HISTORY. Note that you only want

records where the compilation time exceeds the execution time.

INSERT INTO long_compilation_time

SELECT query_id,

 warehouse_name,

 warehouse_size,

 compilation_time,

 CASE execution_time

 WHEN 0 THEN 1

 ELSE execution_time

 END AS execution_time_1,

 compilation_time / execution_time_1

FROM snowflake.account_usage.query_history

WHERE (compilation_time / execution_time_1) > 1;

You can find further information on QUERY_HISTORY at https://docs.snowflake.

com/en/sql-reference/account-usage/query_history.

You can examine summary information for queries where the compilation time

exceeds the execution time.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 compilation_time_ms,

 execution_time_ms,

 time_multiple

FROM long_compilation_time;

From the previous result set, use GET_QUERY_OPERATOR_STATS to examine statistics

for individual operators within a single query.

SELECT *

FROM TABLE (get_query_operator_stats('<your query_id here>'));

I leave it to you to refine the previous queries.

Long compilation time monitoring for trends is worth considering as this metric may

be a leading indicator of future performance issues.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/account-usage/query_history
https://docs.snowflake.com/en/sql-reference/account-usage/query_history

79

�Long Compilation Time Costs

Long compilation times may be caused by many factors; I list some here:

•	 High data volumes in tables

•	 Micro-partition fragmentation due to a high number of low-volume

INSERTs and UPDATEs

•	 Highly denormalized tables with lots of attributes

•	 Multiple levels of nested view decomposition required to

resolve objects

•	 Multiple levels of role hierarchy navigation required to resolve objects

•	 Multiple data masking policies to resolve attribute content

•	 Multiple row-level access policies to resolve entitled data sets

•	 Number of and complexity of expressions applied to attributes

•	 Degree of pruning required to resolve data sets

•	 Lack of bind variable use negating query reuse

�Remediating Long Compilation Time Queries

Now that you understand what a long compilation time is and how to identify one, you

can turn your attention to remediating identified queries.

Snowflake optimally prefers 10 or fewer attributes to be returned in a result set,

avoiding attribute lists of more than 100.

Wherever possible, simplify queries by reducing the number of views navigated.

And for existing tables where the cluster key does not match the query predicates,

consider adding a materialized view. In highly volatile environments with unpredictable

workloads, I will demonstrate how to externally parallelize queries in a later chapter to

reduce runtimes.

Consider using dynamic tables to offload work onto serverless compute. Note that

this feature at the time of writing is in public preview, and the refresh time may be a

factor in your decision-making.

Complex role hierarchies take time to navigate and reduce the number of database

roles required to resolve object dependencies.

Chapter 3 The Query Profiler

80

The importance of bind variables within queries is often overlooked, particularly by

more junior programmers. Bind variables enable query reuse requiring a hard parse only

for the first time they are seen by the query optimizer; all subsequent query submissions

will reuse the original execution plan.

In contrast, while the fabric of a SQL statement may remain static, without using

bind variables, the literals embedded will always force a hard-parse. As subsequent

query submissions are seen as new statements, query reuse cannot occur.

Best practice is to implement bind variables where queries are to be reused. The

small overhead in development cost is always returned several times in lower execution

costs. Furthermore, encapsulation of reusable queries using bind variables within stored

procedures is a must-have to reduce both complexity and development cost.

To illustrate the use of bind variables, you will create a JavaScript stored procedure

called sp_test_bind. Note that SQL scripting can also be used.

Within sp_test_bind, two statements implement bind variables.

The first statement sql_stmt = "SELECT :1" provides a placeholder for the bind

variable :1.

The second statement stmt = snowflake.createStatement({ sqlText: sql_

stmt, binds:[P_NAME] }); declares the bind variable to replace :1 at runtime.

Note in JavaScript the bind variable name must be in UPPERCASE to reference

parameters passed into the stored procedure.

CREATE OR REPLACE PROCEDURE sp_test_bind(P_NAME STRING)

RETURNS string

LANGUAGE javascript

EXECUTE AS CALLER

AS

$$

 var stmt = "";

 var sql_stmt = "";

 var err_state = "";

 var retval = "";

 var result = "";

 sql_stmt = "SELECT :1"

 �stmt = snowflake.createStatement({ sqlText: sql_stmt, binds:[P_

NAME] });

Chapter 3 The Query Profiler

81

 try

 {

 retval = stmt.execute();

 while(retval.next())

 (

 result = retval.getColumnValue(1)

)

 }

 catch(err)

 {

 err_state = sql_stmt;

 err_state += "\nFail Code: " + err.code;

 err_state += "\nState: " + err.state;

 err_state += "\nMessage : " + err.message;

 err_state += "\nStack Trace:\n" + err.StackTraceTxt;

 result = err_state;

 }

 return result;

$$;

To call sp_test_bind, use the following CALL statement:

CALL sp_test_bind('Andrew Carruthers');

Long compilation time monitoring for trends is worth considering as this metric

may be a leading indicator of future performance issues. This metric can provide early

warning of data skewing.

�Long Execution Time
Long execution time is typically a trend-based metric where progressive or sudden

adverse changes in either a single query or several queries may be observed. Monitoring

long execution time may be a leading indicator of future performance issues.

Chapter 3 The Query Profiler

82

�What Is Long Execution Time?

Long execution time occurs after a query has been compiled and relates to the physical

amount of time required to return a result set. You can use the query history total

elapsed time as the sole indicator of query execution time.

�Identifying Long Execution Time

In a production system, you might not immediately identify queries suffering from long

execution time; individual query runtimes may be hidden within complex data pipelines

where multiple SQL statements are executed sequentially. The presenting symptoms

may be hidden within the overall runtime of a process or the backup of files awaiting

processing. Conversely, for queries identified as long running, you need to identify

which data pipeline or process they belong to before remediation can occur.

In this section, you are looking to identify long-running queries from all of the

queries that have been executed.

Let’s first create a table to hold all candidate query IDs for later investigation. I leave

it to you to add timestamps, etc.

CREATE OR REPLACE TABLE long_execution_time

(

query_id STRING,

warehouse_name STRING,

warehouse_size STRING,

query_execution_time_ms NUMBER,

partitions_scanned NUMBER,

partitions_total NUMBER

);

The latency for QUERY_HISTORY may be up to 45 minutes.

You can now insert candidate records from QUERY_HISTORY; in this example you want

records only for the past seven days; you may want to change the predicates to suit your

requirements.

Chapter 3 The Query Profiler

83

INSERT INTO long_execution_time

SELECT query_id,

 warehouse_name,

 warehouse_size,

 total_elapsed_time / 1000 AS query_execution_time_ms,

 partitions_scanned,

 partitions_total

FROM snowflake.account_usage.query_history

WHERE cluster_number IS NOT NULL //Exclude cached results

AND execution_status = 'SUCCESS' //Include completed queries

AND bytes_scanned > 0 //Must have scanned data

AND total_elapsed_time > 1000 //Execution time must be over 1s,

queries which used compute

AND TO_DATE (start_time) > DATEADD (day, -7, TO_DATE (current_

timestamp()));

You can find further information on QUERY_HISTORY at https://docs.snowflake.

com/en/sql-reference/account-usage/query_history.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 query_execution_time_ms,

 partitions_scanned,

 partitions_total

FROM long_execution_time;

From the previous result set, use GET_QUERY_OPERATOR_STATS to examine statistics

for individual operators within a single query.

SELECT *

FROM TABLE (get_query_operator_stats('<your query_id here>'));

I leave it to you to refine the previous queries.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/account-usage/query_history
https://docs.snowflake.com/en/sql-reference/account-usage/query_history

84

�Long Execution Time Costs

Long execution times may be caused by many factors; I list some here:

•	 Micro-partition fragmentation due to a high number of low-volume

inserts and updates

•	 Degree of pruning required to resolve data sets

•	 Data skewing resulting from changing data content over time

•	 Query predicates not matching cluster key definition

•	 High cardinality queries with many selective criteria leading to

inefficient pruning

�Remediating Long Execution Time Queries

Automatic clustering can remediate long execution times by re-ordering micro-partition

content into optimally efficient form. Note that automatic clustering can invalidate

cached results. I will discuss automatic clustering in detail in the next chapter. You can

find further details at https://docs.snowflake.com/en/user-guide/tables-auto-

reclustering.

For existing tables where the cluster key does not match the query predicates,

consider adding a materialized view. Consider using dynamic tables to offload work onto

serverless compute. Note that the refresh time may be a factor in your decision-making.

Over time data within a table may become skewed. This occurs as data ranges

change over time and is often a side effect of high INSERT and UPDATE activity where

micro-partition content changes frequently, a phenomena referred to as churn. I will

discuss this phenomena in detail within the next chapter, but for now, it is sufficient to

know skewed data can impact query execution time as the number of micro-partitions

scanned may be higher than expected.

A search optimization service can improve the performance of highly selective

queries but is not recommended for high-churn environments. I discuss search

optimization services in detail later within this book. You can find further details at

https://docs.snowflake.com/en/user-guide/search-optimization-service.

Incorrect join order can also contribute to long execution time; put the lowest

cardinality table first after the FROM clause, and put the highest cardinality table last.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/search-optimization-service

85

�Long Table Scan
Long table scans manifest as a high percentage value for the TableScan operator

within a query profile. This may become a trend-based metric where progressive or

sudden adverse changes in performance of either a single query or several queries

may be observed. Monitoring long table scans may be a leading indicator of future

performance issues.

�What Is Long Table Scan?

A long table scan occurs where most of the processing time is spent servicing remote

disk I/O, an expensive operation. I discuss local and remote disk I/O in detail within the

next chapter. You will also experience long table scans where there is little or no partition

pruning, identified from the query profile summary.

You might reasonably expect to see long table scans as part of your day-to-day

operational processes when creating denormalized table content; therefore, local system

knowledge is required when interpreting results. Alternatively, you might expect to see

long table scans when exploring data sets as part of an investigation or in preparation for

further system development.

�Identifying Long Table Scans

In a production system you might not immediately identify queries suffering from long

table scans as the metric is recorded as steps within each query profile. The presenting

symptoms may be hidden within the overall runtime of a process or with backup files

awaiting processing. Conversely, for queries identified as having long table scans, you need

to identify which data pipeline or process they belong to before remediation can occur.

In this section you are looking to identify long table scans from all of the queries that

have been executed.

Let’s first create a table to hold all candidate query IDs for later investigation. I leave

it to you to add timestamps, etc.

CREATE OR REPLACE TABLE long_table_scans

(

query_id STRING,

warehouse_name STRING,

warehouse_size STRING,

Chapter 3 The Query Profiler

86

partition_scan_ratio NUMBER,

partitions_scanned NUMBER,

partitions_total NUMBER

);

The latency for QUERY_HISTORY may be up to 45 minutes.

You can now insert candidate records from QUERY_HISTORY. In this example you

can identify those records with a micro-partition scanned to a total ratio greater than 50

percent; you may want to change the predicates to suit your requirements.

INSERT INTO long_table_scan

SELECT query_id,

 warehouse_name,

 warehouse_size,

 partitions_scanned / partitions_total AS partition_scan_ratio,

 partitions_scanned,

 partitions_total

FROM snowflake.account_usage.query_history

WHERE warehouse_name IS NOT NULL //Exclude cached results

AND execution_status = 'SUCCESS' //Include completed queries

AND bytes_scanned > 0 //Must have scanned data

AND total_elapsed_time > 1000 //�Execution time must be over 1s,

queries which used compute

AND (partitions_scanned / partitions_total) > 0.5;

You can find further information on QUERY_HISTORY at https://docs.snowflake.

com/en/sql-reference/account-usage/query_history.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 partition_scan_ratio,

 partitions_scanned,

 partitions_total

FROM long_table_scan;

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/account-usage/query_history
https://docs.snowflake.com/en/sql-reference/account-usage/query_history

87

From the previous result set, use GET_QUERY_OPERATOR_STATS to examine statistics

for individual operators within a single query.

SELECT *

FROM TABLE (get_query_operator_stats('<your query_id here>'));

I leave it to you to refine the previous queries.

Long table scan monitoring for trends is worth considering as this metric may be a

leading indicator of future performance issues. I suggest this metric can provide early

warning of data skewing.

�Long Table Scan Costs

Assuming you can exclude long table scans due to known and expected behaviors, the

remaining long table scan candidates can be caused by many factors.

•	 Micro-partition fragmentation due to a high number of low-volume

inserts and updates

•	 Query predicates not matching table cluster key

•	 Range scan filtering occurring when using BETWEEN, LIKE, <>, and

similar operators

�Remediating Long Table Scan Queries

Automatic clustering can remediate long execution times by re-ordering micro-partition

content into optimally efficient form. Note that automatic clustering can invalidate

cached results. I discuss automatic clustering in detail in the next chapter. You can

find further details at https://docs.snowflake.com/en/user-guide/tables-auto-

reclustering.

For existing tables where the cluster key does not match the query predicates,

consider adding a materialized view. Consider using dynamic tables to offload work onto

serverless compute. Note the refresh time may be a factor in your decision-making.

Improve query selectivity to match the cluster key definition on the target table.

Consider using a query acceleration service to dynamically scale and parallelize

portions of the query plan leading to overall reduced runtime. I discuss query

acceleration services in detail later within this book. You can find further details at

https://docs.snowflake.com/en/user-guide/query-acceleration-service.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/query-acceleration-service

88

�Spills to Disk and Out of Memory
We will consider spill to disk and out of memory (OOM) within the same section; they

are related because spills can cause OOM events.

Every warehouse has a finite amount of memory allocated; you may recall from

Chapter 2 that I stated an extra small (XSmall) warehouse has eight CPUs and associated

cache, about 16 to 24GB RAM, local SSD storage, and remote attached storage. For

every size you increase your warehouse, the number of CPUs doubles and memory

increases too.

�What Causes a Spill to Disk and OOM?

A spill to disk occurs when a query attempts to consume more memory than the

warehouse has available for allocation. In this scenario, intermediate results are first

spilled to local SSD storage and then to remote storage, before finally exceeding all

available memory and storage resulting in an OOM error. Snowflake will then attempt to

retry the query.

As Snowflake dynamically allocates CPU and memory, it is possible the warehouse

workload has reduced between query failure and query retry, rendering more resources

available for the retry attempt.

For your further investigation, an example scenario for spills to disk and OOM using

ORDER BY and LIMIT/OFFSET is available at https://community.snowflake.com/s/

article/Out-of-memory-error-caused-by-LIMIT-and-or-OFFSET-clause.

You must understand the importance of sizing warehouses correctly according to

the expected workload. You also see how queries returning large volumes of data with

smaller warehouses may exceed the available memory and cause an OOM failure.

�Identifying Spills to Disk

Spills to disk are readily identified from the statistics block of every query profile where

“spilling” information is presented when spills to disk occur.

In this section, you will identify both spills to disk and OOMs from all of those

queries that have been executed.

To illustrate a spill, let’s deliberately incorrectly size a warehouse and then execute a

poor-quality query. Note that you should never use SELECT * for your production code.

Chapter 3 The Query Profiler

https://doi.org/10.1007/979-8-8688-0379-6_2
https://community.snowflake.com/s/article/Out-of-memory-error-caused-by-LIMIT-and-or-OFFSET-clause
https://community.snowflake.com/s/article/Out-of-memory-error-caused-by-LIMIT-and-or-OFFSET-clause

89

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

SELECT *

FROM partsupp_baseline ps,

 part_baseline p,

 supplier_baseline s

WHERE ps.ps_partkey = p.p_partkey

AND ps.ps_suppkey = s.s_suppkey;

You do not need a poor-quality query to complete before viewing spills, which are

visible via the Profile Overview tab accessible by clicking the query ID. Spills to disk are

indicated by both Local Disk I/O and Remote Disk I/O, as shown in Figure 3-16.

Figure 3-16.  Spills to disk

Having identified a spill, let’s create a table to hold all the candidate query IDs for

later investigation. I leave it to you to add timestamps, etc.

CREATE OR REPLACE TABLE spill_and_OOM

(

query_id STRING,

warehouse_name STRING,

warehouse_size STRING,

Chapter 3 The Query Profiler

90

bytes_spilled_to_local_storage NUMBER,

bytes_spilled_to_remote_storage NUMBER,

bytes_sent_over_the_network NUMBER

);

The latency for QUERY_HISTORY may be up to 45 minutes.

You can now insert the candidate records from QUERY_HISTORY; in this example, you

will identify those records where both local and remote spills to storage have occurred.

In other words, both values are greater than zero. You may want to change the predicates

to suit your requirements.

INSERT INTO spill_and_OOM

SELECT query_id,

 warehouse_name,

 warehouse_size,

 bytes_spilled_to_local_storage,

 bytes_spilled_to_remote_storage,

 bytes_sent_over_the_network

FROM snowflake.account_usage.query_history

WHERE warehouse_name IS NOT NULL //Exclude cached results

AND bytes_spilled_to_local_storage > 0;

You can find more information on QUERY_HISTORY at https://docs.snowflake.com/

en/sql-reference/account-usage/query_history.

You can examine summary information for queries where spills and potential OOMs

have occurred.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 bytes_spilled_to_local_storage,

 bytes_spilled_to_remote_storage,

 bytes_sent_over_the_network

FROM spill_and_OOM;

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/sql-reference/account-usage/query_history
https://docs.snowflake.com/en/sql-reference/account-usage/query_history

91

From the previous result set, use GET_QUERY_OPERATOR_STATS to examine statistics

for individual operators within a single query.

SELECT *

FROM TABLE (get_query_operator_stats('<your query_id here>'));

I will leave it to you to refine the previous queries.

I highly recommend monitoring for spills as this metric is a leading indicator of

future problems and may identify remediation opportunities well before OOMs occur.

�Spills to Disk and OOM Costs

Earlier in this section I explained the root cause of spills to disk and OOMs; I now list

some additional factors here:

•	 High workload concurrency where the warehouse cannot service all

queries at the same time

•	 Unexpectedly high volumes of data processed

•	 Incorrectly sized warehouse for workload

•	 Large intermediate result sets

�Remediating Spills to Disk and OOM Queries

Automatic clustering can remediate long execution times by re-ordering micro-partition

content into an optimally efficient form. Note that automatic clustering can invalidate

cached results. I will discuss automatic clustering in detail within the next chapter. You

can find further details at https://docs.snowflake.com/en/user-guide/tables-auto-

reclustering.

Reducing warehouse concurrency by segregating workloads into separate

warehouses may free sufficient resources to remediate disk spills. Alternatively,

increasing warehouse size will increase available resources, enabling more optimal in-

memory operations, and reduce both local and remote spills to disk.

The table join order can also be significant. Start with the smallest tables first as

this may eliminate the greatest number of micro-partitions early within the query

optimization stage and then in cardinality order up to the highest cardinality last. Also

check the filter criteria are sufficiently selective to improve micro-partition pruning.

Chapter 3 The Query Profiler

https://docs.snowflake.com/en/user-guide/tables-auto-reclustering
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering

92

Ultimately, consider refactoring the query to eliminate bottlenecks, which may

include using temporary tables as the intermediary storage for large result sets.

�Join Order
Table join order has the capability to derail the best of queries. As with everything, a little

knowledge can be dangerous, and applying expert knowledge from legacy RDBMSs is

particularly dangerous.

I suggest an open mind when investigating query performance issues.

In Snowflake, the table placement order is opposite to what you would expect

in Oracle.

�Why Is Join Order Important?

Referring to our earlier explanation of what a “good” query profile looks like, when the

build side is larger than the probe side, performance is usually slower.

You also know Snowflake builds hash tables in preparation for joining data sets,

and the order in which you join your tables has significance. For all query profiles, and

assuming a right deep join tree, the optimal pattern is for the table returning the largest

data set at the bottom right and the table returning the smallest data set at the top left.

You saw an example of a right deep join tree earlier within this chapter.

Within your SQL statement, you should place the table with the lowest cardinality

first within the FROM clause as this has the potential to prune the most micro-partitions

earliest within the query. The next lowest cardinality table should be second, and so on,

up to the highest cardinality table last.

�Identifying Join Order Issues

When investigating join order issues, you should first examine the query profile. As you

can see from Figure 3-17, the optimal pattern for result set determination is the largest

data volume at the bottom right, with reduction to the smallest data volume shown at the

top left.

Chapter 3 The Query Profiler

93

Figure 3-17.  Optimal result set pattern

Needless to say, most query profiles do not conform to the pattern shown in

Figure 3-17, but it is helpful to understand what “good” looks like and then iterate toward

the optimal query profile as you tune your queries.

You might also experience join order issues when missing attributes from natural key

joins or missing primary key/foreign key relationships. Both of these scenarios result in

join explosions.

Detection of join order issues is largely through examination of individual queries

and visual identification and then testing data volumes for each referenced table. You

may want to consider using a clone of your production environment to determine

representative results.

�Poor Join Order Costs

Poor join criteria and ordering can result in the following:

•	 Inefficient joins where the build side hash tables are larger than

optimal resulting in higher probe execution times.

Chapter 3 The Query Profiler

94

•	 Join explosion resulting in spillage and OOMs due to large

intermediate data set generation.

•	 Left deep tree join refers to query profiles where the predominating

query profile branches to the left, the opposite of a right deep tree

join. Left deep tree joins consume more warehouse memory and

reduce parallel processing options.

�Remediating Poor Join Order Issues

A general rule of thumb is that the number of WHERE/AND join conditions should always

equal the number of tables minus 1. This works for many scenarios except for composite

natural keys.

You should also be mindful that the Snowflake query optimizer prefers numeric data

type joins. These join criteria can also cause performance issues:

•	 Data type conversion: Joining a NUMBER to a VARCHAR.

•	 Evaluate expressions: MIN/MAX, etc.

•	 User-defined functions (UDFs): Complex logic embedded

into a UDF.

•	 Common table expression (CTE): You will investigate CTEs later in

this chapter.

We have all encountered complex SQL statements that are hard to read. On closer

examination you may find the following:

•	 SELECT *

•	 Redundant table joins

•	 Missing composite key join attributes

•	 DISTINCT forcing uniqueness

•	 Unnecessary join keys

Remediating poor join order issues involves a lot of time and hard work along with

constant retesting of changes with the eventual objective of improving performance. You

must at all times simplify your code wherever possible by removing complexity.

Chapter 3 The Query Profiler

95

While automatic clustering and search optimization can help, automatic clustering

can invalidate cached results. There is no substitute for well-formed and optimally

performing SQL statements.

�Common Table Expressions
This chapter was inspired by the post at https://select.dev/posts/should-you-use-

ctes-in-snowflake by Niall Woodward (@NiallWoodward).

CTEs are individually named temporary result sets built within the SQL statement. A

SQL statement may have none, one, or many CTEs. They are identified by the presence

of a WITH clause before the SELECT statement. CTEs may also be referred to as subquery

refactoring and are supported by many RDBMSs in addition to Snowflake.

The following is the general form of a CTE:

WITH <subquery>

SELECT <attributes>

FROM <table>

WHERE <predicates>

ORDER BY <ordering>;

�Simple CTE Use Case
CTEs are often used to create subsets of data that may be repeatedly used within the

main body of the FROM/WHERE clause to simplify code. A common use case is to use UNION

ALL to join two tables into a single CTE thus simplifying the main body of code, as this

next example shows:

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Create an example SQL statement with a CTE:

WITH regiongroup AS

(

SELECT r_regionkey,

 r_name,

 'EMEA' AS r_regiongroup

FROM region_baseline

Chapter 3 The Query Profiler

https://select.dev/posts/should-you-use-ctes-in-snowflake
https://select.dev/posts/should-you-use-ctes-in-snowflake

96

WHERE r_name IN ('EUROPE', 'MIDDLE EAST')

UNION ALL

SELECT r_regionkey,

 r_name,

 'APAC' AS r_regiongroup

FROM region_baseline

WHERE r_name = 'ASIA'

)

SELECT rg.r_regiongroup AS region_group,

 rg.r_name AS region_name,

 n.n_name AS country_name

FROM regiongroup rg,

 nation_baseline n

WHERE rg.r_regionkey = n.n_regionkey

ORDER BY 1, 2, 3;

When you examine the resultant query profile, you can see that the output of the

build side (UNION ALL output) has been pushed down to the probe side as evidenced by

the row counts returned from the TableScan(9), as shown in Figure 3-18.

Chapter 3 The Query Profiler

97

Figure 3-18.  Filter push down

However, there are scenarios where CTEs may not perform as expected, which I will

discuss next.

�Reusing CTEs
Where a CTE is referenced more than twice within the same SQL statement, you may

find attribute pruning is disabled.

In this example, a query used to expose the CTE reuse issue; you can declare a parent

CTE that is referenced by two child CTEs. Each child is then referenced by the main

query body on either side of a UNION ALL.

WITH nation_list AS

(

SELECT r.*

FROM nation_baseline r

),

Chapter 3 The Query Profiler

98

comment_list AS

(

SELECT n_comment

FROM nation_list

),

name_list AS

(

SELECT n_name

FROM nation_list

)

SELECT n_comment

FROM comment_list

UNION ALL

SELECT n_name

FROM name_list;

You might reasonably expect only the unique attributes to be SELECTed from the

nation_baseline table, but as the query profile shown in Figure 3-19, you also see the

highlighted attribute N_REGIONKEY, which is not referenced in any CTE or the main body.

Chapter 3 The Query Profiler

99

Figure 3-19.  CTE attribute pushdown disabled

The important point to note is the single table scan TableScan2 showing the CTE is

resolved once and no filters are pushed down.

You will not experience the same behavior when explicitly referencing the same base

table nation_baseline as used within the earlier parent CTE.

WITH comment_list AS

(

SELECT n_comment

FROM nation_baseline

),

name_list AS

(

SELECT n_name

FROM nation_baseline

)

SELECT n_comment

Chapter 3 The Query Profiler

100

FROM comment_list

UNION ALL

SELECT n_name

FROM name_list;

Not only is the refactored query easier to read, the query profiler is also simpler, as

shown in Figure 3-20 where the predicate pushdown is highlighted.

Figure 3-20.  CTE attribute pushdown enabled

�CTE Costs
I recommend the use of CTEs to abstract complex logic and simplify code, but not in all

situations. As you have seen, nested CTEs can lead to predicates not being pushed down.

Elegant code is both readable and readily understood. CTEs in general aid

readability, but if poorly structured and implemented, they can increase code

complexity and maintenance overheads. You should also appreciate the lost opportunity

cost of developers understanding before they begin to refactor or remediate code. In

other words, Keep It Simple, Stupid (KISS). Use CTEs judiciously to reduce complexity

and layers of code, not forgetting to comment your code.

Chapter 3 The Query Profiler

101

�Remediating CTEs
Here are some tips:

•	 Replace CTEs with views or direct embedding within the core SQL

statement.

•	 Simplify CTEs by removing complexity, nesting, layering code, and

using recursive calls.

•	 Replace SELECT * with explicit attribute names.

•	 Denormalize data structures using dynamic tables to remove

dependency on CTEs. Note that dynamic tables at the time of writing

are still in in public preview.

•	 Refactor data pipelines to deliver denormalized tables as part of the

process and not as an afterthought. Tune the design!

�Summary
You began this chapter by creating a database, schema, and role to begin your

investigations into query profiles with the express intent of reusing your new

environment throughout the remainder of this book. You also declared warehouses sized

between X-Small and X-Large and very briefly investigated the effect of using different

sized warehouses on query performance.

Having identified where to access query profiles, you used the new environment to

create an example query to fulfil an imaginary business requirement. Using the example

query as a starting point, you began investigating query profiles.

Optimizing query profiles is dependent upon understanding what both “good” and

“bad” query profiles look like. I introduced new terminology, explained how to interpret

query profiles, and showcased how to identify and remediate problems.

With a firm understanding of query profiles, in the next chapter you will investigate

micro-partitions.

Chapter 3 The Query Profiler

103
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_4

CHAPTER 4

Micro-partitions
You may recall from previous chapters that I discussed micro-partition pruning, but I did

not explain what micro-partitions are, as they deserve a chapter of their own. This is that

chapter.

At first sight, micro-partitions appear to be a simple subject to discuss; they are not.

As you are about to discover, micro-partitions rapidly increases the level of complexity

of the discussion. There are loose ends and references that resolve themselves in later

chapters (please forgive the interdependencies; they are an unfortunate consequence

of attempting to tell each story as simply as possible, while piquing your interest in

later chapters). This chapter reveals the lengths Snowflake has undertaken to hide the

underlying complexity of micro-partitions. You are about to scratch the surface and

take a peek.

In Chapter 2, I discussed query optimization in detail; the query optimizer seeks to

reduce the cost of queries by determining the optimal execution path. In this chapter,

I discuss the micro-partition features to both derive optimal data management and

control storage costs.

Performance tuning must consider both execution runtime and storage costs,
because both aspects are inextricably related.

I will begin by explaining some foundational information that many of us who have

been involved in information technology take for granted. Recent conversations with

junior colleagues indicate an absence of basic information, so this section is intended to

close those knowledge gaps.

The next chapter will cover cluster keys, micro-partition pruning, and optimal design

patterns supporting Snowflake best practices for data warehousing.

In the book Building the Snowflake Data Cloud, I discussed both micro-partitions

and query optimizer basics. The micro-partition story has not changed since I wrote that

https://doi.org/10.1007/979-8-8688-0379-6_4#DOI
https://doi.org/10.1007/979-8-8688-0379-6_2

104

book, and some of the content presented here will therefore be familiar. However, with a

deeper understanding of optimizer behavior and subsequent hands-on experience, I will

offer new insights into how micro-partitions affect both performance and storage cost.

The query_id values used throughout this book will vary when parent SQL
statements are executed against your Snowflake account.

For those with a legacy RDBMS background, I should make clear that enforced

constraints are absent within Snowflake standard tables. By default, Snowflake allows

constraints, primary keys, and foreign keys to be declared. Note that they inform the

query optimizer, but the only enforced constraint is NOT NULL.

I am aware that some legacy RDBMSs use primary key tracking or change data

capture to implement data distribution. The absence of enforced primary keys precludes

a similar approach for Snowflake where immutable micro-partitions implement data

distribution capabilities.

However, the forthcoming Unistore and hybrid tables change the Snowflake

approach, at least for hybrid tables. The closest comparable feature to a primary key is a

cluster key, which I will discuss in the next chapter.

There is a lot of information to cover, so let’s start investigating micro-partitions!

�Setup
First you will declare the session variables used throughout this chapter. Note that you

may need to rerun these declarations when your browser session is opened again.

SET tpc_owner_role = 'tpc_owner_role';

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

SET tpc_warehouse_S = 'tpc_wh_small';

SET tpc_warehouse_M = 'tpc_wh_medium';

SET tpc_warehouse_L = 'tpc_wh_large';

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

SET tpc_database = 'tpc';

SET tpc_owner_schema = 'tpc.tpc_owner';

Chapter 4 Micro-partitions

105

With your session variables declared, you now declare your environment.

USE ROLE IDENTIFIER ($tpc_owner_role);

USE DATABASE IDENTIFIER ($tpc_database);

USE SCHEMA IDENTIFIER ($tpc_owner_schema);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Session variables may appear cumbersome, but they provide a level of abstraction,

and I encourage their use.

�Foundational Information
In this section, I describe the basic concepts relating to storage and micro-partitions to

establish some baseline information that this chapter later relies upon. I do not deep

dive into foundational information but instead provide a brief summary and links to

both documentation and other articles for your further investigation. I assume you have

some familiarity with the basic principles of persisting data and later will develop an

understanding of storage-related costs.

�Centralized Storage
Regardless of whether Snowflake is deployed on AWS, Azure, or GCP, every time you

create a persistent Snowflake database object such as a table, storage is automatically

allocated from within the associated Snowflake VPC storage.

For reference I list the storage services provided by each cloud service provider

(CSP) here:

•	 AWS: AWS Amazon Simple Storage Service (Amazon S3)

•	 Azure: Blob Storage

•	 GCP: Google Cloud Storage

S3-compatible storage is discussed later in the book.

You can find more information on the data life cycle at https://docs.snowflake.

com/en/user-guide/data-lifecycle.

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/user-guide/data-lifecycle
https://docs.snowflake.com/en/user-guide/data-lifecycle

106

Regardless of the cloud provider, Snowflake manages all storage interactions for data

warehouse core operations transparently through SQL. There are four types of storage

available within Snowflake that are referred to as stages.

•	 External

•	 Hosted on any of the three supported CSPs

•	 Hosted on any of the S3-compatible storage providers

•	 Named or Internal: Hosted within the Snowflake VPC for the

account CSP

•	 Table: Associated with a named table

•	 User: For internal Snowflake use only

You can find more information on the data life cycle at https://docs.snowflake.

com/en/sql-reference/sql/create-stage.

Provisioning Snowflake on the CSP infrastructure ensures you always have enough

storage available and immediate access to more for scalability.

�Direct Storage Access
Direct access to storage on supported CSP external devices is possible by configuring a

STAGE to point at uncontrolled and unaudited storage thus presenting an opportunity for

data breaches and worse.

We strongly recommend STAGE definitions are checked to ensure direct storage
mappings do not exist within your environment.

Best practice is to restrict STAGE mapping to storage via a predefined STORAGE

INTEGRATION restricting data ingress and egress to known locations.

You set this control at the Snowflake account level:

USE ROLE accountadmin;

ALTER ACCOUNT SET require_storage_integration_for_stage_creation = TRUE;

ALTER ACCOUNT SET require_storage_integration_for_stage_operation = TRUE;

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/sql-reference/sql/create-stage
https://docs.snowflake.com/en/sql-reference/sql/create-stage

107

How to implement STORAGE INTEGRATION and STAGE is not discussed further in this

chapter; I cover this topic in depth within Building the Snowflake Data Cloud. I discuss

S3-compatible storage later in this chapter as this subject has not been addressed

elsewhere.

�Storage Costs
Using storage incurs cost; you pay for everything you consume. Snowflake does not

make a margin on storage charges but instead passes through storage charges from

the cloud provider according to the region and cloud provider. Nominally for AWS,

and depending upon the region, it’s approximately $23/terabyte. Note that this figure

does vary.

Additional storage changes are incurred when using the Time Travel and Fail-Safe
features.

I do not consider the cost of maintaining micro-partitions in this section but instead

focus upon the true storage cost.

You can find more information on the storage costs at https://docs.snowflake.

com/en/user-guide/cost-exploring-data-storage.

�Block Devices
Data storage devices such as disk drives and NAND flash memory arrange data in

contiguous blocks, that is, data “chunks,” and are stored sequentially in storage. Field

Programmable Gate Arrays (FPGAs) may also manage storage and data access.

In the old days, disk density was referenced in terms of partitions, segments,

formatting, sectors, and tracks with much effort expended to optimize expensive disk

storage. You might do the same today by de-fragmenting your local PC hard disk to

move disk blocks into contiguous segments, which speeds up file access as the disk read

head moves only to the start of the file and not across different locations to access file

segments.

I mention block devices because the manner in which storage is accessed has some

parallels within Snowflake; I will discuss these shortly.

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/user-guide/cost-exploring-data-storage
https://docs.snowflake.com/en/user-guide/cost-exploring-data-storage

108

�Database and Table Storage
Minimizing storage costs directly relates to performance tuning, where you can meet

your data resiliency objectives by choosing optimal storage types. The hidden costs can

rapidly escalate.

You must tune your database designs from the outset, and this section delivers

some tools to identify storage costs. You will begin by developing a view called

v_table_storage_metrics to support a wider suite of attribute reporting used later in

this chapter.

USE ROLE IDENTIFIER ($tpc_owner_role);

CREATE OR REPLACE VIEW v_table_storage_metrics

AS

SELECT table_catalog||'.'||

 table_schema||'.'||

 table_name AS path_to_object,

 active_bytes /1024/1024 AS active_MB,

 active_bytes

 /1024/1024/1024 AS active_GB,

 active_bytes

 /1024/1024/1024/1024 AS active_TB,

 time_travel_bytes

 /1024/1024/1024 AS time_travel_GB,

 failsafe_bytes

 /1024/1024/1024 AS failsafe_GB,

 retained_for_clone_bytes

 /1024/1024/1024 AS retained_for_clone_GB,

 clone_group_id,

 is_transient,

 deleted

FROM snowflake.account_usage.table_storage_metrics;

You can find further information at https://docs.snowflake.com/en/sql-

reference/account-usage/tables. Note that all Account Usage Store views experience

data latency of between 45 minutes and 3 hours; therefore, you may not immediately see

the expected results.

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/sql-reference/account-usage/tables
https://docs.snowflake.com/en/sql-reference/account-usage/tables

109

You should also be aware of the summary database-level information for the past

year, which can be found within the Account Usage Store as this next SQL statement

illustrates:

SELECT usage_date,

 database_name AS db_name,

 average_database_bytes /1024/1024/1024 AS avg_db_GB,

 average_database_bytes /1024/1024/1024/1024 AS avg_db_TB,

 average_failsafe_bytes /1024/1024/1024 AS avg_fs_GB,

 average_failsafe_bytes /1024/1024/1024/1024 AS avg_fs_TB,

 deleted

FROM snowflake.account_usage.database_storage_usage_history

ORDER BY usage_date DESC;

Figure 4-1 shows some sample output for my TPC database; note that this view has

up to three hours latency.

Figure 4-1.  Database average storage consumption

You can find more information on the Account Usage database_storage_usage_

history view at https://docs.snowflake.com/en/sql-reference/account-usage/

database_storage_usage_history.

Snowflake also supplies a table function referencing the information_schema, useful

for live, point-in-time investigations as information_schema views hold data for only

14 days. You can find further information at https://docs.snowflake.com/en/sql-

reference/functions/database_storage_usage_history. I leave this for your later

investigation.

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/sql-reference/account-usage/database_storage_usage_history
https://docs.snowflake.com/en/sql-reference/account-usage/database_storage_usage_history
https://docs.snowflake.com/en/sql-reference/functions/database_storage_usage_history
https://docs.snowflake.com/en/sql-reference/functions/database_storage_usage_history

110

�Stages
Both internal and external stages consume storage and contribute to costs:

•	 Internal stages consume storage within the Snowflake VPC.

•	 External stages consume storage on accessible CSP or S3 compatible

storage.

Storage costs accrue regardless of where storage is declared, and you should

consider stage storage costs to reduce your overall storage consumption costs.

Dropping an external stage does not automatically remove files stored within the
mapped location.

To identify active stages for your Snowflake account, you use the Account Usage

Store STAGES view. Note that a latency of up to two hours applies. Here you create a view

called v_stage_locations for ease of use.

CREATE OR REPLACE VIEW v_stage_locations

AS

SELECT stage_catalog||'.'||

 stage_schema||'.'||

 stage_name AS path_to_stage,

 stage_url,

 stage_owner

FROM snowflake.account_usage.stages

WHERE stage_owner IS NOT NULL

ORDER BY path_to_stage;

You might also use the equivalent information_schema view. Note the 14-day data

limitation and that each database has an information_schema; therefore, every database

would require separate investigation. You can find further information on STAGES at

https://docs.snowflake.com/en/sql-reference/account-usage/stages.

With your stages identified and for internal stages only, you can identify the average

daily storage usage. The new view called v_stage_avg_storage provides summary

information.

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/sql-reference/account-usage/stages

111

CREATE OR REPLACE VIEW v_stage_avg_storage

AS

SELECT usage_date,

 average_stage_bytes / 1024 / 1024 AS avg_stage_MB,

 average_stage_bytes / 1024 / 1024 / 1024 AS avg_stage_GB

FROM snowflake.account_usage.stage_storage_usage_history

ORDER BY usage_date DESC;

As with all Account Usage Store views, latency applies, in this case of up to 120

minutes. You can find more information at https://docs.snowflake.com/en/sql-

reference/account-usage/stage_storage_usage_history.

External storage consumption can be tracked using CSP tooling and will be charged

separately than the Snowflake storage charges.

�Micro-partition Overview
Now I will discuss “how” storage is managed, always keeping in mind the manner in which

the Snowflake optimizer processes your SQL statements to deliver highly performant queries.

�What Are Micro-partitions?
Micro-partitions are the fundamental units of storage that comprise physical tables

and are immutable. Snowflake does not add, change, or remove data from an existing

micro-partition. Every data change is recorded by creating new micro-partitions, and the

old micro-partitions age out according to the Time Travel setting and Fail-Safe, both of

which are explained in my first book, Building the Snowflake Data Cloud.

Unlike some legacy RDBMSs, micro-partitions do not require the periodic gathering

of statistics. Snowflake guarantees statistics are always maintained for every object. To

illustrate this point, consider how the results for your next SQL statement are generated.

SELECT count(1)

FROM lineitem_baseline;

This query should return 5,999,989,709 rows, though the interesting information is

“how” the row count was derived. To reveal the information source, click the query ID to

access the query profile. Figure 4-2 shows the row count was derived from metadata, and

the profile shows “Other” indicating that the stored statistics were referenced.

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/sql-reference/account-usage/stage_storage_usage_history
https://docs.snowflake.com/en/sql-reference/account-usage/stage_storage_usage_history

112

Figure 4-2.  Metadata query result resolution

For Snowflake native tables, traditional indexes are not supported; therefore, index

maintenance is no longer an issue. Note that hybrid tables and/or Unistore support

traditional indexes and referential integrity, which is out of scope for this book but a

point to remember for the future.

�Immutable Micro-partitions
Micro-partition immutability offers many great benefits with few downsides. Figure 4-3

illustrates the creation of two new micro-partitions where DML activity has modified the

“EMEA” contents of two micro-partitions for an imaginary table.

Figure 4-3.  Micro-partition retention

Dependent upon table type, the retained micro-partitions may be saved for the

duration of your Time Travel setting and seven-day Fail-Safe period before being

permanently and irretrievably removed. You can find more information on table types,

permissible Time Travel settings, and Fail-Safe periods at https://docs.snowflake.

com/en/user-guide/tables-temp-transient#comparison-of-table-types.

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/user-guide/tables-temp-transient#comparison-of-table-types
https://docs.snowflake.com/en/user-guide/tables-temp-transient#comparison-of-table-types

113

Assuming a 90-day Time Travel retention period, you should expect your storage

costs to increase by roughly 10 to 20 percent. Note that your DML profile may cause this

ballpark figure to be wildly exceeded. As always, test before implementing Time Travel.

The type of table you choose will affect your storage costs for Time Travel and
Fail-Safe.

Retained micro-partitions are used for the following:

•	 Time Travel

•	 Fail-Safe

•	 Secure Direct Data Shares

•	 Private Listings

•	 Snowflake Marketplace

•	 Replication

•	 Cloning

•	 Disaster recovery

I cover these subjects in great detail in Maturing the Snowflake Data Cloud.

Immutable micro-partitions do have some downsides. High-frequency, low-volume

DML operations affecting multiple micro-partitions will result in micro-partition churn

and increased data storage costs. You can also experience object locking and SQL

statement queueing, which are clear indicators of performance bottlenecks.

In an extreme example, I recently experienced a table containing 2.5-billion rows

having all micro-partitions rewritten over a four-hour period; hence, the Time Travel

setting was one day representing the minimum period possible. Depending on your

requirements, Snowflake has further provisioned an Automatic Clustering service, which

may mitigate against micro-partition fragmentation, which I discuss later in this chapter.

Chapter 4 Micro-partitions

114

�Micro-partition Metadata
Snowflake stores data in an internal, compressed, columnar format. You also know from

Chapter 1 that Snowflake captures and maintains the following statistics for each micro-

partition stored in the Cloud Services layer:

•	 Table and micro-partition

•	 Row count

•	 Size in bytes (including compression information)

•	 File reference

•	 Table version

•	 Clustering

•	 Total number of micro-partitions

•	 Micro-partition overlap values

•	 Micro-partition depth

•	 Column

•	 Max/min value range

•	 The number of distinct values

•	 NULL count

•	 Subcolumn

•	 Statistics for common paths in semi-structured data

Referencing the metadata held for each micro-partition, the optimizer is able to

rapidly identify only those micro-partitions holding the data required to satisfy the query

results and excludes (or prunes) irrelevant micro-partitions.

Because the relevant metadata is known for each micro-partition, the contents

can be compressed as the optimizer does not need to interrogate micro-partitions

interactively to identify matching content. You also know each micro-partition

contains up to 16 MB of data compressed using proprietary compression algorithms.

Uncompressed, each micro-partition holds between 50 MB and 500 MB of data, and

compression is optimized according to the column’s data type.

Chapter 4 Micro-partitions

https://doi.org/10.1007/979-8-8688-0379-6_1

115

Snowflake’s internal, compressed, columnar format is not explained in detail.

However, for the curious, I believe Snowflake utilizes the Partition Attributes Across

(PAX) file format; you can find the whitepaper at https://research.cs.wisc.edu/

multifacet/papers/vldb01_pax.pdf.

�Accessing Table Metadata
As you progress through this section, your investigation will identify programmatic

approaches to determining the number of micro-partitions for a table. I do not offer a

fully functional stored procedure-based approach but instead illustrate various methods

to identify information of interest.

�Using the Information Schema

Note that the information schema views are specific to an individual database. The next

query illustrates the available information for tables:

SELECT *

FROM tpc.information_schema.tables

WHERE table_name LIKE '%_BASELINE%'

LIMIT 10;

There is no latency for information schema views, and dropped object information is

not available.

The attribute clustering_key is NULL for tables declared without an explicit
cluster key, discussed in detail within the next chapter.

Alternatively, you can use the SHOW command as this next SQL statement illustrates:

SHOW TABLES LIKE '%_BASELINE%';

Then convert the output to usable output by modifying the next SQL statement

according to your needs:

SELECT "name",

 "rows",

 "automatic_clustering"

FROM TABLE (RESULT_SCAN (last_query_id()));

Chapter 4 Micro-partitions

https://research.cs.wisc.edu/multifacet/papers/vldb01_pax.pdf
https://research.cs.wisc.edu/multifacet/papers/vldb01_pax.pdf

116

Despite the latency inherent within the Account Usage Store views, you prefer to

reference the Account Usage Store views as all account object information is available

centrally. Alternatively, you would need to identify each database and access each

information schema individually. Of course, your role would need to be entitled for each

database, which may prove challenging in a multi-tenant or highly segregated Snowflake

environment.

�Using the Account Usage Store

Some table metadata is available from the Account Usage store as this next query

illustrates:

SELECT *

FROM snowflake.account_usage.tables

WHERE table_name LIKE '%_BASELINE%'

AND deleted IS NULL

LIMIT 10;

Account Usage Store views experience data latency of between 45 minutes and 3

hours; therefore, you may not immediately see the expected results.

The previous query output contains useful information, and you will return to this

content later; however, there is no mention of the number of micro-partitions.

Under what circumstances would it be useful to know the number of micro-

partitions? And if you have a valid use case, how can you identify the required

information?

One use case is replicating data between accounts where costs vary according to the

number of micro-partitions transferred between primary and secondary accounts. While

there are techniques explained later in this book to reduce the number of micro-

partitions transferred, here you have a reason to know how many micro-partitions

belong to each replicated object as each replica incurs storage cost.

With your use case defined and knowing each micro-partition contains compressed

data, you can readily identify that using row counts as a proxy to derive micro-partition

counts is not a valid approach.

Chapter 4 Micro-partitions

117

All is not lost; there are other methods by which you can derive table micro-

partition count:

•	 Using a query profile

•	 Using GET_QUERY_OPERATOR_STATS

•	 Using system$clustering_depth and system$clustering_

information

You will now examine each in turn.

�Query Profile

By issuing a simple query and accessing the query profile, you can readily identify the

number of micro-partitions belonging to a table.

Let’s first set the warehouse to X-Large and then create the example query.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

SELECT *

FROM lineitem_baseline;

Then click the query_id, which opens a new tab displaying the Statistics with a

partition count of 9400 and, as an aside, spills to disk as indicated by both Local Disk I/O

and Remote Disk I/O. Both metrics are shown in Figure 4-4.

Figure 4-4.  Query profile micro-partition count

Chapter 4 Micro-partitions

118

Then reset your warehouse to X-Small:

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

While the presented information is useful for an individual table query, the approach

cannot be used for joins as the partitions total is the sum of all referenced tables.

Furthermore, you cannot programmatically use the screen output to derive information

from multiple tables; what you need is something more sophisticated.

�GET_QUERY_OPERATOR_STATS

Utilizing the same query_id from the previous example query, let’s examine the GET_

QUERY_OPERATOR_STATS output. Note that this feature is at Public Preview status at the

time of writing.

SELECT *

FROM TABLE (get_query_operator_stats('01ae63a0-0000-8905-0000-000113

1e50ad'));

Within the returned data set, there are two attributes of interest. Within OPERATOR_

TYPE you are looking for the row with TableScan, and for the same row you use the

OPERATOR_STATISTICS attribute to derive the partitions_total attribute.

{

 "io": {

 "bytes_scanned": 2048,

 "percentage_scanned_from_cache": 0,

 "scan_progress": 1

 },

 "output_rows": 5,

 "pruning": {

 "partitions_scanned": 1,

 "partitions_total": 1

 }

}

Chapter 4 Micro-partitions

119

You might restate your GET_QUERY_OPERATOR_STATS SQL statement to extract only

the partitions_total attribute as follows:

SELECT operator_statistics:pruning:partitions_total

FROM TABLE (get_query_operator_stats('01ae63a0-0000-8905-0000-000113

1e50ad'));

You will not see the partitions_total attribute if results are derived from the
cache. The OPERATOR_TYPE will show QUERY_RESULT_REUSE.

This approach cannot be used for joins as the partitions total if the sum of all

referenced tables and the OPERATOR_STATISTICS output differs. I will leave this for your

further investigation.

You can find more information on GET_QUERY_OPERATOR_STATS at https://docs.

snowflake.com/en/sql-reference/functions/get_query_operator_stats.

�system$clustering_depth and system$clustering_information

The remaining option for determining micro-partition counts introduces a

new system call that you will become very familiar with in the next chapter:

system$clustering_depth.

I deliberately omit a full explanation of system$clustering_depth here and
restrict usage to identifying the micro-partition count only.

You can assume your target table has not been clustered; I discuss cluster keys in the

next chapter.

To prove my assumption, let’s omit the column information.

SELECT system$clustering_depth ('LINEITEM_BASELINE');

You should see this error message: “000005 (XX000): Invalid clustering keys or table

LINEITEM_BASELINE is not clustered.”

You can identify the number of micro-partitions within your target by adding a

second parameter containing a single table attribute, as shown next:

SELECT system$clustering_depth ('LINEITEM_BASELINE', '(L_COMMENT)');

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats
https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats

120

The named attribute is not important so long as the attribute exists on the target

table. Both table name and attribute name are case insensitive as I show later.

The query should return 9,398 micro-partitions.

You can also use system$clustering_information to derive the micro-partition

count for an object:

SELECT system$clustering_information ('LINEITEM_BASELINE', '(L_

LINENUMBER)');

The query should return a single row containing a JSON record. Look for an attribute

named total_partition_count.

Alternatively, run this query to extract the total_partition_count:

SELECT parse_json(system$clustering_information ('lineitem_baseline', '(l_

shipdate)')):total_partition_count;

In the previous examples, the table attribute must be enclosed by parenthesis, i.e.,
(L_COMMENT); otherwise, the query fails.

As you can see from both sample queries, this is a single-table approach to

identifying micro-partitions.

You can find more information on system$clustering_depth and

system$clustering_information at https://docs.snowflake.com/en/sql-

reference/functions/system_clustering_depth and https://docs.snowflake.com/

en/sql-reference/functions/system_clustering_information.

�Time Sensitivity
Some of the SQL statements in this section are time sensitive. The ability to undrop

objects and view how storage transitions from active_GB to time_travel_GB and then to

fail_safe_GB are all dependent upon the following:

•	 The data retention period set at the database and/or object level

•	 Account Usage Store view latency

•	 Elapsed time between issuing commands

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/sql-reference/functions/system_clustering_depth
https://docs.snowflake.com/en/sql-reference/functions/system_clustering_depth
https://docs.snowflake.com/en/sql-reference/functions/system_clustering_information
https://docs.snowflake.com/en/sql-reference/functions/system_clustering_information

121

During the writing of this chapter, observing transitions between the differing layers

of storage has not proven to be straightforward. I assume Snowflake does not run its

processes to transition micro-partitions with high frequency and speculate its processes

may execute at least once within the 90-minute view latency period. As a consequence, I

did not experience a consistent up-to-the minute timeline for observing micro-partition

transitions across storage layers; rather, the timeline was somewhat variable.

Your testing may be impacted if conducted over several days.

To illustrate time sensitivity, let’s examine an idealized scenario and timeline, as

represented in Figure 4-5.

Figure 4-5.  Expected storage timeline with latency

Here’s a breakdown of Figure 4-5:

	 1.	 Day 1: At 08:00 you assume a table is created with the data

retention period set to one day.

	 2.	 Day 1: At 09:30 view latency is complete, storage is visible, and

then the table is dropped.

	 3.	 Day 2: At 09:30 the dropped table storage moves to Time Travel for

one day, and the view has 90 minutes of latency.

	 4.	 Day 2: At 11:00 the view latency is complete, and Time Travel

storage is visible.

	 5.	 Day 3: At 09:30 the dropped table storage moves to Fail-Safe for

seven days, and the view has 90 minutes of latency.

	 6.	 Day 3: At 11:00 the view latency is complete, and Fail-Safe storage

is visible.

Chapter 4 Micro-partitions

122

	 7.	 Day 10: At 09:30 the dropped table storage exits Fail-Safe, and the

view has 90 minutes of latency.

	 8.	 Day 10: At 11:00 the view latency is complete, and the Fail-Safe

storage clears.

As exposed by the previous explanation, monitoring storage is not straightforward.

Throughout the remainder of this section, you work through the expected storage

timeline.

�Data and Micro-partition Lifecycle
In this section I cover the performance time costs for INSERT, UPDATE, and

DELETE. Recognize I have deliberately chosen to use an X-Small warehouse. I also

expose the hidden storage costs of Time Travel and Fail-Safe before discussing storage

implications for both cloning and replication.

Tune the design before implementing a single line of code.

�Setting a Baseline
Using the view v_table_storage_metrics, let’s establish the starting point by identifying

your initial storage metrics for LINEITEM_BASELINE.

SELECT active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object = 'TPC.TPC_OWNER.LINEITEM_BASELINE';

Figure 4-6 shows the expected outcome where all values are set to zero except

active_GB.

Figure 4-6.  LINEITEM_BASELINE expected storage

Chapter 4 Micro-partitions

123

For the next suite of tests where you UPDATE, INSERT, and then DELETE data, I indicate

the execution time differences for each operation, show the impact of deliberately using

an X-Small warehouse, and finally expose how retained storage for Time Travel can

affect your costs.

Most data warehouses are predicated upon periodic ingestion of data, and there are

some use cases where the volume, velocity, and variety of change cause issues. As you

may infer from the v_table_storage_metrics declaration, additional attributes provide

deeper insight into object storage.

You must consider object data maintenance from several perspectives:

•	 Ingestion where you INSERT, UPDATE, and DELETE your data sets.

•	 Internal processing where you manipulate your staged data.

•	 Consumption where you SELECT, join, summarize, aggregate, and

filter your data sets.

•	 The impact of object or database Time Travel setting.

•	 How Fail-Safe retains micro-partitions and consumes storage.

•	 Where cloned objects rely upon retained storage for deleted objects.

You will examine the impact of each perspective next.

�Data Ingestion
Typically, you ingest data into a suite of staging table; let’s ignore external tables for the

purposes of this discussion.

Our data ingestion pattern should be optimized for single feeds or whole-schema

ingestion. You should not expect to run reports or analytics workloads against data

ingested into staging tables.

I must also address how DML operations affect micro-partition maintenance and

this leads to tuning your ingestion design.

Depending upon volume, frequency of ingest, and subsequent DML operations to

merge ingested data from your staging tables into your core schema, you may experience

a high degree of micro-partition churn. Your staging tables will likely be Flush and Fill

where each staging table is truncated and loaded. Pre-sorting your source data attributes

into optimal columnar format before load can optimize onward processing though any

benefits for smaller loads are likely to be minimal.

Chapter 4 Micro-partitions

124

In some cases where data ingestion is a bottleneck, you have a few design options to

consider.

•	 Adopt an insert-only model, i.e., Data Vault 2.0.

•	 Parallelize loads where discrete data isolation boundaries can be

enforced.

•	 Reduce batch size and increase frequency noting the likely increase

in micro-partition churn.

•	 Increase warehouse size.

•	 When sourcing data from external CSP storage, implement file

caching or faster storage devices.

We will return to parallelization in a later chapter as the subject is worthy of wider

consideration.

In the next section, you will investigate storage costs, but for now, you might consider

optimizing your data ingestion costs by doing the following:

•	 Setting Time Travel to 0 for your staging tables where persistence is

not required; note Fail-Safe is retained at 7 days.

•	 Use transient tables for your staging tables with Time Travel set to 0

as transient tables do not utilize Fail-Safe.

Both of these approaches imply staged data can be reloaded from source. Where

external stages are used, ensure the CSP storage is set to retain files according to the

requirements.

�Data Processing
With your data loaded into staging tables and all feed dependencies resolved, core

application processing occurs.

In this section, you will investigate “how” to identify both performance timings and
storage costs.

Chapter 4 Micro-partitions

125

Typical data processing operations are to merge staged data into target tables using

MERGE, INSERT, UPDATE, and DELETE operators.

For a 2.5-billion row unclustered table, I found INSERT and DELETE operations to

perform best. UPDATE operations were problematic and took much longer to complete.

Let’s investigate these scenarios further. You start with timing an UPDATE operation

using an X-Small warehouse, which I timed at over 26 minutes to complete; you may

want to experiment with a larger warehouse sizing. The UPDATE will affect 3,000,013,782

records.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

UPDATE tpc.tpc_owner.lineitem_baseline

SET l_linestatus = 'X'

WHERE l_linestatus = 'F';

Let’s see the effect on storage by repeating the earlier query noting that you may

experience latency.

SELECT active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object = 'TPC.TPC_OWNER.LINEITEM_BASELINE';

Figure 4-7 shows two rows.

•	 The first row is the original expected data set size.

•	 The second row is after the UPDATE statement. Note that TIME_

TRAVEL_GB reflects the storage retained for the UPDATED rows.

Figure 4-7.  UPDATE storage consumption

Chapter 4 Micro-partitions

126

You might also want to compare the number of micro-partitions for lineitem_

baseline.

SELECT parse_json(system$clustering_information ('lineitem_baseline',

'(l_shipdate)')):total_partition_count;

The previous query should return 9405; the initial micro-partition count was 9398.

From your investigation, three facts emerge.

•	 The amount of storage required to hold the same amount of data has

increased.

•	 The micro-partition count has increased from 9398 to 9405.

•	 Time Travel storage has been created; this is expected behavior.

You should expect a single character update to use the same amount of storage as

the original data set, but the evidence proves there has been an increase in storage.

you should also expect the number of micro-partitions for both before and after your

UPDATE. Why do your figures not match?

The answer may lie with how the internal cluster key has been declared, and you

know from the earlier discussion it is not possible to determine the internal clustering

key attribute order. I discuss cluster keys in the next chapter.

Let’s investigate these scenarios further; I started with timing an UPDATE operation

using an X-Small warehouse, which I timed at more than 18 minutes to complete. My

INSERT created 3,000,013,782 records and took around 8 minutes less to complete than

an UPDATE.

INSERT INTO tpc.tpc_owner.lineitem_baseline

SELECT *

FROM snowflake_sample_data.tpch_sf1000.lineitem

WHERE l_linestatus = 'F';

Then check the effect on storage by repeating the earlier query; note that you may

experience latency.

SELECT active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

Chapter 4 Micro-partitions

127

FROM v_table_storage_metrics

WHERE path_to_object = 'TPC.TPC_OWNER.LINEITEM_BASELINE';

Figure 4-8 shows three rows.

•	 The first row is the original expected data set size.

•	 The second row is after the UPDATE statement.

•	 The third row is after the INSERT statement; note that time_travel_

GB reflects the storage retained for the UPDATE rows.

Figure 4-8.  INSERT storage consumption

You know that new micro-partitions will have been added due to the INSERT, the

new data volume is reflected in the active_GB column for the third record. As you are

inserting new records, no Time Travel storage is created; this is expected behavior.

You expect the number of micro-partitions to be about 50% more than 9405:

SELECT parse_json(system$clustering_information ('lineitem_baseline', '(l_

shipdate)')):total_partition_count;

The returned micro-partition count is 14,074 indicating 4,669 new micro-partitions

were created in line with expectations.

The last SQL statement is a DELETE operation using an X-Small warehouse, which I

timed at more than six minutes to complete. The DELETE removed 3,000,013,782 records

and took around 20 minutes less to complete than the UPDATE and 12 minutes less than

the INSERT.

DELETE FROM tpc.tpc_owner.lineitem_baseline

WHERE l_linestatus = 'X';

Chapter 4 Micro-partitions

128

Then check the effect on storage by repeating the earlier query; you may experience

latency:

SELECT active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object = 'TPC.TPC_OWNER.LINEITEM_BASELINE';

Figure 4-9 shows four rows.

•	 The first row is the original expected data set size.

•	 The second row is after the UPDATE statement.

•	 The third row is after the INSERT statement.

•	 The fourth row shows the effect of the DELETE statement; note

that time_travel_GB increase due to the storage retained for the

DELETED rows.

Figure 4-9.  DELETE storage consumption

You know micro-partitions will have been replaced due to the DELETE; the new data

volume is reflected in the active_GB column for the fourth record. As you are deleting

records, Time Travel storage is retained; this is expected behavior.

You can expect the number of micro-partitions to be about 9,405.

SELECT parse_json(system$clustering_information ('lineitem_baseline',

'(l_shipdate)')):total_partition_count;

The returned micro-partition count is 9,362 indicating 4,712 micro-partitions were

removed in line with your expectations.

Chapter 4 Micro-partitions

129

The simple walk-through of the life cycle of data supports the earlier assertion of

both INSERT and DELETE operations being faster than UPDATE operations. Your mileage

may vary according to the volume, velocity, and variety of change experienced within

your application; note the retained data indicated by time_travel_GB can far exceed

initial expectations.

Unlike data ingestion and data consumption, for data processing, you have limited

options when considering how to reduce storage costs.

•	 Set Time Travel to the minimum required period for each object.

•	 Use temporary tables and transient tables where possible.

•	 Use clones noting that new micro-partitions are created when data

changes within the cloned object.

Snowflake recommends the use of temporary tables to hold intermediate result sets

to reduce query complexity.

�Data Consumption
In the previous section, I discussed data processing where you ingest data from your

staging tables and ingest into your core application components. You also began to see

the impact of data retention in support of Time Travel.

The same considerations apply to outbound data consumption where you will

observe storage is retained due to your data retention period, particularly when moving

data from third normal form to Data Vault 2.0 and then into star schemas with each data

model retaining a copy of all data. The important point to note is the physical cost of

storing multiple copies of data within your various models along with the hidden cost of

storage to support both Time Travel setting and Fail-Safe retention period.

Data consumption can lead to increased storage costs where you may need to

denormalize data. The same storage considerations apply when you create these objects

as you consume additional storage to support faster and more user-friendly data access

paths. You do not get anything for free, and system implementation is usually a trade-off.

There is always a price to pay either in terms of performance or storage.

Chapter 4 Micro-partitions

130

Where data sets are periodically rebuilt and history is not required, you might

consider optimizing your data consumption costs by doing the following:

•	 Set Time Travel to 0 for periodically rebuilt tables where persistence

is not required; note that Fail-Safe is retained for seven days.

•	 Use transient tables for periodically rebuilt tables with Time Travel

set to 0 as transient tables do not utilize Fail-Safe.

Both of these approaches imply periodically rebuilt tables can be rebuilt from source

within acceptable timeframes and with minimal business impact.

�Time Travel
In previous sections many references have been made to Time Travel, and you have seen

the impact of UPDATE, INSERT, and DELETE operations on data retention too.

Many Snowflake applications set Time Travel at the database level to 90 days

ensuring that all objects created within the database inherit the default setting. With

your new understanding of the storage implications for high Time Travel retention

settings, you must adopt a more nuanced approach.

Not all applications are equal; your requirements will differ accordingly, and the key

takeaway from the next suite of suggestions is to balance your efforts. Storage is relatively

cheap these days.

To assist tuning your storage design, I list some options for your consideration; again,

remember not to “boil the ocean.” Focus on the cheapest and quickest options to return

the maximum benefit for the minimum amount of expended effort.

•	 Where ingested data can easily be reloaded, choose either temporary

or transient tables.

•	 Where processed data is subject to high-frequency, low-volume DML

activity, set Time Travel as low as acceptable.

•	 Build intermediate data sets into temporary tables before loading

into core tables.

•	 Parallelize high-frequency, low-volume data loads to reduce micro-

partition churn.

•	 Adopt an insert-only design pattern such as Data Vault 2.0.

Chapter 4 Micro-partitions

131

•	 Where consumed data is periodically re-created, choose

transient tables.

•	 For large tables, implement optimal cluster keys to match the most

common data access paths; see the next chapter for details.

Let’s first identify the Time Travel settings for your TPC database:

SELECT retention_time

FROM snowflake.account_usage.databases

WHERE database_name = 'TPC'

AND deleted IS NULL;

Our query should return 90 indicating the Time Travel retention period is 90 days for

the TPC database.

Now create a table called lineitem_baseline_tt_test for immediate DROP; the Data

Retention Period data_retention_time_in_days is set to 1.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

The next statement CREATE TABLE AS SELECT (CTAS) will take a few minutes to run.

CREATE OR REPLACE TABLE tpc.tpc_owner.lineitem_baseline_tt_test

data_retention_time_in_days = 1

AS

SELECT *

FROM tpc.tpc_owner.lineitem_baseline;

Immediately drop your new table, lineitem_baseline_tt_test.

DROP TABLE tpc.tpc_owner.lineitem_baseline_tt_test;

Then reset your warehouse to X-SMALL.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Then check the effect on storage by executing the following query; you may

experience latency:

SELECT active_GB,

 time_travel_GB,

 failsafe_GB,

Chapter 4 Micro-partitions

132

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object

 = 'TPC.TPC_OWNER.LINEITEM_BASELINE_TT_TEST';

Figure 4-10 shows the retained but inaccessible storage for your created and then

immediately dropped table.

Figure 4-10.  Dropped table storage consumption

While storage for the dropped table is retained as active_GB, you cannot access

the table. You can prove the storage is inaccessible by attempting to SELECT from

the dropped table, which will result in failure, an exercise I leave for your further

investigation.

You can find more information on Time Travel at https://docs.snowflake.com/

user-guide/data-time-travel.

Data retained for Time Travel will later transition into Fail-Safe, which I discuss

shortly.

�Recovered Objects
You can recover the most recent version of a table using the UNDROP command for objects

dropped within the Data Retention Period, as this example shows:

UNDROP TABLE tpc.tpc_owner.lineitem_baseline_tt_test;

Prove you can access the data from your recovered object:

SELECT *

FROM tpc.tpc_owner.lineitem_baseline_tt_test

LIMIT 10;

To continue your investigation into Fail-Safe, you now DROP your test table again:

DROP TABLE tpc.tpc_owner.lineitem_baseline_tt_test;

Chapter 4 Micro-partitions

https://docs.snowflake.com/user-guide/data-time-travel
https://docs.snowflake.com/user-guide/data-time-travel

133

�Fail-Safe
Fail-Safe is an immutable seven-day period where micro-partitions on a best-effort basis

are retained for recovery with the assistance of Snowflake Support. Fail-Safe is a last-

resort; data is not accessible by any users.

Having dropped the test table in the previous section, you must wait until the

dropped micro-partitions transition through Time Travel into Fail-Safe. Note the Data

Retention Period for lineitem_baseline_tt_test was declared to be one day. You can

repeat the earlier query to check the storage:

SELECT active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object

 = 'TPC.TPC_OWNER.LINEITEM_BASELINE_TT_TEST';

Figure 4-11 shows your micro-partitions have transitioned to Fail-Safe.

The first row is your original image from Figure 4-10.	

•	 The second row is the new Fail-Safe data.

Figure 4-11.  Fail-safe storage consumption

You expect failsafe_GB to be the same as the original active_GB as Figure 4-11

demonstrates.

To recover data retained within Fail-Safe or raise a support ticket, see https://

community.snowflake.com/s/article/How-To-Submit-a-Support-Case-in-

Snowflake-Lodge.

You can find more information on Fail-Safe at https://docs.snowflake.com/en/

user-guide/data-failsafe and at https://docs.snowflake.com/en/user-guide/

data-cdp-storage-costs.

Chapter 4 Micro-partitions

https://community.snowflake.com/s/article/How-To-Submit-a-Support-Case-in-Snowflake-Lodge
https://community.snowflake.com/s/article/How-To-Submit-a-Support-Case-in-Snowflake-Lodge
https://community.snowflake.com/s/article/How-To-Submit-a-Support-Case-in-Snowflake-Lodge
https://docs.snowflake.com/en/user-guide/data-failsafe
https://docs.snowflake.com/en/user-guide/data-failsafe
https://docs.snowflake.com/en/user-guide/data-cdp-storage-costs
https://docs.snowflake.com/en/user-guide/data-cdp-storage-costs

134

�Cloned Objects
The cost of maintaining cloned objects is rarely discussed yet can contribute significant

storage costs. At the point of initial cloning, the original “parent” and cloned “child”

share the same micro-partitions. Assuming both parent and child are subject to different

DML actions using disparate data, the parent and child tables will diverge in content. But

what happens to the micro-partitions?

Micro-partitions for the parent will be superseded as expected with the full lineage

preserved according both Time Travel setting and Fail-Safe period.

Micro-partitions for the child untouched by DML activity for either parent or child

remain referenced back to the parent.

Figure 4-12 on the left shows both parent and child referencing the same micro-

partitions after cloning. On the right is the effect of DML activity to both the parent and

child showing how:

•	 Micro-partitions are created where contents diverge.

•	 Micro-partitions are moved to Time Travel where contents are

superseded.

Figure 4-12.  Cloned object storage consumption

Let’s investigate cloned object storage consumption using a practical example. You

will use partsupp_baseline and first check the allocated storage:

SELECT path_to_object,

 active_GB,

 time_travel_GB,

Chapter 4 Micro-partitions

135

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object = 'TPC.TPC_OWNER.PARTSUPP_BASELINE';

Figure 4-13 shows the expected result. Only active_GB storage is allocated.

Figure 4-13.  partsupp_baseline active storage

You now clone partsupp_baseline to partsupp_baseline_clone.

CREATE TABLE tpc.tpc_owner.partsupp_baseline_clone

CLONE tpc.tpc_owner.partsupp_baseline;

Now re-check consumed storage for both the parent and child tables.

SELECT path_to_object,

 active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object IN

 ('TPC.TPC_OWNER.PARTSUPP_BASELINE',

 'TPC.TPC_OWNER.PARTSUPP_BASELINE_CLONE');

The results should be identical to Figure 4-13 as shown indicating no additional

storage has been allocated for partsupp_baseline_clone.

Automatic clustering is suspended for cloned tables.

Chapter 4 Micro-partitions

136

In preparation for examining how updates to cloned tables affect storage, you pick a

random ps_suppkey and count how many rows will be affected.

SELECT count(1)

FROM partsupp_baseline_clone

WHERE ps_suppkey = 1305848;

You should see 80 rows returned.

You cannot know how many micro-partitions will be affected at this point, but for

reference, let’s identify the current micro-partition count for both parent and child

tables. You expect the returned counts to be identical as each object references the same

micro-partitions.

SELECT parse_json(system$clustering_information ('partsupp_baseline',

'(ps_suppkey)')):total_partition_count;

SELECT parse_json(system$clustering_information ('partsupp_baseline_

clone', '(ps_suppkey)')):total_partition_count;

Both return 1,679 micro-partitions.

Now update your clone table called partsupp_baseline_clone using your random

ps_suppkey value.

UPDATE tpc.tpc_owner.partsupp_baseline_clone

SET ps_comment = 'Clone Test'

WHERE ps_suppkey = 1305848;

You should see 80 rows updated.

And check whether storage has been affected by the UPDATE; you may experience latency:

SELECT path_to_object,

 active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object IN

 ('TPC.TPC_OWNER.PARTSUPP_BASELINE',

 'TPC.TPC_OWNER.PARTSUPP_BASELINE_CLONE');

Chapter 4 Micro-partitions

137

Figure 4-14 shows the expected result. Only active_GB storage is allocated for active

or current micro-partitions:

Figure 4-14.  partsupp_baseline and partsupp_baseline_clone Active Storage

As you see, active_GB for partsupp_baseline_clone demonstrates new micro-

partitions have been allocated for your updated data.

You might also re-check the number of micro-partitions for both the parent and

child; this may not be either informative or conclusive. You must remember it is not

possible to determine the internal clustering key attribute order. As you have only

updated the child table, the parent table micro-partition count will be constant. You

expect 1,679 micro-partitions to be returned by the next query:

SELECT parse_json(system$clustering_information ('partsupp_baseline',

'(ps_suppkey)')):total_partition_count;

And for partsupp_baseline_clone, you might see the same number of micro-

partitions, more, or fewer depending upon whether clustering is affected by the

UPDATE. In my environment, the next SQL statement returned the same 1,697 micro-

partition count as before:

SELECT parse_json(system$clustering_information ('partsupp_baseline_

clone', '(ps_suppkey)')):total_partition_count;

Our next objective is to illustrate how storage is retained for cloned objects when the

parent is dropped. First, confirm retention_time is set to one day.

SELECT table_name,

 retention_time

FROM tpc.information_schema.tables

WHERE table_name LIKE '%LINEITEM_BASELINE%';

You expect both partsupp_baseline and partsupp_baseline_clone are set to one

day; if not, issue the next SQL statement.

ALTER TABLE tpc.tpc_owner.partsupp_baseline

SET data_retention_time_in_days = 1;

Chapter 4 Micro-partitions

138

Having confirmed the data retention period, let’s drop the parent table.

DROP TABLE tpc.tpc_owner.partsupp_baseline;

And check whether storage has been affected by the earlier UPDATE; you may

experience latency.

SELECT path_to_object,

 active_GB,

 time_travel_GB,

 failsafe_GB,

 retained_for_clone_GB

FROM v_table_storage_metrics

WHERE path_to_object IN

 ('TPC.TPC_OWNER.PARTSUPP_BASELINE',

 'TPC.TPC_OWNER.PARTSUPP_BASELINE_CLONE');

Figure 4-15 shows the expected result where active_GB storage is allocated for active

or current micro-partitions.

Figure 4-15.  partsupp_baseline and partsupp_baseline_clone Active Storage

You must wait at least one day before storage migrates to time_travel_GB after

which time you expect to see the following:

•	 The active_GB value reduces as any unreferenced micro-partitions

for the dropped parent table transition to time_travel_GB.

•	 time_travel_GB increases reflecting the unreferenced dropped

parent table micro-partitions.

•	 When Time Travel data retention period for the dropped parent table

expires, failsafe_GB to increase and time_travel_GB to decrease.

During your testing, after three days, you found the storage did not migrate to time_

travel_GB. You suspect the default cluster key on the “parent” table did not cause micro-

partitions to be de-referenced.

Chapter 4 Micro-partitions

139

There is an important side effect. While you would expect the parent table retention

period to age out old micro-partitions, you find the retained micro-partitions allow

UNDROP operations, leading to the recovery of the partsupp_baseline table.

UNDROP TABLE tpc.tpc_owner.partsupp_baseline;

While I would not choose to rely upon unexpected micro-partition retention to

UNDROP objects, I suggest this action may be possible and should not be discounted.

Simply put, you cannot determine whether UNDROP will work until you try, and an

attempt to UNDROP has a temporal component.

�Data Sharing and Replication
Data sharing within the same CSP and region is implemented by sharing micro-

partitions with consumers via Secure Direct Data Share, Private Listings, or Snowflake

Marketplace. Consumers ingesting shared data reference current micro-partitions only;

they see data producer transactions in real time at zero cost. Consumers cannot see any

historical transactions, nor can they access Time Travel or Fail-Safe for the producer

account.

Replication is implemented by shipping changed micro-partitions to consuming

accounts using either database replication or account replication. Ingesting replicated

micro-partitions requires replication to be configured, which is a timed refresh event and

therefore not real time.

A full investigation of data sharing and replication is beyond the scope of this book

and is worthy of a significant chapter on its own, which I delivered in my previous book,

Maturing the Snowflake Data Cloud.

You can find more information at https://docs.snowflake.com/en/guides-

overview-sharing.

�Micro-partitions End to End
Throughout this chapter you have worked through how micro-partitions are both

expected and observed to transition from active through Time Travel and Fail-Safe and

then removal while also considering cloning.

You also investigated how the data retention period and Account Usage Store

latency affects observability of transitions across each state. You also learned there are

Chapter 4 Micro-partitions

https://docs.snowflake.com/en/guides-overview-sharing
https://docs.snowflake.com/en/guides-overview-sharing

140

several unknown factors relating to the frequency at which both the Snowflake internal

processes run and process interactions for information collation affect latency.

Micro-partitions are a difficult subject to address.

Based on just Snowflake-supplied information, I have found this chapter difficult to

write, so here I present the best interpretation of the available evidence.

In general, you see the Snowflake state transition holds true, though observability

proves difficult, if not impossible, to accurately define in time. Taking all factors into

consideration, the closest analog is to say that observability is eventually consistent with

expectations, but I cannot say exactly when consistency occurs.

In an ideal situation, you would observe the following behavior using

mocked-up data.

First, create a table with data_retention_time_in_days = 1.

Examine storage using the view v_table_storage_metrics. Figure 4-16 shows the

expected result where active_GB storage is allocated for the sample table.

Figure 4-16.  Sample table active storage at creation

After creation you update your table contents.

When latency has expired, you re-examine the storage. Figure 4-17 shows the

expected result where the active_GB value has changed.

Figure 4-17.  Sample table active storage after update

When micro-partitions have transitioned into Time Travel and latency has elapsed,

Figure 4-18 shows the expected result where the time_travel_GB value has changed.

Chapter 4 Micro-partitions

141

Figure 4-18.  Sample table time travel storage

After both data_retention_time_in_days and latency have elapsed, Figure 4-19

shows the expected result where the failsafe_GB value has changed.

Figure 4-19.  Sample table fail-safe storage

After seven days, your micro-partitions are removed. Figure 4-20 shows the expected

result where failsafe_GB value has changed back to zero.

Figure 4-20.  Sample table micro-partition removal

A similar sequence can be derived for cloned tables with updates.

�Micro-partition Pitfalls
With Snowflake, the ability to clone and recover objects “at will” brings unforeseen

challenges when managing your accounts.

•	 Developers and operations support staff forget to clean up temporary

objects created during production releases and maintenance

activities.

•	 Stages also consume storage.

•	 Internal stages should be monitored for use and periodically

removed where possible.

•	 External stages consume CSP storage and likewise require

periodic cleanup.

Chapter 4 Micro-partitions

142

•	 Deleting an external stage does not remove files contained within

the external stage.

•	 Incorrectly setting object data retention periods leads to excessive

storage retention.

•	 Using permanent tables where transient or temporary tables are

more cost effective.

•	 Database and object explosion where new environments are cloned

for regression testing but never deleted.

•	 Cloning and Time Travel:

•	 These make object retention too easy, leading to bad practices.

•	 Reduced storage requirements when judiciously used for creating

development and test environments.

Where the cost is zero, the demand is infinite. My observation is that controlling

costs are typically focused on credit consumption and not on managing storage

costs. Universally CSP storage is cheap, roughly $23/TB at the time of writing, though

this figure is CSP and region specific. For small data footprints, the costs are almost

insignificant, but at petabyte scale, the costs quickly escalate.

As your Snowflake usage increases and environment matures, I suggest the

following:

•	 Implementing central storage monitoring

•	 Adopting guidelines for “acceptable use” of cloning and Time Travel

•	 Periodically reviewing environments to mitigate against

increasing storage

•	 In multi-tenant environments, cross-charging each tenant for their

storage in addition to their runtime consumption

Chapter 4 Micro-partitions

143

�Summary
In this chapter, I covered micro-partitions and different ways to identify the number of

micro-partitions belonging to an object.

I then explained how time affects micro-partition observability along with a

discourse on the idealized micro-partition life cycle.

Stepping through the traditional segments of an application life cycle illustrated

the impact of incorrectly setting data retention periods. I then provided justification for

using transient tables for specific components within your applications.

Our investigation into Time Travel, Fail-Safe, and cloning demonstrated hidden

storage costs incurred by micro-partition retention. I then identified some challenges

with uncontrolled cloning and made recommendations to mitigate such actions.

With a firm grasp of micro-partitions, appropriate object creation, use, and

maintenance, I will next discuss cluster keys.

Chapter 4 Micro-partitions

247
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_7

CHAPTER 7

Search Optimization
Service
Earlier chapters discussed clustering, materialized views, dynamic tables, and the Query

Acceleration Service (QAS). In this chapter I cover the Search Optimization Service

(SOS) as an alternative but complementary approach.

At a fundamental level, query optimization resolves micro-partition pruning to

reduce the number of micro-partitions accessed for queries. Viewed from a pure micro-

partition pruning perspective, without considering summaries and aggregates, SOS

adopts a different approach to enable micro-partition pruning, thereby extending the

range of options available to improve query optimizer efficiency.

SOS is a little-understood but very powerful Snowflake service focused on pre-

building optimized data structures called search access paths maintained via serverless

compute. As you will discover in this chapter, search access paths only reference

micro-partitions containing explicitly referenced values. For those familiar with legacy

RDBMSs, you might consider search access paths to be single-attribute, index-like

constructs as they perform similar functionality.

Every serverless compute capability incurs compute cost, and SOS also incurs

additional storage costs; therefore, we advise both caution with thorough investigation

and testing of appropriate use cases before enabling SOS in your production

applications.

Not every query will benefit from SOS; you must align SOS enablement with

optimal consumption usage. Figure 7-1 suggests where each serverless compute

feature offers optimal benefits; note that SOS is targeted at data consumption from the

Presentation layer.

https://doi.org/10.1007/979-8-8688-0379-6_7#DOI

248

Figure 7-1.  Serverless compute feature use

Figure 7-1 is illustrative only and suggests where features may be best placed for

optimal performance and cost; your implementation may differ. I suggest materialized

views may be used for ingest where the typical use case is to flatten JSON and not for

other performance reasons. The use case for materialized views in the curation step is

to express alternate cluster keys to facilitate a wider range of query predicates. For the

Presentation layer, the use case is more closely aligned to performance optimization

through summarization, aggregation, and pre-filtering prior to consumption.

SOS can be thought of as an overlay directly related to clustering; if a table is re-

clustered, SOS should first be dropped, the table re-clustered, and then SOS enabled.

SOS is intended to easily accelerate queries with selective predicates where tables have a

high number of micro-partitions. Both statements provide insight into how SOS operates

internally. SOS provides alternative mappings for micro-partition lookups to improve

query lookup pruning.

SOS is not a silver bullet and must be selectively implemented; we discuss how to
make an effective determination for use later in this chapter.

You can find the SOS documentation at https://docs.snowflake.com/en/user-

guide/search-optimization-service.

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/user-guide/search-optimization-service
https://docs.snowflake.com/en/user-guide/search-optimization-service

249

�Search Optimization Service Explained
Enabling SOS for a table does not imply full coverage of all the possible query predicate

operations. By default, an SOS-enabled table creates EQUALITY search access paths

only. A wider range of search access paths should be created by deliberate intent on

an attribute-by-attribute basis according to known query predicates. I discuss optimal

usage scenarios later in this chapter; note that there are many exclusions too.

Search optimization should be applied retrospectively and cannot pro-actively

predict future use but must be part of a well-considered holistic approach to application

performance tuning. We suggest SOS is enabled in production systems where

predictable workloads exist and baseline system performance has been established.

While QAS has no storage component and is focused on compute, QAS can

accelerate queries within specific boundaries and may be used with SOS where both

services complement each other. You can fine more information on QAS and SOS

interaction at https://docs.snowflake.com/en/user-guide/search-optimization-

service#compatibility-with-query-acceleration.

SOS implements an alternative to clustering by creating search access paths for

each enabled table. Search access paths may take time to create, and any changes to the

underlying table content will need to be reflected into the search access paths; note that

serverless compute is an asynchronous background process.

You must also be aware of both storage and compute cost implications of enabling

SOS. As mentioned, Snowflake provides a suite of services, and you may not need to use

every available feature. For example, if a non-SOS enabled query takes two seconds to

fulfil, will the same SOS-enabled query fulfilled in one second make enough difference

to justify the cost?

Before investigating how to implement SOS, let’s examine where SOS can add

benefit.

�Optimal Use Scenarios
According to SOS’s design intent, SOS is targeted at tables with high numbers of micro-

partitions for queries with selective predicates.

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/user-guide/search-optimization-service#compatibility-with-query-acceleration
https://docs.snowflake.com/en/user-guide/search-optimization-service#compatibility-with-query-acceleration

250

Where explicitly declared, SOS performs optimally against large tables when

returning small subsets of data for highly selective query predicates. Here are some

examples:

•	 Table attribute = <value>

•	 Table attribute IN (<value_1>, <value_2>…)

You can find more information at https://docs.snowflake.com/en/user-guide/

search-optimization/point-lookup-queries.

Partial attribute value and regular expressions can also benefit from SOS.

•	 Table attribute LIKE (and variants)

•	 Table attribute REGEXP

You can find more information at https://docs.snowflake.com/en/user-guide/

search-optimization/substring-queries.

Semi-structured queries can also benefit from SOS. You can find more information

at https://docs.snowflake.com/en/user-guide/search-optimization/semi-

structured-queries.

Likewise, geospatial queries can also benefit from SOS. You can find more

information at https://docs.snowflake.com/en/user-guide/search-optimization/

geospatial-queries.

Having identified where SOS can benefit queries, you can now examine where SOS

cannot be used.

�Excluded Use Scenarios
Not every query will benefit from search optimization; notably SOS does not support

these scenarios:

•	 External tables

•	 Materialized views

•	 Columns defined with a COLLATE clause

•	 Column concatenation

•	 Analytical expressions

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/user-guide/search-optimization/point-lookup-queries
https://docs.snowflake.com/en/user-guide/search-optimization/point-lookup-queries
https://docs.snowflake.com/en/user-guide/search-optimization/substring-queries
https://docs.snowflake.com/en/user-guide/search-optimization/substring-queries
https://docs.snowflake.com/en/user-guide/search-optimization/semi-structured-queries
https://docs.snowflake.com/en/user-guide/search-optimization/semi-structured-queries
https://docs.snowflake.com/en/user-guide/search-optimization/geospatial-queries
https://docs.snowflake.com/en/user-guide/search-optimization/geospatial-queries

251

•	 Casts on table columns (except for fixed-point numbers cast to

strings)

•	 Floating-point data types

•	 GEOMETRY data type

You can find more information on excluded scenarios at https://docs.snowflake.

com/en/user-guide/search-optimization/queries-that-benefit#queries-that-do-

not-benefit-from-search-optimization.

�Search Optimization Implementation
Having identified scenarios where SOS can provide performance optimization, let’s

examine how to implement SOS.

You can start by reusing the previously created TPC environment.

SET tpc_owner_role = 'tpc_owner_role';

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

SET tpc_database = 'tpc';

SET tpc_owner_schema = 'tpc.tpc_owner';

Enabling SOS requires adding the entitlement ADD SEARCH OPTIMIZATION to the role

tpc_owner_role.

USE ROLE securityadmin;

GRANT ADD SEARCH OPTIMIZATION ON SCHEMA IDENTIFIER ($tpc_owner_schema) TO

ROLE IDENTIFIER ($tpc_owner_role);

Set the execution context.

USE ROLE IDENTIFIER ($tpc_owner_role);

USE DATABASE IDENTIFIER ($tpc_database);

USE SCHEMA IDENTIFIER ($tpc_owner_schema);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/user-guide/search-optimization/queries-that-benefit#queries-that-do-not-benefit-from-search-optimization
https://docs.snowflake.com/en/user-guide/search-optimization/queries-that-benefit#queries-that-do-not-benefit-from-search-optimization
https://docs.snowflake.com/en/user-guide/search-optimization/queries-that-benefit#queries-that-do-not-benefit-from-search-optimization

252

�Estimating Table Search Optimization Costs
As previously discussed, you should selectively enable SOS on a table-by-table basis

according to usage and perceived benefits. I will discuss how to enable SOS on an

attribute by attribute basis later in this chapter; within this section I am establishing

broad principles.

You should note SOS estimates are just that: an SOS estimate does not guarantee

real-world delivery of suggested benefit. The Snowflake documentation suggests

actual realized costs can vary by 50 percent or more. You can find more information

at https://docs.snowflake.com/en/sql-reference/functions/system_estimate_

search_optimization_costs.

Invoking cost estimation for a table can be done like this:

SELECT system$estimate_search_optimization_costs

('tpc.tpc_owner.lineitem_baseline');

The returned JSON record when formatted using https://jsonformatter.org/ and

annotated with comments looks like Figure 7-2.

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/sql-reference/functions/system_estimate_search_optimization_costs
https://docs.snowflake.com/en/sql-reference/functions/system_estimate_search_optimization_costs
https://jsonformatter.org/

253

Figure 7-2.  Example estimate search optimization costs

Note the following when estimating search optimization costs:

•	 The source table was not enabled for search optimization.

•	 Investigating search optimization took 24 seconds to process.

Chapter 7 Search Optimization Service

254

•	 There are three costs:

•	 Initial build costs of 10.8 credits.

•	 Storage costs of 0.14TB/month, which will vary according to DML

operations.

•	 Monthly maintenance costs, which will vary according to DML

operations.

•	 Estimates were derived from approximately the past seven days of

activity; in this example, zero activity occurred.

As you can see from this information, recent historical DML operations against

our target table will affect estimated numbers. Furthermore, the activity period may be

affected by the Time Travel setting.

The generated costs are for the table.

I recommend search optimization costs are derived from real-world usage and not

from local testing.

After initially enabling SOS, monitor the costs closely.

For every SOS-enabled table and attribute, costs should be monitored on a periodic

basis to ensure costs remain within budget appetite.

�Enabling Table Search Optimization
Assuming the estimated costs are within the budget appetite and the role is entitled, to

enable SOS for an individual table, do this:

ALTER TABLE tpc.tpc_owner.lineitem_baseline ADD SEARCH OPTIMIZATION;

Enabling search optimization does not imply the Snowflake SOS background service

is immediately invoked; you are likely to experience a delay before search optimization is

available. To determine whether the Snowflake SOS background service has completed,

you must rerun this query:

Chapter 7 Search Optimization Service

255

SELECT system$estimate_search_optimization_costs

('tpc.tpc_owner.lineitem_baseline');

Figure 7-3 shows the StorageCosts “value” populated indicating the Snowflake

SOS background service has completed. A value of 0 indicated the Snowflake SOS

background service is in the process of executing.

Figure 7-3.  Search optimization enabled

You can find more information on search optimization at https://docs.

snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-

searchoptimizationaction.

You can investigate how search optimization has been applied to a table.

DESCRIBE SEARCH OPTIMIZATION ON tpc.tpc_owner.lineitem_baseline;

As the partial screenshot shown in Figure 7-4 illustrates, all table attributes are

shown as “active” with the method EQUALITY.

Figure 7-4.  Table search optimization results

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-searchoptimizationaction
https://docs.snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-searchoptimizationaction
https://docs.snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-searchoptimizationaction

256

For reporting purposes you can also extract the “method” and “target”

programmatically.

SELECT "method",

 "target"

FROM TABLE (RESULT_SCAN (last_query_id()))

WHERE "active" = 'true';

A drawback to implementing table search optimization is cost. Maintaining all

attributes on high-velocity, low-volume DML environments results in frequent SOS

invocation. We should only consider enabling search optimization for those attributes or

partial attributes used within query predicates, discussed next.

�Enabling Attribute Search Optimization
Having explained how to enable search optimization for a table, you can now investigate

how to set up search optimization for both individual attributes and JSON fields within

a VARIANT data type for a table. Most data types are supported, though there are some

notable exceptions listed earlier in “Excluded Scenarios.”

Three types of attribute search optimization are supported.

•	 EQUALITY: Match for NUMBER, STRING, BINARY, and VARIANT

JSON fields

•	 SUBSTRING: Partial match for STRING BINARY and VARIANT JSON fields

•	 GEO: Match for GEOGRAPHY data type

To enable SOS for an individual table attribute, use this:

ALTER TABLE tpc.tpc_owner.lineitem_baseline

ADD SEARCH OPTIMIZATION

ON EQUALITY (l_shipmode);

Where attributes meet search optimization criteria, you can set both EQUALITY and

SUBSTRING as shown next:

ALTER TABLE tpc.tpc_owner.lineitem_baseline

ADD SEARCH OPTIMIZATION

ON EQUALITY (l_shipmode), SUBSTRING (l_shipmode);

Chapter 7 Search Optimization Service

257

Now examine active search optimization.

DESCRIBE SEARCH OPTIMIZATION ON tpc.tpc_owner.lineitem_baseline;

Confirm search optimization is enabled for both methods, as shown in Figure 7-5.

Figure 7-5.  Search optimization methods enabled

You can leave the GEOGRAPHY data type for your further investigation.

You can find more information on search optimization at https://docs.

snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-

searchoptimizationaction.

�Table Type Support
In this section I will cover the different types of tables supported by SOS. We build each

table from the same source table, snowflake_sample_data.tpch_sf1000.lineitem, and

then apply the same search optimization criteria before testing the outcome. You then

select an arbitrary high-cardinality value for l_partkey used for every query returning

27 rows.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

SELECT l_partkey,

 count(*)

FROM tpc.tpc_owner.lineitem_baseline

GROUP BY l_partkey

HAVING count (*) > 2

LIMIT 10;

The steps are identical for each table type; let’s now investigate how SOS works with

each table type.

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-searchoptimizationaction
https://docs.snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-searchoptimizationaction
https://docs.snowflake.com/en/sql-reference/sql/alter-table#label-alter-table-searchoptimizationaction

258

�Standard Table

Creating lineitem_baseline_std with a subset of attributes ensures you have a

consistent starting point for later query profile comparison. I also summarize DATE

attribute l_shipdate to YYYYMM format and convert the data type to VARCHAR.

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

Re-creating lineitem_baseline_std will take a few minutes:

CREATE OR REPLACE TABLE lineitem_baseline_std

AS

SELECT l_shipmode, l_partkey, l_comment,

 TO_VARCHAR (

 DATE_PART (YEAR, l_shipdate)||

 DATE_PART (MONTH, l_shipdate)) AS l_shipdate_yyyymm

FROM snowflake_sample_data.tpch_sf1000.lineitem;

To ensure consistency when checking Search Optimization usage, we now create

EQUALITY and SUBSTRING search access paths for l_shipmode:

ALTER TABLE tpc.tpc_owner.lineitem_baseline_std

ADD SEARCH OPTIMIZATION

ON EQUALITY (l_shipmode), SUBSTRING (l_shipmode), EQUALITY

(l_partkey);

Now examine active search optimization.

DESCRIBE SEARCH OPTIMIZATION ON

tpc.tpc_owner.lineitem_baseline_std;

Check search optimization is enabled for the expected attributes, as shown in

Figure 7-6.

Chapter 7 Search Optimization Service

259

Figure 7-6.  Standard table search optimization enabled

Estimating search optimization costs for the standard table indicates the SOS is

enabled.

SELECT system$estimate_search_optimization_costs

('tpc.tpc_owner.lineitem_baseline_std');

You should see search optimization is enabled.

Let’s now query the table to invoke search optimization by using an enabled attribute

within the predicates.

SET tpc_warehouse_M = 'tpc_wh_medium';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_M);

SELECT l_comment

FROM tpc.tpc_owner.lineitem_baseline_std

WHERE l_partkey = '31587234';

The query ran in 1.6 seconds.

Checking the query profile as shown in Figure 7-7 proves search optimization was

successfully used.

Figure 7-7.  Standard table search optimization profile

Chapter 7 Search Optimization Service

260

�Dynamic Table

Create a dynamic table called dt_lineitem_baseline_sos; note that this will take some

time to complete, in my test environment about one hour and 45 minutes. We also

summarize DATE attribute l_shipdate to YYYYMM format and convert the data type to

VARCHAR:

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

CREATE OR REPLACE DYNAMIC TABLE dt_lineitem_baseline_sos

TARGET_LAG = '30 MINUTES'

WAREHOUSE = tpc_wh_xsmall

AS

SELECT l_shipmode, l_partkey, l_comment,

 TO_VARCHAR (

 DATE_PART (YEAR, l_shipdate)||

 DATE_PART (MONTH, l_shipdate)) AS l_shipdate_yyyymm

FROM snowflake_sample_data.tpch_sf1000.lineitem;

Now resume the dynamic table.

ALTER DYNAMIC TABLE dt_lineitem_baseline_sos RESUME;

Then refresh the dynamic table.

ALTER DYNAMIC TABLE dt_lineitem_baseline_sos REFRESH;

Set search optimization on the desired attributes.

ALTER TABLE tpc.tpc_owner.dt_lineitem_baseline_sos

ADD SEARCH OPTIMIZATION

ON EQUALITY (l_shipmode), SUBSTRING (l_shipmode), EQUALITY

(l_partkey);

Now examine active search optimization.

DESCRIBE SEARCH OPTIMIZATION

ON tpc.tpc_owner.dt_lineitem_baseline_sos;

Chapter 7 Search Optimization Service

261

Check that search optimization is enabled for the expected attributes, as shown in

Figure 7-8.

Figure 7-8.  Dynamic table search optimization enabled

However, when we attempt to estimate search optimization costs we will see

an error:

SELECT system$estimate_search_optimization_costs ('tpc.tpc_owner.dt_

lineitem_baseline_sos');

Invalid value ['tpc.tpc_owner.dt_lineitem_baseline_sos'] for function
'SYSTEM$ESTIMATE_SEARCH_OPTIMIZATION_COSTS', parameter
1: argument is not a supported table for search optimization.

While search optimization appears to be set for dynamic tables, you cannot see
the costs.

Let’s examine the dynamic table dt_lineitem_baseline_sos.

SET tpc_warehouse_M = 'tpc_wh_medium';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_M);

SELECT l_comment

FROM tpc.tpc_owner.dt_lineitem_baseline_sos

WHERE l_partkey = '31587234';

The query ran in 8.5 seconds.

Chapter 7 Search Optimization Service

262

Checking the query profile did not show search optimization access but instead a

table scan, as shown in Figure 7-9.

Figure 7-9.  Dynamic table search optimization profile

You can conclude that search optimization at the time of writing is not fully
implemented; the ability to enable SOS indicates it’s a work in progress.

�Transient Table

I would not usually enable SOS on a transient table though your use case may require

SOS enabled for specific transient tables. This section is to prove or disprove that SOS

can be enabled for a transient table.

Create a transient table called lineitem_baseline_trans. You also summarize DATE

attribute l_shipdate to YYYYMM format and convert the data type to VARCHAR.

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

CREATE OR REPLACE TRANSIENT TABLE lineitem_baseline_trans

AS

SELECT l_shipmode, l_partkey, l_comment,

 TO_VARCHAR (

 DATE_PART (YEAR, l_shipdate)||

 DATE_PART (MONTH, l_shipdate)) AS l_shipdate_yyyymm

FROM snowflake_sample_data.tpch_sf1000.lineitem;

Chapter 7 Search Optimization Service

263

Now attempt to add search optimization to the new TRANSIENT table lineitem_

baseline_trans.

ALTER TABLE tpc.tpc_owner.lineitem_baseline_trans

ADD SEARCH OPTIMIZATION

ON EQUALITY (l_shipmode), SUBSTRING (l_shipmode), EQUALITY (l_

partkey);

Now examine active Search Optimization:

DESCRIBE SEARCH OPTIMIZATION ON tpc.tpc_owner.lineitem_baseline_trans;

Check the search optimization is enabled for the expected attributes, as shown in

Figure 7-10.

Figure 7-10.  Transient table search optimization enabled

Estimating search optimization costs for the transient table indicates SOS is enabled.

SELECT system$estimate_search_optimization_costs ('tpc.tpc_owner.lineitem_

baseline_trans');

A JSON record should be returned indicating search optimization is enabled.

Let’s examine the transient table lineitem_baseline_trans.

SET tpc_warehouse_M = 'tpc_wh_medium';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_M);

SELECT l_comment

FROM tpc.tpc_owner.lineitem_baseline_trans

WHERE l_partkey = '31587234';

Chapter 7 Search Optimization Service

264

The query ran in 1.7 seconds.

Checking the query profile as shown in Figure 7-11 proves search optimization was

successfully used.

Figure 7-11.  TRANSIENT table search optimization profile

�Temporary Table

I would not usually attempt to enable SOS on a temporary table. This section is to prove

or disprove SOS can be enabled for a temporary table. Note the keywords TEMP and

VOLATILE are synonyms for TEMPORARY.

Create a temporary table called lineitem_baseline_temp. You can also summarize

DATE attribute l_shipdate to YYYYMM format and convert data the type to VARCHAR:

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

CREATE OR REPLACE TEMPORARY TABLE lineitem_baseline_tmp

AS

SELECT l_shipmode, l_partkey, l_comment,

 TO_VARCHAR (

 DATE_PART (YEAR, l_shipdate)||

 DATE_PART (MONTH, l_shipdate)) AS l_shipdate_yyyymm

FROM snowflake_sample_data.tpch_sf1000.lineitem;

Now attempt to add search optimization to the new TEMPORARY table lineitem_

baseline_tmp.

ALTER TABLE tpc.tpc_owner.lineitem_baseline_tmp

ADD SEARCH OPTIMIZATION

ON EQUALITY (l_shipmode), SUBSTRING (l_shipmode), EQUALITY

(l_partkey);

Chapter 7 Search Optimization Service

265

You cannot add search optimization to temporary tables and should see the

following error:

Error: Invalid materialized view definition. Source table 'TPC.TPC_
OWNER.LINEITEM_BASELINE_TMP' should not be temporary.
(line nn)

You cannot enable SOS for temporary tables.

�Conclusion

Search optimization cannot be enabled for all table types, as shown in Figure 7-12.

Figure 7-12.  Search optimization table coverage

Rerunning the standard table query after our dynamic table had been created did

not cause the dynamic table to be used. Search optimization was preferred.

SELECT l_comment

FROM tpc.tpc_owner.lineitem_baseline_std

WHERE l_partkey = '31587234';

�Disabling Table Search Optimization
You can disable SOS by doing the following:

ALTER TABLE tpc.tpc_owner.lineitem_baseline_std DROP SEARCH OPTIMIZATION;

Note SOS will report StorageCosts after SOS is disabled; this is consistent with

Time Travel and Fail Safe behavior where you would expect search optimization to be

preserved in a consistent manner with object content.

SELECT system$estimate_search_optimization_costs ('tpc.tpc_owner.lineitem_

baseline_std');

Chapter 7 Search Optimization Service

266

Confirm search optimization is disabled, as shown in Figure 7-13.

Figure 7-13.  Search optimization disabled

�Timeliness
As previously stated, the Snowflake SOS background service runs asynchronously;

therefore, I cannot be sure of when the search access paths for an enabled table will

complete. Furthermore, when the table data changes, the search access paths will

update during which time queries might run more slowly. This behavior is explained

within the Snowflake documentation at https://docs.snowflake.com/en/user-guide/

search-optimization-service#how-the-search-optimization-service-works.

I suggest search optimization should not be implemented on empty tables nor on

tables where high velocity DML operations occur.

�Best Practices
Implementing SOS can significantly improve the performance of some queries. I offer

the following guidelines when considering SOS:

•	 The candidate table should have a high number of micro-partitions.

•	 High cardinality attributes are ideally suited to SOS.

•	 Apply SOS on a selective attribute basis where known access

paths exist.

•	 Use SOS for tables with low-velocity DML operations.

•	 Match existing point lookup query predicates to attribute values.

Conversely, these scenarios are to be avoided when implementing SOS:

•	 Low number of micro-partitions

•	 Low cardinality attributes

•	 Unsupported data types

Chapter 7 Search Optimization Service

https://docs.snowflake.com/en/user-guide/search-optimization-service#how-the-search-optimization-service-works
https://docs.snowflake.com/en/user-guide/search-optimization-service#how-the-search-optimization-service-works

267

•	 Low query execution time (less than a few seconds)

•	 The query predicates are:

•	 Not EQUALITY or SUBSTRING

•	 Contained within an IN list

•	 The result of a subquery

•	 A relatively large result set in comparison to the full data set

•	 A SQL function in the query on the target table attribute

Search optimization does not support the leading attribute of a cluster key as this

already provides for micro-partition pruning.

Snowflake is continually evolving, and SOS is no exception. At the time of writing,

query join acceleration, promising a dramatic speedup for star schema joins, is being

worked on, as disclosed during Snowflake Summit in June 2023.

�Summary
This chapter introduced SOS and then suggested where SOS may best be deployed

within a typical application footprint before indicating optimal usage and limitations.

SOS is not a silver bullet and must be selectively applied. SOS implemented on tables

with high-velocity, low-volume DML operations will prove costly to maintain. I also

showed that implementing SOS at the table level in most scenarios will also prove costly,

and you should prefer to implement SOS for individual attributes instead. However, also

note that SOS provides a capability to reference individual values within a JSON record,

which is a very useful feature.

Your focus should be on enabling SOS for individual attributes only.

The walk-through of search optimization provided insight into how SOS works,

noting the asynchronous nature of the service. Both compute costs and storage costs are

incurred, noting the interaction with the Time Travel and Fail Safe settings. I explained

how to investigate both storage and compute costs then working through reference test

cases for standard tables, dynamic tables, transient tables, and temporary tables.

Chapter 7 Search Optimization Service

268

Testing is crucial to both proving performance benefits and for controlling costs.

No investigation would be complete without discussing the timeliness of search

access path maintenance and the implications of high-velocity DML changes to the

source table.

Finally, we offer a best-practice guide summarizing the optimal patterns where SOS

provides the most benefit.

For your further investigation, you may find these articles helpful:

•	 https://community.snowflake.com/s/article/Search-

Optimization-When-How-To-Use

•	 https://community.snowflake.com/s/article/Search-

Optimization-When-How-To-Use-Part-2

•	 https://community.snowflake.com/s/article/Search-

Optimization-When-How-To-Use-Part-3

Drawing our investigation into SOS to a close, you will now investigate how to

improve the data pipeline processing speed by parallelizing your code.

Chapter 7 Search Optimization Service

https://community.snowflake.com/s/article/Search-Optimization-When-How-To-Use
https://community.snowflake.com/s/article/Search-Optimization-When-How-To-Use
https://community.snowflake.com/s/article/Search-Optimization-When-How-To-Use-Part-2
https://community.snowflake.com/s/article/Search-Optimization-When-How-To-Use-Part-2
https://community.snowflake.com/s/article/Search-Optimization-When-How-To-Use-Part-3
https://community.snowflake.com/s/article/Search-Optimization-When-How-To-Use-Part-3

269
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_8

CHAPTER 8

Parallelization
This chapter marks a change of focus for the remainder of this book as we will now look

to solving real-world performance issues. My experience is derived from developing and

implementing pragmatic solutions to seemingly intractable problems.

Throughout this chapter, you will investigate a performance issue step-by-step

using an example data ingestion process based upon my real-world experience. I will

offer a diagnostic approach to educate and inform how to approach problems with the

expectation that the implementation of proactive monitoring will expose future risks.

Snowflake is the latest and greatest data warehouse to hit the market and has rightly

attracted a lot of positive attention. However, for some, Snowflake is expensive to run;

this criticism is mostly ill-founded and arises due to misunderstanding and misapplying

best practices when implementing Snowflake. There is also a general reluctance to tune

existing applications when porting to Snowflake, a bad mistake to make.

Operating in a cloud-based global marketplace presents different challenges for both

data distribution to closed local applications operating within a corporate network and

service delivery via dedicated on-prem hardware in fixed data centers. Your approach

must adapt, because what has served you well in the past will not serve you well into

the future.

Curation of data incurs both cost and time. In our new global marketplace paradigm,

you must also replicate data seamlessly and accept that replicating data incurs both cost

and time.

While you adopt a Snowflake-centric view of this data marketplace strategy, you

must also consider how to act as a “data master” and enable distribution to other vendor

offerings.

There is plenty to investigate, so let’s look at some foundational information to

expose where problems occur in some existing applications. Then later you’ll see how to

remediate them.

https://doi.org/10.1007/979-8-8688-0379-6_8#DOI

270

�Foundational Information
In this section, I will describe the basic concepts relating to a typical application design

used within previous chapters while expanding the application scope to distribute data

globally.

For this investigation let’s will assume an additional requirement to distribute our

offerings globally, as indicated by Figure 8-1.

Figure 8-1.  Example global application perspective

The example focuses on batch inbound data, while the same principles apply to

inbound streamed data. The velocity is likely to be higher, and the volume of each

streamed data set will be lower. The net effect of ingesting streamed data will be higher

micro-partition churn. To mitigate against performance impact, you might adopt a

halfway house of consolidating streamed data into batches before applying in bulk.

What follows is a broad outline of every application at a very high level. Data

is ingested on the left, and products are consumed on the right. Extending our

consumption model by distributing data across marketplaces, regions, cloud service

providers (CSPs), and disparate platforms presents further challenges.

IYou offer this information as a broad analog for all application data flows along with

indicative Data Manipulation Language (DML) actions. The information supplied is not

intended to suggest there is a single right way to construct applications.

Let’s investigate the outline function of each application container individually.

�Data Products
Throughout this chapter I use the term “data product” to refer to data curated into a

product or feature resulting in a value-added component that a client consumes. Data

products may be distributed free of charge or commercialized in some manner. In

essence, a data product is “something” a client wants to consume.

Chapter 8 Parallelization

271

�Ingest
Apart from the initial seeding of an application, steady-state data ingestion typically

involves modest data volumes at known frequency. You expect your load testing will

have informed your warehouse strategy and provide an indicative maximum velocity per

feed or consistent data set ingestion approach.

Ingesting data into application raw or staging tables is a prerequisite before merging

ingested data into a suite of core tables where you curate your data products. As a rule of

thumb and discussed at length in Chapter 6, you should plan for X-Small warehouses for

data ingestion.

Raw or staged data contains the following:

•	 New data that does not exist in the core tables; new data is usually

inserted into core tables.

•	 Old data marked for removal from the core tables; old data is usually

physically deleted or logically deleted from core tables.

•	 Changed data for existing records in the core tables; changed data is

usually updated, or new data is inserted, and then old data is logically

deleted from core tables.

You should know both the frequency of data ingestion (the velocity) and the type of

DML (the volume) for INSERT, UPDATE, and DELETE operations to be performed on our

core tables as this information will prove essential later.

All applications ingest data. For the purposes of our investigation, you will use the

supplied TPC data set as our data source.

�Curate
Data products are created from the combination of intellectual property usually in the

form of bespoke logic and the ingestion of data. When data meets business process,

value results.

As I identified in my earlier book Building the Snowflake Data Cloud, data in

its correct context provides information. This is more clearly stated using the data,

information, knowledge, wisdom (DIKW) pyramid; see https://en.wikipedia.org/

wiki/DIKW_pyramid.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6
https://en.wikipedia.org/wiki/DIKW_pyramid
https://en.wikipedia.org/wiki/DIKW_pyramid

272

Information is derived from data via consolidation, cleansing, transformation,

and consumption processes. Knowledge—the intellectual property—is derived from

information, and wisdom is gained from applying knowledge. Figure 8-2 illustrates the

relationship between each layer of the DIKW pyramid, demonstrating the value chain.

Figure 8-2.  DIKW pyramid

Data products are the resultant “value-add” enabling organizations to monetize their

intellectual property without disclosing their internal methodology, or, if you prefer, their

“secret sauce.”

With intellectual property embedded within the data processing pipelines, curating

data products involves maintaining core table data with content from the raw or staging

tables. As a rule of thumb and discussed at length in Chapter 6, you should plan for a

Medium warehouse for data curation. However, as you will see later within this chapter,

parallelization may allow a smaller warehouse to be used in a more efficient manner.

Without igniting a debate regarding the data modeling style implemented within an

application, you should understand the profile of your core data and the cluster keys and

match your ingestion process to the core data model and structures. The efficient processing

of data is the core theme of this chapter, and I will unpack this theme in detail later.

�Produce
Your objective is to deliver curated data products to your clients. Traditional data

distribution mechanisms such as secure file transfer via SFTP and on-premise dedicated

server provisioning are being replaced with automated, seamless approaches. Along

with supporting traditional data distribution mechanisms, Snowflake offers several new

and innovative data distribution approaches, as shown in Figure 8-3.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6

273

Figure 8-3.  Snowflake data distribution patterns

In addition to those patterns shown in Figure 8-3, you might also deliver your data

products via external mechanisms, but for the purposes of this section you will limit

yourself to local Snowflake account reporting or Secure Direct Data Sharing (SDDS)

where you implement point-to-point data sharing, as shown in Figure 8-4.

Figure 8-4.  Secure Direct Data Share usage

Figure 8-4 shows the capability to share the current version of data held within an

object, or a functional component with a co-located client account. The important point

to note for SDDS is that both the provider and consumer accounts must reside within the

same CSP and region. Replication can be to any supported CSP and region, noting that

replication incurs additional cost.

Data products are not delivered to clients as an “all-or-nothing” proposition. In other

words, not every client will purchase all licensable data products; they may prefer to

purchase a subset of available data products instead. You must consider how to entitle

your data products for client consumption. Due to both complexity and performance

considerations, this subject is treated separately within the next chapter.

Chapter 8 Parallelization

274

You may choose a variety of data distribution models and do not prescribe any

particular approach. For local Snowflake account consumption, as a rule of thumb

and discussed at length in Chapter 6, you should plan for Small warehouses for data

consumption.

�Distribution Venues
Your focus within this book so far has been to develop an understanding of how

Snowflake works internally to minimize costs and maximize performance. It might not

be obvious why you are investigating data product distribution across disparate venues,

CSP locations, and software platforms.

Using Snowflake to master data product curation is an excellent strategy for success

though mastering typically occurs in a single location, preferably close to the inbound

data sources. But your clients probably operate globally and want to consume your

data products according to their individual needs, which may involve specific file

formats, data subsets, geographical locations, and alternate consumption products and

platforms.

Any data product provider must consider their offering as one or more inputs to their

client’s infrastructure, perhaps a single box within a complex environment. Adopting

a client-centric approach provides insight and informs your approach to data product

distribution.

Data replication can be both more complex and costly than first thought. Efficient

processing of the inbound data will also positively impact how you distribute the data

products too.

To provide broader context for the later investigation, let’s briefly examine some

distribution venues.

�Snowflake Marketplaces

Snowflake operates both Private Listings and Marketplace, and each is maintained

through Snowsight, the default Snowflake-supplied user interface. Snowsight enables

client access to predefined objects within a Snowflake account.

Figure 8-5 illustrates the Snowflake-provisioned one-to-many models for data

interchange between a single provider and one or more consumers.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6

275

Figure 8-5.  Data exchange and Marketplace

Data exchange and Marketplace provision data products within a single CSP region

and across CSPs and regions providing global coverage to all Snowflake locations.

�Snowflake Regions and CSPs

Snowflake data product distribution occurs via replication, that is, a timed event

to ingest changed micro-partitions from a master site into a secondary site. Using

replication incurs latency. There may be time gaps between mastering and availability of

a data product at a source site and fulfilment at a replicated site.

Figure 8-6 illustrates Snowflake share and replication options.

Chapter 8 Parallelization

276

Figure 8-6.  Snowflake data interchange

You can find more information about Snowflake-supported regions at https://

docs.snowflake.com/en/user-guide/intro-regions.

When implementing data sharing across regions and CSPs, you must be mindful

of costs. You can find more information on Snowflake data transfer costs at https://

docs.snowflake.com/en/user-guide/cost-understanding-data-transfer?utm_

source=legacy.

Snowflake replication costs are always paid by the data provider regardless of the
data transfer mechanism.

Snowflake does not permit re-sharing either shared or replicated data, as Figure 8-7

illustrates.

Chapter 8 Parallelization

https://docs.snowflake.com/en/user-guide/intro-regions
https://docs.snowflake.com/en/user-guide/intro-regions
https://docs.snowflake.com/en/user-guide/cost-understanding-data-transfer?utm_source=legacy
https://docs.snowflake.com/en/user-guide/cost-understanding-data-transfer?utm_source=legacy
https://docs.snowflake.com/en/user-guide/cost-understanding-data-transfer?utm_source=legacy

277

Figure 8-7.  Snowflake data share restriction

Imported databases, whether derived from a share or from replicated database,

cannot be reshared. The same principle applies to data products shared via data

exchange and marketplace.

�CSP Marketplaces

CSPs also operate their own marketplaces, for example, AWS Data Exchange (ADX),

Azure Marketplace, and Google Cloud Marketplace. Data interchange costs must also be

considered for hydrating each target marketplace. Note that data egress costs may apply.

�Iceberg, Platforms, and S3-Compatible Storage Support

Snowflake supports Iceberg tables; see https://www.snowflake.com/blog/unifying-

iceberg-tables/.

Outside of the Snowflake ecosystem, several other distribution venues exist

including Google Big Query, Databricks, Microsoft Fabric, and other non-Snowflake

supported CSPs.

You should also be mindful that Snowflake offers third-party data integration

capability via S3-compatible storage.

�Logging
Multiple processes that are logging event information into a single table will serialize all

concurrent processes as each logging process locks the target table and micro-partitions

are written.

Chapter 8 Parallelization

https://www.snowflake.com/blog/unifying-iceberg-tables/
https://www.snowflake.com/blog/unifying-iceberg-tables/

278

I offered a solution to serialized logging in Chapter 6 by implementing an EVENT table

and noted that only a single EVENT table can be active at any given time.

EVENT information must be periodically collated into a separate log table for long-

term audit trail preservation.

�Optimizing Data Processing
Every application has an optimal or target processing time from data landing in raw or

staging tables through to content appearing within the client-consumed data product.

In most cases, clients will pay a premium for faster data product updates, change

propagation, and availability.

You goal should be to both reduce cost and improve timeliness across the

whole application life cycle from the initial point of data ingestion through to client

consumption. For this to become reality, you must adopt a holistic approach to

identifying the root causes of both cost consumption and latency and then apply

effective remediation.

I assume you have checked your code for Cartesian joins, long compilation times,

long execution times, and long table scans as part of the user acceptance tests and

commissioning into production.

Let’s look at an example system as viewed from the client perspective.

�Problem Statement
Several clients have observed that the time it takes for data to appear in their licensed

product is getting progressively slower month over month. The first step is to validate the

client’s claim by checking the telemetry information logged for the feed. Let’s assume the

feed contains normal data volumes, and the logged information corroborates the client

claim. You confirm the feed runtimes have marginally degraded over time.

From the information supplied and analysis conducted by your product support

team, you deduce one single inbound data feed, and onward ingestion into the core data

set is affected. Figure 8-8 illustrates the left-to-right data flows for our sample feed.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6

279

Figure 8-8.  Sample data feed

�Warehouse Factors
The investigation starts by identifying factors external to the feed process that may affect

data ingestion, starting with the warehouse. In this example and typical for most data

ingestion patterns, you will use an X-Small warehouse.

Answer these questions:

•	 Are there any warehouse queueing, spills to disk, or OOMs evident?

•	 Is the warehouse overloaded, queueing, or blocking?

•	 Is the data feed overrunning its schedule leading to feeds backing up?

•	 Are costs increasing over time?

Figure 8-9 illustrates the warehouse scaling options.

Chapter 8 Parallelization

280

Figure 8-9.  Warehouse scaling options

For the affected data load, you should first look at the latest run query profile. You are

looking for spills to disk and OOM errors, both covered in Chapter 3. If either is evident,

you should consider either scaling up the ingest warehouse size to the next size or

reducing warehouse concurrency.

The following query repeated from Chapter 3 identifies spills to disk and OOM

errors. Replace warehouse_name with your chosen value:

SET tpc_owner_role = 'tpc_owner_role';

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

SET tpc_database = 'tpc';

SET tpc_owner_schema = 'tpc.tpc_owner';

USE ROLE IDENTIFIER ($tpc_owner_role);

USE DATABASE IDENTIFIER ($tpc_database);

USE SCHEMA IDENTIFIER ($tpc_owner_schema);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_3
https://doi.org/10.1007/979-8-8688-0379-6_3

281

SELECT query_id,

 warehouse_name,

 warehouse_size,

 bytes_spilled_to_local_storage,

 bytes_spilled_to_remote_storage,

 bytes_sent_over_the_network

FROM snowflake.account_usage.query_history

WHERE warehouse_name = '<YOUR_WAREHOUSE_HERE>'

AND bytes_spilled_to_remote_storage > 0;

The next check is for concurrency; you should investigate the number of concurrent

processes running at the same time your clients were reporting issues. If you observe

either queueing or blocking, then you should consider scaling out your ingest warehouse

by adding clusters. You could also implement the Query Acceleration Service as

discussed in Chapter 6.

The following query repeated from Chapter 6 identifies overlapping subset of records

using the same named warehouse and specific date_time. Replace variables with your

chosen values:

CREATE OR REPLACE VIEW v_warehouse_workload_by_hour COPY GRANTS

AS

SELECT warehouse_name,

 start_time,

 end_time,

 query_id,

 query_text,

 total_elapsed_time / 1000 AS total_elapsed_time_in_secs,

 queued_overload_time ,

 transaction_blocked_time,

 DATE_PART ('YYYY', start_time)||

 LPAD (DATE_PART ('MM', start_time), 2, '0')||

 LPAD (DATE_PART ('DD', start_time), 2, '0')||'_'||

 LPAD (DATE_PART ('HOUR', start_time), 2, '0')

 AS date_time

FROM snowflake.account_usage.query_history

WHERE execution_time <> 0

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6
https://doi.org/10.1007/979-8-8688-0379-6_6

282

ORDER BY warehouse_name,

 start_time DESC;

SELECT v1.start_time,

 v1.end_time,

 v1.query_id,

 v1.total_elapsed_time_in_secs,

 v1.date_time

FROM v_warehouse_workload_by_hour v1

WHERE EXISTS

 (

 SELECT 1

 FROM v_warehouse_workload_by_hour v2

 WHERE v2.start_time <= v1.end_time

 AND v2.end_time >= v1.start_time

 AND v2.date_time = v1.date_time

 AND v2.query_id != v1.query_id

)

AND v1.warehouse_name = '<YOUR_WAREHOUSE_HERE>'

AND v1.date_time = '<YOUR_DATE_TIME_HERE>'

ORDER BY v1.start_time DESC;

Scaling across should be avoided as this approach can both reduce concurrency and

increase costs, as explained within Chapter 6.

Next, check the logged information to ensure feed runtimes do not exceed the

service-level agreements (SLAs), and ensure each run completes before the next batch

cycle. You must prove there is no backlog accruing throughout the day, which unwinds

during the quiet times. Historical performance monitoring will prove very useful

in predicting future capacity issues, because trends often foretell future problems.

Assuming event logging is used, extracting the start time from the end time for each

process will determine the runtime. This is an exercise I leave to you for your further

investigation. Note that Chapter 6 contains information about event logging.

Having investigated the external factors that may have affected your feed, you

determine the warehouse is not overloaded and shows no signs of queueing. Analyzing

the recent query profiles does not show spills to disk or OOMs. The logged information

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6
https://doi.org/10.1007/979-8-8688-0379-6_6

283

does not show feed runtimes or breach the SLAs, but historical performance monitoring

does show a worrying trend: feed runtimes are increasing for a steady workload profile.

You should also check costs where you find warehouse runtimes are increasing and

therefore increasing consumption costs. Then you notice something surprising: data

replication costs are higher than the cost of curating data.

�Ingest Factors
Let’s continue the investigation by identifying factors internal to the feed process that

may affect data ingestion.

The inbound data lands in the raw or staging table. The actual delivery mechanism

is unimportant, but to add flavor, let’s assume the bulk load operation occurs via a COPY

command from file held in external CSP storage.

Raw or staged data contains new records for INSERT, changed records for UPDATE,

and old data marked for DELETE. You assume either unique records are loaded into our

staging table or a mechanism exists to de-duplicate data prior to MERGE into the target

core table.

The ingest process must also identify a primary key, unique composite key, or hash

for merging into the target core table. Your real-world application will already have

solved these challenges, but new applications will need to consider how to do the same.

Not shown are validation routines and setting NULL values to known defaults, these

may be edge cases and either positively excluded from your application design or

explicitly included within your application design.

Figure 8-10 shows the steps involved in preparing the feed for ingestion into a

core table.

Figure 8-10.  Ingest data preparation

Chapter 8 Parallelization

284

Having set out contextual information, let’s aim to answer these questions:

•	 DML volume for INSERT, UPDATE, and DELETE operations

•	 Core table data volume and number of micro-partitions

•	 Core table cluster key definition; you can assume a cluster key

is defined

•	 Staged table data profile

•	 Core table data profile

You assume the raw or staged data contains equal numbers of INSERT, UPDATE, and

DELETE operations. From Chapter 4 you know that both INSERT and DELETE operations

complete faster than UPDATE operations.

Knowing the target core table data volume allows you to determine the percentage

change for INSERT, UPDATE, and DELETE operations. The number of target core table

micro-partitions is useful but not essential; of more significance is the number of micro-

partitions to be replicated.

The staged data profile is of particular interest, you can assume the sample data is

typical in profile; in other words, the data is not skewed nor misrepresenting the usual

data loaded.

For the example, you can assume the source staged table data has these attributes of

significance for merging data:

•	 Unique identifier: The primary, unique, or hash key for the record

•	 Record start date: The business date from which the record is valid

•	 DML operation: Letter (I, U, D) indicating the type of operation to

perform on the target core table

The three attributes identified from the source staged table data enable us to

effectively implement a MERGE statement. But the three attributes are highly unlikely to

match the target table cluster key, which must be defined according to business needs,

not technical data maintenance needs.

You must understand how the staged data matches the target core table data.

Note that the cluster key will lead with the least selective attribute first and then the

next least selective attribute, and so on. This information is crucial for developing the

parallelization strategy.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_4

285

�Curation Factors
You might ask yourself why you cannot separate the three INSERT, UPDATE, and DELETE

parts of the MERGE statement and run these in parallel. Answering this question involves

understanding how Snowflake maintains micro-partitions and implements table

locking; I discussed these subjects within Chapter 4.

Figure 8-11 shows the impact of attempting to run three concurrent processes for

INSERT, UPDATE, and DELETE in parallel against a single-core table. You will experience

blocking as the first process locks the core table and completes a DELETE operation; then

the next queued process will lock the core table and complete before the final process

locks the core table and completes.

Figure 8-11.  Serialized DML operations

The “Law of Unintended Consequences” (https://en.wikipedia.org/wiki/

Unintended_consequences) serializes the parallel processes. The observant might note

this is exactly the same effect described for logging information in Chapter 6.

If you are determined to serialize the DML operations, the optimal order of

application is as follows:

•	 DELETE: Reduces the data volume for later DML activity

•	 UPDATE: Operates against the minimal data volume in the object

•	 INSERT: Adds new records to increase object data volume

Merging data may also include enriching with reference data and maintenance of

bitemporal attributes mentioned for completeness only.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_4
https://en.wikipedia.org/wiki/Unintended_consequences
https://en.wikipedia.org/wiki/Unintended_consequences
https://doi.org/10.1007/979-8-8688-0379-6_6

286

If your data model is “Insert only,” then you might avoid some concurrency issues,

but most applications are not designed for “Insert only” at the outset.

Your aim is to maximize parallelization while minimizing cost; I discuss this next.

�Parallel Processing
Every time you execute DML, you either instantiate a new warehouse or consume a

processing unit from an already running warehouse. Figure 8-12 illustrates the effect of

instantiating a new X-Small warehouse for a single DML statement.

Figure 8-12.  Warehouse single processing unit consumption

Your aim is to utilize every processing unit within every active cluster. When a

warehouse runs, you pay for the whole runtime; costs are not apportioned to each

processing unit executing DML. For maximum efficiency, you must utilize every

processing unit within active warehouses, as shown in Figure 8-13.

Chapter 8 Parallelization

287

Figure 8-13.  Warehouse full processing unit consumption

As I identified previously, splitting the MERGE statement into its component DML

operations will not work as the outcome serializes the workflow. You need a different

approach: segment the target core table.

To parallel process a data load, you must consider these factors:

•	 How to shard the target core table into physical partitioned tables

•	 Number of warehouse concurrent processing units required per feed

•	 Orchestrating physical partition loads

•	 Impact of partition load completion versus full table load

•	 Denormalizing physical partitions to represent the physical

core table

Figure 8-14 shows a high-level design to implement parallel processing of a

single feed noting there will be “n” segmented tables according to the segmentation

key chosen.

Chapter 8 Parallelization

288

Figure 8-14.  Parallel processing high-level design

Adopting this design pattern for an existing application allows the selective

replacement of a poorly performing ingestion pipeline with highly performant

components and minimal system impact.

�Setting Up Application Tables
In this section I will simulate an existing application raw or staging table along with a

target core table both populated with sample data. Figure 8-15 illustrates the immediate

objective.

Figure 8-15.  Setup objective

Begin by declaring a single-core table clustered in a geographic region and use an

X-Large warehouse due to high data volumes.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xl);

Chapter 8 Parallelization

289

Use a standard table called base_customer_order to hold a baseline set of data for

later use.

CREATE OR REPLACE TABLE base_customer_order

AS

SELECT c.c_custkey AS customer_key,

 c.c_name AS customer_name,

 o.o_orderkey AS order_key,

 o.o_orderdate AS order_date,

 n.n_name AS nation_name,

 r.r_name AS region_name

FROM snowflake_sample_data.tpch_sf1000.region r,

 snowflake_sample_data.tpch_sf1000.nation n,

 snowflake_sample_data.tpch_sf1000.customer c,

 snowflake_sample_data.tpch_sf1000.orders o

WHERE c.c_custkey = o.o_custkey

AND c.c_nationkey = n.n_nationkey

AND n.n_regionkey = r.r_regionkey;

Create a target core table to simulate an existing application table.

CREATE OR REPLACE TABLE core_customer_order

AS

SELECT customer_key, customer_name, order_key, order_date,

 nation_name, region_name

FROM base_customer_order;

Now add a clustering key on region_name and nation_name.

ALTER TABLE tpc.tpc_owner.core_customer_order

CLUSTER BY (region_name, nation_name);

Reset the warehouse to X-Small.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Count the number of records created and identify the latest order_date and highest

order_key values, because you will use this information shortly when creating raw or

staging data.

Chapter 8 Parallelization

290

SELECT count(1),

 MAX (order_date),

 MAX (order_key)

FROM core_customer_order;

The new table should contain 1,500,000,000 records with the latest order_date of

1998-08-02 and highest order_key value set to 6,000,000,000.

Let’s now create a raw or staging table noting the addition of the operation and

stg_timestamp attributes.

CREATE OR REPLACE TABLE stg_customer_order

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25),

operation VARCHAR(1),

stg_timestamp TIMESTAMP_NTZ

);

LIMIT returns random rows. For repeatable test cases with known values, you must

create repeatable consistent records for the INSERT operation.

CREATE OR REPLACE TABLE base_customer_order_insert

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25),

operation VARCHAR(1),

stg_timestamp TIMESTAMP_NTZ

)

AS

Chapter 8 Parallelization

291

SELECT customer_key,

 customer_name,

 order_key + 1000000000,

 DATE_TRUNC ('DAY', current_date()),

 nation_name,

 region_name,

 'I',

 current_timestamp()

FROM base_customer_order

WHERE order_key > 5000000000

LIMIT 100000;

Create records for the UPDATE operation.

CREATE OR REPLACE TABLE base_customer_order_update

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25),

operation VARCHAR(1),

stg_timestamp TIMESTAMP_NTZ

)

AS

SELECT customer_key,

 customer_name,

 order_key,

 DATE_TRUNC ('DAY', current_date()),

 nation_name,

 region_name,

 'U',

 current_timestamp()

FROM base_customer_order

WHERE order_key < 1000000000

LIMIT 100000;

Chapter 8 Parallelization

292

Create records for a DELETE operation. Note that the important attributes are

order_key and operation. The remainder will not be used for this example. However,

if logically deleting from a bitemporal model, then stg_timestamp would be used to set

the record valid_to date.

CREATE OR REPLACE TABLE base_customer_order_delete

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25),

operation VARCHAR(1),

stg_timestamp TIMESTAMP_NTZ

)

AS

SELECT customer_key,

 customer_name,

 order_key,

 DATE_TRUNC ('DAY', current_date()),

 nation_name,

 region_name,

 'D',

 current_timestamp()

FROM base_customer_order

WHERE order_key BETWEEN 1000000000 AND 5000000000

LIMIT 100000;

Using our base data, now populate the raw or staging table, stg_customer_order.

INSERT OVERWRITE INTO stg_customer_order

SELECT *

FROM base_customer_order_insert

UNION ALL

SELECT *

FROM base_customer_order_update

Chapter 8 Parallelization

293

UNION ALL

SELECT *

FROM base_customer_order_delete;

Note UNION ALL runs faster than UNION thus avoiding a SORT operation to
determine distinct rows.

Let’s confirm the raw or staging data has been created as expected:

SELECT count(1),

 operation

FROM stg_customer_order

GROUP BY operation;

You should see 100,000 records each for INSERT, UPDATE, and DELETE.

With a low record sample size, you run the risk of generating a skewed data set. To

prevent this scenario, confirm you have records for all regions, and note the number of

regions for later use.

SELECT count(1),

 region_name

FROM stg_customer_order

GROUP BY region_name;

Figure 8-16 shows sample expected results. Because of the way LIMIT works, your

results will vary.

Figure 8-16.  Regions and row counts

Chapter 8 Parallelization

294

With the raw or staged data created and core table prepared, you are ready to

investigate how to modify the application schema.

�Testing Core Table Load
With your newly create raw or staged data, let’s establish how long your data pipeline

takes to merge the content into the target core table.

Commence testing using an X-Small warehouse and increase the size to provide

indicative timings having reset the target core table and set the same cluster key for

each run.

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

SET tpc_warehouse_S = 'tpc_wh_small';

SET tpc_warehouse_M = 'tpc_wh_medium';

SET tpc_warehouse_L = 'tpc_wh_large';

SET tpc_warehouse_XL = 'tpc_wh_xlarge';

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_XS);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_S);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_M);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_L);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_XL);

MERGE INTO core_customer_order c

USING stg_customer_order s

ON c.order_key = s.order_key

WHEN MATCHED AND operation = 'D' THEN DELETE

WHEN MATCHED AND operation = 'U' THEN

 UPDATE SET customer_key = s.customer_key,

 customer_name = s.customer_name,

 order_date = s.order_date,

 nation_name = s.nation_name,

 region_name = s.region_name

WHEN NOT MATCHED AND operation = 'I' THEN

 INSERT (customer_key,

 customer_name,

 order_key,

Chapter 8 Parallelization

295

 order_date,

 nation_name,

 region_name)

 VALUES (s.customer_key,

 s.customer_name,

 s.order_key,

 s.order_date,

 s.nation_name,

 s.region_name);

Figure 8-17 shows the effect of changing the warehouse size for the same workload

MERGE into a consistent reset target core table.

Figure 8-17.  Warehouse effect on MERGE

Note the Spills to Disk value for X-Small and Small warehouses.

Having set the warehouse performance baseline, let’s now segment the target

core table.

�Core Table Segmentation
Identifying the target core table’s clustering key is crucial for developing a parallelization

strategy as the target core table clustering key lead attribute is usually the prime

candidate to segment the target core table. You are looking for a low-cardinality

manageable range of attributes matching the most commonly used query predicates.

Chapter 8 Parallelization

296

Good table segmentation candidates include the following:

•	 Geographic region

•	 Summary date/year range

Returning to the customer complaint, let’s investigate how the application process

can be improved by segmenting a core table.

While you have created sample data with known numbers of INSERT, UPDATE, and

DELETE operations, you cannot parallelize using this technical dimension as the target

core table is clustered using region_key and nation_key. The DML will block as the

micro-partitions will be locked until each operation has completed.

Figure 8-18 illustrates the objective for this section, which is to take a single core

table and segment according to the current clustering key definition.

Figure 8-18.  Segmentation objective

Before proceeding, ensure all grants to the original core table are preserved for later

modification and reuse.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

SHOW GRANTS ON TABLE core_customer_order;

SELECT 'GRANT '||"privilege"||' ON '||"granted_on"||' '||

 LOWER (REPLACE ("name", '"', ''))||

 ' TO ROLE '||LOWER ("grantee_name")||';'

FROM TABLE (RESULT_SCAN (last_query_id()));

From the previous check, you know there are five regions. You will use this

information to derive the segmented tables for the target core table.

Chapter 8 Parallelization

297

CREATE OR REPLACE TABLE part_customer_order_asia

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25)

);

CREATE OR REPLACE TABLE part_customer_order_europe

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25)

);

CREATE OR REPLACE TABLE part_customer_order_africa

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25)

);

CREATE OR REPLACE TABLE part_customer_order_america

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

Chapter 8 Parallelization

298

nation_name VARCHAR(25),

region_name VARCHAR(25)

);

CREATE OR REPLACE TABLE part_customer_order_middle_east

(

customer_key NUMBER(38,0),

customer_name VARCHAR(25),

order_key NUMBER(38,0),

order_date DATE,

nation_name VARCHAR(25),

region_name VARCHAR(25)

);

Now create data for each segmented table from our base table, base_

customer_order.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_m);

INSERT INTO part_customer_order_asia

SELECT *

FROM base_customer_order

WHERE region_name = 'ASIA';

INSERT INTO part_customer_order_europe

SELECT *

FROM base_customer_order

WHERE region_name = 'EUROPE';

INSERT INTO part_customer_order_africa

SELECT *

FROM base_customer_order

WHERE region_name = 'AFRICA';

INSERT INTO part_customer_order_america

SELECT *

FROM base_customer_order

WHERE region_name = 'AMERICA';

Chapter 8 Parallelization

299

INSERT INTO part_customer_order_middle_east

SELECT *

FROM base_customer_order

WHERE region_name = 'MIDDLE EAST';

To preserve backward compatibility and be minimally invasive to the application,

you will drop the original table and replace with a view of the same name.

DROP TABLE core_customer_order;

CREATE OR REPLACE VIEW core_customer_order

COPY GRANTS

AS

SELECT customer_key, customer_name, order_key, order_date,

 nation_name, region_name

FROM part_customer_order_asia

UNION ALL

SELECT customer_key, customer_name, order_key, order_date,

 nation_name, region_name

FROM part_customer_order_europe

UNION ALL

SELECT customer_key, customer_name, order_key, order_date,

 nation_name, region_name

FROM part_customer_order_africa

UNION ALL

SELECT customer_key, customer_name, order_key, order_date,

 nation_name, region_name

FROM part_customer_order_america

UNION ALL

SELECT customer_key, customer_name, order_key, order_date,

 nation_name, region_name

FROM part_customer_order_middle_east;

Chapter 8 Parallelization

300

Confirm the row count from the new view, core_customer_order, matches the

original table row count of 1,500,000,000.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

SELECT count(1)

FROM core_customer_order;

To preserve backward compatibility, re-create the grants for the original table,

which would look something like this, substituting in the role names to match your

environment:

GRANT INSERT, UPDATE, DELETE, TRUNCATE ON TABLE

part_customer_order_asia TO ROLE <YOUR_INGEST_ROLE>;

GRANT INSERT, UPDATE, DELETE, TRUNCATE ON TABLE

part_customer_order_europe TO ROLE <YOUR_INGEST_ROLE>;

GRANT INSERT, UPDATE, DELETE, TRUNCATE ON TABLE

part_customer_order_africa TO ROLE <YOUR_INGEST_ROLE>;

GRANT INSERT, UPDATE, DELETE, TRUNCATE ON TABLE

part_customer_order_america TO ROLE <YOUR_INGEST_ROLE>;

GRANT INSERT, UPDATE, DELETE, TRUNCATE ON TABLE

part_customer_order_middle_east TO ROLE <YOUR_INGEST_ROLE>;

GRANT SELECT ON VIEW

core_customer_order TO ROLE <YOUR_CONSUMER_ROLE>;

With the target core table segmented and reconstituted via a view, let’s now

investigate parallelizing data ingestion.

�Concurrent Warehouse Processing
Each segment requires a matching warehouse processing unit as you will shard the data

to match the clustering key range.

Figure 8-19 shows how you can automate the data ingest using one pair of streams

and tasks per partition; you also use a common stored procedure. Using a common

stored procedure enables a parameter-driven approach to parallelization. Alternative

orchestration tooling exists, which I will leave to you for your further investigation.

Chapter 8 Parallelization

301

Figure 8-19.  Concurrent processing pattern

This example uses five partition tables, which may reduce the warehouse size

from Medium to Small. As recommended throughout this book, testing will determine

the optimal warehouse size, and any suggestion on appropriate warehouse size must

be proven.

With five partition tables, you will require five streams, five tasks, and a single

parameterized stored procedure.

You must create streams before populating raw or staging tables with data to ensure

each stream registers the loaded data.

DML order is significant: truncate before creating streams.

To ensure the steams are populated, you first use TRUNCATE on the staging table stg_

customer_order and then reload each data set for INSERT, UPDATE, and DELETE.

TRUNCATE TABLE stg_customer_order;

Create five streams on the raw or staging table, one for each target partition table.

CREATE OR REPLACE STREAM strm_part_customer_order_asia

ON TABLE stg_customer_order;

CREATE OR REPLACE STREAM strm_part_customer_order_europe

ON TABLE stg_customer_order;

CREATE OR REPLACE STREAM strm_part_customer_order_africa

ON TABLE stg_customer_order;

CREATE OR REPLACE STREAM strm_part_customer_order_america

ON TABLE stg_customer_order;

CREATE OR REPLACE STREAM strm_part_customer_order_middle_east

ON TABLE stg_customer_order;

Chapter 8 Parallelization

302

Now populate the raw or staging table stg_customer_order using the known base

data for each DML operation from earlier.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_m);

INSERT OVERWRITE INTO stg_customer_order

SELECT *

FROM base_customer_order_insert

UNION

SELECT *

FROM base_customer_order_update

UNION

SELECT *

FROM base_customer_order_delete;

With the test data configured and the target core table reconfigured as five

segmented tables, you can do the following:

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

SELECT count(1)

FROM part_customer_order_asia;

For this data set, you see 300,094,996 records; your record count will differ. Make a

note of this number.

SELECT count(1)

FROM stg_customer_order

WHERE region_name = 'ASIA';

For this data set, you see 60,417 records; your record count will differ. Make a note of

this number.

�Stream Interaction
Streams are an ideal mechanism for identifying change data capture on a base object,

but their usage can be confusing. Let’s examine use cases for integrating streams into our

data pipeline.

Chapter 8 Parallelization

303

�Testing Streams
When developing a test case, you carry out these steps:

	 1.	 Create a staging table.

	 2.	 Populate the staging table with test data.

	 3.	 Run a MERGE statement.

	 4.	 TRUNCATE the staging table.

	 5.	 Create five streams.

	 6.	 Populate the staging table with test data.

If you examine the contents of a single stream, you observe a single record (step 6).

SELECT count(1),

 metadata$action,

 metadata$isupdate

FROM strm_part_customer_order_asia

WHERE region_name = 'ASIA'

GROUP BY metadata$action,

 metadata$isupdate;

You should see 30,000 INSERTs, as shown in Figure 8-20.

Figure 8-20.  Stream output

By design intent streams do not record UPDATEs but instead record UPDATEs as a

pair of INSERT and DELETE operations where metadata$isupdate is set to true. Where

metadata$isupdate is set to false, this indicates the DML operations are not related.

Use metadata$row_id to correlate INSERT and DELETE pairs, an exercise left to you.

For this use case you can use the presence of data in a STREAM to trigger a TASK, which

calls a stored procedure where you consume from the stream.

Chapter 8 Parallelization

304

Streams can go stale where the data is not consumed within the retention period

and ensure each stream is cleared out before reuse. You can find more information on

streams going stale at https://community.snowflake.com/s/article/The-query-

that-reads-or-consumes-the-stream-is-failing. When a stream goes stale, re-

creating the stream will solve the issue though the contained data may be lost.

In this section I have called out how our specific implementation uses streams; you

can learn more about steams at https://docs.snowflake.com/en/sql-reference/sql/

create-stream.

�Creating Stored Procedures
Let’s create a stored procedure passing region_name as a parameter that must match the

segment suffix you are processing.

CREATE OR REPLACE PROCEDURE sp_merge_test_load (P_REGION STRING)

RETURNS string

LANGUAGE javascript

EXECUTE AS CALLER

AS

$$

 var sql_stmt = "";

 var err_state = "";

 var result = "";

 sql_stmt = "MERGE INTO part_customer_order_" + P_REGION + " c\n"

 sql_stmt += "USING strm_part_customer_order_" + P_REGION + " s\n"

 sql_stmt += "ON c.order_key = s.order_key\n"

 sql_stmt += "AND s.region_name = '" + P_REGION + "'\n"

 sql_stmt += "WHEN MATCHED AND s.operation = 'D' THEN DELETE\n"

 sql_stmt += "WHEN MATCHED AND s.operation = 'U' THEN\n"

 sql_stmt += " UPDATE SET customer_key = s.customer_key,\n"

 sql_stmt += " customer_name = s.customer_name,\n"

 sql_stmt += " order_date = s.order_date,\n"

 sql_stmt += " nation_name = s.nation_name,\n"

 sql_stmt += " region_name = s.region_name\n"

 sql_stmt += "WHEN NOT MATCHED\n"

Chapter 8 Parallelization

https://community.snowflake.com/s/article/The-query-that-reads-or-consumes-the-stream-is-failing
https://community.snowflake.com/s/article/The-query-that-reads-or-consumes-the-stream-is-failing
https://docs.snowflake.com/en/sql-reference/sql/create-stream
https://docs.snowflake.com/en/sql-reference/sql/create-stream

305

 sql_stmt += " AND s.operation = 'I'\n"

 sql_stmt += " AND s.region_name = '" + P_REGION + "' THEN\n"

 sql_stmt += " INSERT (customer_key,\n"

 sql_stmt += " customer_name,\n"

 sql_stmt += " order_key,\n"

 sql_stmt += " order_date,\n"

 sql_stmt += " nation_name,\n"

 sql_stmt += " region_name)\n"

 sql_stmt += " VALUES (s.customer_key,\n"

 sql_stmt += " s.customer_name,\n"

 sql_stmt += " s.order_key,\n"

 sql_stmt += " s.order_date,\n"

 sql_stmt += " s.nation_name,\n"

 sql_stmt += " s.region_name);\n"

 stmt = snowflake.createStatement({ sqlText: sql_stmt });

 try

 {

 stmt.execute();

 �result = "Success: Rows Affected: " + stmt.getNumRowsAffected()

+ " Deleted: " + stmt.getNumRowsDeleted() + " Updated: " + stmt.

getNumRowsUpdated() + " Inserted: " + stmt.getNumRowsInserted();

 }

 catch(err)

 {

 err_state += "\nFail Code: " + err.code;

 err_state += "\nState: " + err.state;

 err_state += "\nMessage: " + err.message;

 err_state += "\nStack Trace:" + err.StackTraceTxt;

 err_state += "\nSQL Statement:\n\n" + sql_stmt;

 result = err_state;

 }

 return result;

$$;

Chapter 8 Parallelization

306

With the stored procedure created and an understanding of how streams operate,

let’s now test.

�Testing a Single Load

Now test a single load:

CALL sp_merge_test_load ('ASIA');

The stored procedure should return a message similar to this:

Success: Rows Affected: 60417 Deleted: 20304 Updated: 20067
Inserted: 20046

Confirm the stream contents have been consumed.

SELECT count(1),

 metadata$action,

 metadata$isupdate

FROM strm_part_customer_order_asia

WHERE region_name = 'ASIA'

GROUP BY metadata$action,

 metadata$isupdate;

Check the number of records in our table partition.

SELECT count(1)

FROM part_customer_order_asia; //300094738

Confirm you have the correct results from the MERGE stored procedure. The values are

the before and after row counts from the table partition.

SELECT 300094738 - 300094996; //-258

Using the stored procedure return values, subtract the DELETED row count from the

INSERT row count. This number represents the net difference. You can ignore the UPDATE

row counts as these do not change the number of rows in the table partition.

SELECT 20046 - 20304; //-258

While the stored procedure’s before and after checks work for my tests, your values

will differ because of the use of LIMIT when generating test data.

Chapter 8 Parallelization

307

�Grant Entitlement

Grant entitlement to role tpc_owner_role to manage tasks.

USE ROLE securityadmin;

GRANT CREATE TASK ON SCHEMA tpc.tpc_owner TO ROLE tpc_owner_role;

USE ROLE accountadmin;

GRANT EXECUTE TASK ON ACCOUNT TO ROLE tpc_owner_role;

Reset the role to tpc_owner_role.

USE ROLE IDENTIFIER ($tpc_owner_role);

�Create Tasks

With the stored procedure and stream integration proven to work correctly, you can now

automate data ingestion by creating five tasks, one for each table segment.

Alternative methods of scheduling are available:

•	 Tasks are advantageous as they exist within the confines of

Snowflake. There are no external dependencies, but they incur

latency because of the scheduled trigger timer.

•	 External scheduling tools are advantageous for orchestrating

sequential data load and stored procedure execution without

incurring time delays between processing steps.

For testing purposes only, the SCHEDULE is set to 1 minute. In your real-world

scenario, the SCHEDULE should be set to a more representative value according to

expected raw or staging data arrival time.

CREATE OR REPLACE TASK tsk_part_customer_order_asia

WAREHOUSE = tpc_wh_small

SCHEDULE = '1 minute'

WHEN system$stream_has_data ('strm_part_customer_order_asia')

AS

CALL sp_load_customer('ASIA');

Chapter 8 Parallelization

308

CREATE OR REPLACE TASK tsk_part_customer_order_europe

WAREHOUSE = tpc_wh_small

SCHEDULE = '1 minute'

WHEN system$stream_has_data ('strm_part_customer_order_europe')

AS

CALL sp_load_customer('EUROPE');

CREATE OR REPLACE TASK tsk_part_customer_order_africa

WAREHOUSE = tpc_wh_small

SCHEDULE = '1 minute'

WHEN system$stream_has_data ('strm_part_customer_order_africa')

AS

CALL sp_load_customer('AFRICA');

CREATE OR REPLACE TASK tsk_part_customer_order_america

WAREHOUSE = tpc_wh_small

SCHEDULE = '1 minute'

WHEN system$stream_has_data ('strm_part_customer_order_america')

AS

CALL sp_load_customer('AMERICA');

CREATE OR REPLACE TASK tsk_part_customer_order_middle_east

WAREHOUSE = tpc_wh_small

SCHEDULE = '1 minute'

WHEN system$stream_has_data ('strm_part_customer_order_middle_east')

AS

CALL sp_load_customer('MIDDLE_EAST');

Now enable each task.

ALTER TASK tsk_part_customer_order_asia RESUME;

ALTER TASK tsk_part_customer_order_europe RESUME;

ALTER TASK tsk_part_customer_order_africa RESUME;

ALTER TASK tsk_part_customer_order_america RESUME;

ALTER TASK tsk_part_customer_order_middle_east RESUME;

Prove all tasks are scheduled.

Chapter 8 Parallelization

309

SELECT timestampdiff (second, current_timestamp, scheduled_time) AS

next_run,

 scheduled_time,

 current_timestamp,

 name,

 state

FROM TABLE (information_schema.task_history())

ORDER BY completed_time DESC;

Figure 8-21 shows example output for scheduled tasks.

Figure 8-21.  Stream output

�Purging a Stream

After successfully merging all raw or staged data, you must remove the data in

preparation for the next load. You may perform the TRUNCATE just before loading new

data; preserving raw or staged data until just prior to the next load is good practice in

the event you need to investigate the most recent data load. However, TRUNCATE has a

side effect of also removing load metadata; you can find information at https://docs.

snowflake.com/en/sql-reference/sql/truncate-table#usage-notes.

In this example you use TRUNCATE, which is not the only option for clearing a staging

table. You can choose INSERT OVERWRITE instead. Regardless of the method chosen,

interaction with our choice of data load operator must be tested to ensure the stream

correctly expresses the desired outcome.

TRUNCATE TABLE stg_customer_order;

For further information, please learn more about the COPY command: https://docs.

snowflake.com/en/sql-reference/sql/copy-into-table?utm_source=legacy&utm_

medium=serp&utm_term=copy and for Snowpipe: https://docs.snowflake.com/en/

user-guide/data-load-snowpipe-intro?utm_source=legacy&utm_medium=serp&utm_

term=snowpipe.

Chapter 8 Parallelization

https://docs.snowflake.com/en/sql-reference/sql/truncate-table#usage-notes
https://docs.snowflake.com/en/sql-reference/sql/truncate-table#usage-notes
https://docs.snowflake.com/en/sql-reference/sql/copy-into-table?utm_source=legacy&utm_medium=serp&utm_term=copy
https://docs.snowflake.com/en/sql-reference/sql/copy-into-table?utm_source=legacy&utm_medium=serp&utm_term=copy
https://docs.snowflake.com/en/sql-reference/sql/copy-into-table?utm_source=legacy&utm_medium=serp&utm_term=copy
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-intro?utm_source=legacy&utm_medium=serp&utm_term=snowpipe
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-intro?utm_source=legacy&utm_medium=serp&utm_term=snowpipe
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-intro?utm_source=legacy&utm_medium=serp&utm_term=snowpipe

310

Let’s now check what the stream recorded.

SELECT count(1),

 metadata$action,

 metadata$isupdate

FROM strm_part_customer_order_asia

WHERE region_name = 'ASIA'

GROUP BY metadata$action,

 metadata$isupdate;

However, you find our stream registers a DELETE operation for all staged data, as

shown in Figure 8-22.

Figure 8-22.  Stream TRUNCATE data

You must purge the stream DELETE data before loading our next batch into the raw or

staging table. Snowflake does not provide capability to purge stream contents, but you

know a simple SELECT will not clear the stream content.

To clear stream contents you must SELECT all records using a dummy INSERT as this

next statement proves:

INSERT INTO part_customer_order_asia

SELECT *

FROM strm_part_customer_order_asia

WHERE 1 = 0;

Now recheck the stream contents.

SELECT count(1),

 metadata$action,

 metadata$isupdate

FROM strm_part_customer_order_asia

WHERE region_name = 'ASIA'

GROUP BY metadata$action,

 metadata$isupdate;

You should see zero records.

Chapter 8 Parallelization

311

�Suspend Tasks

After testing, suspend tasks to prevent inadvertent execution.

ALTER TASK tsk_part_customer_order_asia SUSPEND;

ALTER TASK tsk_part_customer_order_europe SUSPEND;

ALTER TASK tsk_part_customer_order_africa SUSPEND;

ALTER TASK tsk_part_customer_order_america SUSPEND;

ALTER TASK tsk_part_customer_order_middle_east SUSPEND;

�Load Testing

Load testing can be conducted in several ways assuming the raw or staging table has

been pre-populated.

•	 Amend the External Parallelism Component developed in Chapter 6

to call the stored procedure five times, one call for each region.

•	 Resume all five tasks.

•	 Use an external orchestration tool.

Parallelizing data pipelines is dependent upon matching unused processing units in

a warehouse to the number of concurrent processes required to partition the underlying

table. You assume eight processing units; therefore, you should aim to split a single table

into eight segments. As you experienced with segmenting by region, there are only five

regions and hence five segments.

Assuming all parallel operations occur simultaneously, you expect to see both an

overall reduction in execution time and a higher concurrent use of a single warehouse.

Note the use of a task and stream may later be replaced by a single dynamic table

currently in public preview.

I suggest repeating the load test using a smaller warehouse size while checking for

both queueing and spills to disk to optimize cost and performance. The expectation is

that parallel processes will perform well with smaller warehouses.

I covered parallel testing in Chapter 6 and therefore leave testing for your further

investigation.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6
https://doi.org/10.1007/979-8-8688-0379-6_6

312

�Concluding Steps

In concluding the test case, you carry out these steps:

	 1.	 Create a stored procedure to load segments.

	 2.	 Test a single data load.

	 3.	 Create and run tasks and then suspend tasks.

	 4.	 Clean up to get ready for the next load.

While the number of segments may vary along with the orchestration tooling, the

technique is sound and delivers measurable performance benefits in real-world use.

�Temporal Loads
This test case considered a fictitious scenario that you developed into parallelizing a

single load into five separate region segments. The feed may not conform to the same

pattern, and furthermore, our data may skew over time.

Let’s assume you have a temporal feed where the bulk of data changes over time.

Imagine a feed where the majority of the data is for a sliding three-year window. The

segmentation strategy must adapt to cater to the feed, so the steps involved include the

following:

•	 Identify the date key and create segments for date ranges.

•	 Set the segment date ranges as follows:

•	 Large for low-volume changes

•	 Small for high-volume changes

•	 Implement annual segment maintenance for the feed sliding window

content.

Figure 8-23 illustrates a sample date range with relative data volumes.

Chapter 8 Parallelization

313

Figure 8-23.  Temporal load sample data

From the information presented in Figure 8-23, you can deduce the following:

•	 The record date ranges are increasing through time with more future

dated records appearing and fewer older dated records.

•	 The highest volume of new, changed, or deleted records occurs for

2023, 2024, 2025, and 2026.

•	 The data is skewed; i.e., the records are not evenly distributed

according to date.

This segmentation approach must reflect the sample date ranges; therefore, our

segment ranges might look similar to Figure 8-24.

Figure 8-24.  Temporal load partitions

Not all partitions will contain equal date ranges to reflect the relative volume of

DML operations for the period. Note the focus on 2024 and 2025 where I suggest four

partitions matching each quarter year.

As the load data profile moves forward in time, you must periodically adjust the date

ranges for the partitions and remap the data loads to match. I suggest the maintenance is

conducted annually as an end of year activity.

Chapter 8 Parallelization

314

While the sample data does not contain records for 2030, it is prudent to extend the

highest date range partition into the future to capture any outliers. For the same reason,

the earliest date range partition should start well before 2018.

The sharp-eyed reader will note the suggested number of partitions matches

a two-cluster X-Small warehouse. Where the opportunity exists, you should

maximize warehouse processor unit consumption and favor multiples of eight when

partitioning tables.

�Real-World Impact
The practical application of the parallelization technique outlined in this chapter in a

real-world production environment delivers significant business benefit. When applied

selectively, you may see between 40 percent and 70 percent reduction in query response

times in like-for-like scenarios along with a 25 percent reduction in ingestion and

curation time leading to more rapid data product delivery to clients.

You also experienced an unexpected benefit: parallelizing processing may reduce

the number of micro-partitions churned. When replicating tables to other accounts, the

cost of replication can exceed the cost of data product curation. Reducing micro-

partition churn significantly reduces replication costs.

Improving overall system performance, throughput, and cost reduction using

this technique may expose a hidden issue: the increase in concurrent processing

can lead to an increase in the volume of logging into a single table. The inadvertent

serialization of logging causes queueing as each process locks the log table. The solution

is to implement EVENT-based logging as described in Chapter 6. This is the Law of

Unintended Consequences in action again.

I must point out the selective adoption of this technique; I strongly suggest this

technique is not implemented ubiquitously. There are no silver bullets, and this

technique is no exception. If poorly implemented, this technique may experience higher

overall warehouse cost when parallelizing our data pipelines. However, increased data

curation costs may be offset by a reduction in runtimes. Every change you make requires

testing, and implementing parallelization is no different.

Chapter 8 Parallelization

https://doi.org/10.1007/979-8-8688-0379-6_6

315

�Summary
This chapter by setting the scene for wider data product distribution and explored an

example application profile calling out the typical sections along with capabilities. I

assigned nominal warehouse sizes to each section as a starting point.

After establishing an example application profile, I covered a typical end-user

complaint and provided information and tools to analyze the root cause, capturing

useful information along the way. You investigated how to segregate a data load by DML

operation and learned why you cannot run these three operations concurrently.

You then investigated how to parallelize an existing data feed by creating segmented

data sets according to a known business key derived from a core table clustering key.

This work led to the creation of five separate automated data pipelines along with test

cases for each step along the way. I called out some side effects of DML operations

relating to streams along with mitigating actions to support rerun capability.

Temporal data loads were also discussed to expose an alternative date-based

segmentation strategy along with identifying the annual maintenance overhead.

I concluded by assessing the real-world impact of implementing parallelization,

noting the technique outlined in this chapter is not a silver bullet and should not be

applied ubiquitously.

Having discussed parallelization in depth, we will now move on to investigate

entitlements.

Chapter 8 Parallelization

317
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_9

CHAPTER 9

Client Expectations
This chapter covers how to tune your approach to client interactions. Reducing both cost

and time for your client is a key selling point of your products. Your client expectations

are critically important in delivering successful business outcomes.

Curated data products are the result of applying your organization’s intellectual

property to data to realize a commercial offering. I discussed the DIKW pyramid in

Chapter 8, showing the relationship between data, information, knowledge, and

wisdom; for more information, see https://en.wikipedia.org/wiki/DIKW_pyramid.

A simple example of a curated data product is extracting data marketplace revenue

figures from financial reports and showing trends over time. The intellectual property

could include identifying and collating the raw data from differently formatted company

reports, applying your bespoke logic, and then presenting information in a simple

manner showing the historical trends. You might enrich your report with relevant

supporting context such as links to each company website and then deliver your report

as part of a comprehensive market analysis to clients.

Many legacy source data sets are currently points in time only; that is, only the

current view of data is available, and the latest changes overwrite the current records.

Later in this chapter, I will discuss how to provide historical point-in-time reporting.

Many clients want the ability to re-create reports for any given time period. By utilizing

Snowflake’s built-in capability, you can serve up temporal data to provide this additional

commercial opportunity.

This chapter focuses on how you can deliver your curated data products to your

clients, preferably exceeding their expectations. Presenting a consistent, well-articulated

approach supported by a trusting relationship often results in increased sales. Also, a

happy customer consumes more and demands less from your support functions and can

help your organization through positive feedback and critiques.

In support of a “go to market” proposal, a data distribution strategy should address

multi-platform data interchange and cross-platform data sourcing for augmentation

to which Snowflake is a significant contributor. Your client experience may be wider

https://doi.org/10.1007/979-8-8688-0379-6_9#DOI
https://doi.org/10.1007/979-8-8688-0379-6_8
https://en.wikipedia.org/wiki/DIKW_pyramid

318

than consuming from Snowflake, something to be kept in mind when addressing client

expectations. Regardless of how clients source your data products, you must deliver a

consistent experience across all platforms.

Let’s look at the client perspective: your clients want highly performant data

products delivered in their specified consumable formats to their operating locations

within agreed timeframes. Increasingly, your clients are becoming more aware of their

dependence upon your ability to serve data products in a resilient manner. No consumer

should be forced into invoking their disaster recovery process as a consequence of

provider infrastructure failure. You must insulate your consumers as much as possible.

You must consider that your data product offerings are one or more data source

ingestion boxes within your client’s architecture diagrams. In other words, your data

products may not be central to your client’s business; there are plenty of competitors out

there, and your approach must align with your clients’ requirements.

Companies do not build data products speculatively. The available evidence proves

that “if you build it, they will not come.” Internal organization data product consumption

is a side benefit. While notable exceptions exist (such as COVID-19 data), the typical

purpose for building data products is for generating revenue for your organization.

When viewed from a client perspective, you must deliver against their requirements

and consider yourself a valued contributor to their success. Your value-add must include

data dictionaries, catalogs, and entity-relationship diagrams to inform clients of entity

relationships, business keys, and technical keys. Furthermore, if your organization

provides multiple data products, you should demonstrate where the data models

intersect as this may lead to up-sell opportunities.

When provisioning shares, there is no additional cost to adding multiple accounts

within the same CSP and region. For example, let’s assume a client has three Snowflake

accounts on the same CSP and region, one each for development, testing, and

production. Enabling the same share for consumption by all three accounts is a simple

operation; you would enable all three accounts to reference the same read-only data

in a consistent manner. Sometimes clients want to use the same data for testing as

they would in production. No more copying purchased data sets from a single share to

multiple accounts. I do acknowledge there may be usage license implications for the

additional service provision. Making the same shares available removes the need to copy

data, reduces your client costs, and provides an up-sell opportunity for additional user

licenses.

Chapter 9 Client Expectations

319

While your primary focus is to both provision and entitle your curated data products

to enable consumption by your clients, you must do so in ways that both reduce

consumption friction and keep costs as low as possible. These are some examples:

•	 You can insulate your clients from internal delivery failure.

•	 Producing client-specific prefiltered data prevents navigation of an

entitlement model for each SQL call.

•	 Delivering a data catalog describing relationships and interactions

enables rapid data product integration with client data.

•	 Supplying sample SQL statements provides real-world examples to

leverage data products.

All of this reduces the total cost of ownership (TCO), improves system performance,

and removes barriers to adoption for your clients.

Previous chapters focused on technical details supporting application performance

and curation of data products; this chapter focuses on how your clients gain access and

interact with data products along with provisioning an extended suite of tooling. Your

goal is to provision your data products along with contextual information to enable your

clients to rapidly understand, assimilate, and integrate into their environments.

Later in this chapter I will discuss the wider implications of delivering data products

into disparate marketplaces, providing a wider context for your further investigation.

Let’s start with discussing how you entitle your data products.

�Entitlement Models
Regardless of the distribution venue for your data products, implementing entitlement

models to ensure a client accesses their licensed data properly incurs both cost and time.

Your approach must work for direct access to the local account where your data

products are curated, for access via an imported Secure Direct Data Share, or for access

via a replicated database.

In this chapter I discuss two entitlement model approaches.

•	 Embedded into client-accessible objects

•	 Pre-filtered, client-specific data objects

Chapter 9 Client Expectations

320

Both entitlement models have their pros and cons. Figure 9-1 shows both

entitlement models side by side.

Figure 9-1.  Entitlement models

We unpack both entitlement models next; note that both models use the same target

objects albeit with curated data sets.

�Embedded Entitlement Model
Most entitlement models are “baked in” to the end user’s queried objects. The reason

is simple: it’s an easy way for developers to deliver quickly at acceptable performance

levels. However, over time, performance often degrades as the data sets become larger

or skewed and the entitlement model becomes more complex. Embedded entitlement

models cost more to maintain over time.

Embedded entitlement models are typically in the form of SQL predicates joining

entitlement objects to data product objects. Each SQL invocation (unless results

are cached) results in the re-evaluation of the entitlement model to identify and

return appropriate data. Figure 9-2 illustrates a typical overview of an embedded

entitlement model.

Chapter 9 Client Expectations

321

Figure 9-2.  Embedded entitlement model

There are alternative entitlement options including API calls that may be suitable for

low-volume data sets, but I do not discuss these further.

Embedded entitlement models have some advantages.

•	 They are easy to implement; one size fits all.

•	 Shares contain identical copies of objects containing identical data.

•	 Provisioning is simple.

•	 Data is available at the point of curation.

However, there are some disadvantages.

•	 Every SQL query with the exclusion of cached result sets navigates

the entitlement model to derive result sets.

•	 Individual query performance issues can be hard to solve.

•	 Changes to the entitlement model can be pervasive affecting many

objects and requiring extensive retesting.

•	 Replicating all data can be costly, particularly where only subsets of

data are accessed by clients.

Chapter 9 Client Expectations

322

Embedded entitlement models are sometimes encountered in legacy systems ported

to Snowflake. You should also be aware ported code may not be optimized for Snowflake.

Embedded entitlement models can be difficult to understand and may contain

bespoke rules within query predicates. Sometimes, in an attempt to abstract entitlement,

several layers of object may contain partial rule sets; beware of views calling views!

�Prefiltered Entitlement
An alternative approach is to prefilter data to present entitled data only. Figure 9-3

illustrates a typical overview of a prefiltered entitlement model.

Figure 9-3.  Prefiltered entitlement model

Prefiltered entitlement models have some advantages.

•	 The smaller data sets are curated for each client.

•	 Performance issues are more easily resolved.

•	 SQL queries do not navigate an entitlement model.

•	 The changes to the entitlement model are localized to the

filter engine.

•	 Only the client-consumed data is replicated.

Chapter 9 Client Expectations

323

However, there are some disadvantages.

•	 They are more complex to implement; each data set is bespoke.

•	 Provisioning is more complex.

•	 There is a proliferation of source objects; the objects are the same,

but the content differs.

•	 Data is not immediately available at the point of curation.

Prefiltered entitlement models are not common; complex implementation is

often discounted for the benefit of a simple but less performant embedded SQL

implementation. The additional effort required to develop a pre-filtered entitlement

model will deliver significant benefits as both consumption grows and your data

products mature.

Having identified the two patterns for delivering entitled data products, you now

know how to build a filter engine to support the bespoke curation of data products for

each individual client.

�Filter Engine Overview
Figure 9-4 provides an overview of the entities required for a filter engine.

Figure 9-4.  Filter engine overview

Chapter 9 Client Expectations

324

The functional components shown within Figure 9-4 are as follows:

	 1.	 Entitlements provided by an external entitlement component.

	 2.	 A normalized entitlement data model containing

	 a.	 Client-specific entitlement

	 b.	 Mapping to data product objects

	 c.	 Template SQL statements

	 3.	 Various source data feeds

	 4.	 Curated data product objects

	 5.	 Filter engine that

	 a.	 Maps entitlement to data product object

	 b.	 Applies filters to generate client-specific content

	 6.	 Client-specific share containing entitled data

	 7.	 Imported share manifests as a database in the consumer account

Let’s investigate each component in more detail.

�External Entitlement Component
Many organizations experience growth through a merger and acquisition (M&A), which

results in the proliferation of entitlement applications: every acquired product has its

own entitlement system. Plugging the gaps in data product offerings via the M&A activity

involves acquiring a corresponding entitlement application.

Without a single strategic entitlement application, acquired data products cannot be

fully integrated with existing data products for entitlement purposes.

I am assuming entitlements are sourced and then merged into your normalized

entitlement data model.

�Entitlement Data Model
The absence of a single strategic entitlement application implies you may require more

than one entitlement data model—one for each source entitlement system. For the

purposes of developing your filter engine, you assume a single entitlement source.

Chapter 9 Client Expectations

325

Figure 9-5 shows the key components of an entitlement data model and usage. Note

that The filter and client objects are shown for context only.

Figure 9-5.  Entitlement data model

The entitlement model must contain the following:

•	 Client information mapped to objects, filters, masks, and template

SQL statements

•	 Data product objects, reference data, and template SQL statements

�Source Data Feeds
Source data feeds are not discussed here as they should be self-explanatory for

consumption and use.

�Curated Data Product
Curated data products are the unentitled superset of generated products sold to your

customers; these data products combine various data sources with your intellectual

property. Data products are constantly maintained as new data becomes available; the

curation process is constantly ongoing.

Chapter 9 Client Expectations

326

For internal use cases, you may choose to distribute unentitled data to trusted

internal consumers where their local entitlement overlays may apply. This distinction is

important: internal data product distribution use cases are much simpler to implement

and easier to gain approval for than external data product distribution use cases.

�Filter Engine
The absence of client object mapping precludes the use of SQL statements for generating

client-specific objects. SQL statements act as overlays to the underlying data product

objects that incorporate all client-specific filters and masks.

The previous statement is a bit of a mouthful to say and sounds complicated, and

in truth, generating bespoke objects is an advanced topic. I demonstrate how to do

this later.

Filter engine output should be thoroughly tested before deployment. Only when

confident should you consider automated deployment, along with corresponding

generated test cases.

�Client-Specific Shares
Snowflake shares are structural container objects created by the ACCOUNTADMIN role.

Share ownership may be transferred to other roles. Note that a single role can hold this

privilege on only a specific share object at a time. Semi-automated client-specific sharing

relies upon the dynamic generation of a share and schema, a Data Definition Language

(DDL) entitlement, and finally assigning the share to a nominated Snowflake account.

When the dynamic requirements have been satisfied, you can deploy the filter

engine output; note that the data content for your objects should differ for each

client. A hybrid approach is to generate a common suite of unentitled objects for bulk

distribution alongside a bespoke defined suite of components. Your use cases will

inform your decision.

Once a share has been authorized to an account, importing the share appears as

a database within the Snowflake user interface. The imported database requires local

client administration to make the generated data products accessible.

Chapter 9 Client Expectations

327

�Unentitled Data Sharing
To remove the need to create a second Snowflake account within the same CSP and

region, you begin by creating a managed account. You then continue by creating the

containers to deliver unentitled objects and a share to your fictitious customer, after

which you expand your delivery for entitled objects to the same fictitious customer.

Let’s get started!

�Creating Managed Accounts
Managed accounts (also known as reader accounts) exist within the context of a single

Snowflake account. According to the Snowflake documentation:

“…Enable data consumers to access and query data shared by the pro-
vider of the account, with no setup or usage costs for the consumer, and
no requirements for the consumer to sign a licensing agreement with
Snowflake.”

When sharing a “share” with a second Snowflake account, this section is not
required.

Managed accounts use the same credit allocation as the primary account.

Warehouses in the managed account can consume unlimited credits; therefore, a

resource monitor to limit usage should be set up. You can find more information on

resource monitors at https://docs.snowflake.com/en/sql-reference/sql/create-

resource-monitor.

Figure 9-6 shows the relationship between Snowflake-supported containers used

to implement data sharing and the tight coupling between a primary account and a

managed account.

Chapter 9 Client Expectations

https://docs.snowflake.com/en/sql-reference/sql/create-resource-monitor
https://docs.snowflake.com/en/sql-reference/sql/create-resource-monitor

328

Figure 9-6.  Managed account in context

Let’s now create a managed account for which you require the ACCOUNTADMIN role.

USE ROLE accountadmin;

Password restrictions apply, including minimum length and case sensitivity.

CREATE MANAGED ACCOUNT poc

ADMIN_NAME = 'poc_admin'

ADMIN_PASSWORD = 'POC_admin_123'

TYPE = READER

COMMENT = 'POC Managed Account';

We should see a JSON string returned containing your managed account

information.

{

 "accountName": "POC",

 "accountLocator": "HR83528",

 "url": "https://acxelcq-poc.snowflakecomputing.com",

 �"accountLocatorUrl": "https://hr83528.eu-west-2.aws.

snowflakecomputing.com"

}

Chapter 9 Client Expectations

329

Similar information is available using the SHOW command.

SHOW MANAGED ACCOUNTS;

Please make a note of the JSON accountLocator or locator attribute, which you will

use to import the share. In this example, this value is HR83528.

You will also require the accountLocatorURL or account_locator_url value to

create a user, as shown next. In this example, the value is https://hr83528.eu-west-2.

aws.snowflakecomputing.com/.

You can find more information on managed accounts at https://docs.snowflake.

com/en/user-guide/data-sharing-reader-create.

�Creating Share Containers
You will extend your tpc database by creating new containers. Figure 9-7 shows both

existing and new containers you will create within this section.

Figure 9-7.  Container creation

First create a share called share_poc where poc represents “proof of concept”:

USE ROLE accountadmin;

CREATE SHARE IF NOT EXISTS share_poc;

To display all shares within your account, use this:

SHOW SHARES IN ACCOUNT;

Chapter 9 Client Expectations

https://hr83528.eu-west-2.aws.snowflakecomputing.com/
https://hr83528.eu-west-2.aws.snowflakecomputing.com/
https://docs.snowflake.com/en/user-guide/data-sharing-reader-create
https://docs.snowflake.com/en/user-guide/data-sharing-reader-create

330

You can find more information on shares at https://docs.snowflake.com/en/

user-guide/data-sharing-provider#preparing-to-create-a-share.

Now create a new schema called tpc.share_owner to contain client-specific objects

for assignment to share_poc. In your real-world implementation, you may want to

rename share_poc to contain client-specific identifiers for ease of later identification.

USE ROLE sysadmin;

CREATE SCHEMA IF NOT EXISTS tpc.share_owner;

Create a new role to manage shared objects and assign them to yourself:

USE ROLE securityadmin;

CREATE OR REPLACE ROLE share_owner_role;

GRANT ROLE share_owner_role TO USER <YOUR USER HERE>;

Grant entitlement for the share to reference objects within the new schema called

tpc.share_owner created earlier.

GRANT USAGE ON DATABASE tpc TO SHARE share_poc;

GRANT USAGE ON SCHEMA tpc.share_owner TO SHARE share_poc;

Grant entitlement to the new role called share_owner_role for creating objects in

the new schema tpc.share_owner.

GRANT USAGE ON DATABASE tpc TO ROLE share_owner_role;

GRANT USAGE ON SCHEMA tpc.tpc_owner TO ROLE share_owner_role;

GRANT USAGE ON SCHEMA tpc.share_owner TO ROLE share_owner_role;

Grant entitlement to the new role share_owner_role for accessing objects in both

existing schema the tpc.tpc_owner and the new schema tpc.share_owner.

GRANT SELECT ON ALL TABLES �IN SCHEMA tpc.tpc_owner TO ROLE

share_owner_role;

GRANT SELECT ON ALL DYNAMIC TABLES �IN SCHEMA tpc.tpc_owner TO ROLE

share_owner_role;

GRANT SELECT ON ALL TABLES �IN SCHEMA tpc.share_owner TO ROLE

share_owner_role;

Chapter 9 Client Expectations

https://docs.snowflake.com/en/user-guide/data-sharing-provider#preparing-to-create-a-share
https://docs.snowflake.com/en/user-guide/data-sharing-provider#preparing-to-create-a-share

331

GRANT SELECT ON ALL DYNAMIC TABLES �IN SCHEMA tpc.share_owner TO ROLE

share_owner_role;

GRANT SELECT ON ALL MATERIALIZED VIEWS �IN SCHEMA tpc.share_owner TO ROLE

share_owner_role;

Snowflake security model does not allow the creation of GRANTs for objects created in

the future. Attempting to do so generates an error, for example:

GRANT SELECT ON FUTURE TABLES �IN SCHEMA tpc.share_owner TO

SHARE share_poc;

This results in this error: “Future grant on objects of type TABLE to SHARE is

restricted.”

Instead, you must GRANT entitlement after object creation as shown later within this

section.

Grant entitlement to a new role to use existing warehouses:

GRANT USAGE ON WAREHOUSE tpc_wh_xsmall TO ROLE share_owner_role;

GRANT USAGE ON WAREHOUSE tpc_wh_small TO ROLE share_owner_role;

GRANT USAGE ON WAREHOUSE tpc_wh_medium TO ROLE share_owner_role;

GRANT USAGE ON WAREHOUSE tpc_wh_large TO ROLE share_owner_role;

GRANT USAGE ON WAREHOUSE tpc_wh_xlarge TO ROLE share_owner_role;

Assign the share to the desired consumer account, noting there may be several

consuming accounts requiring service.

We will use your managed account to import your share.

USE ROLE accountadmin;

Replace <SHARE ACCOUNT> in the next SQL statement with the JSON accountLocator

or locator attribute from your managed account created earlier.

ALTER SHARE share_poc ADD ACCOUNTS = <SHARE ACCOUNT>;

Noting your locator will differ, mine is as follows:

ALTER SHARE share_poc ADD ACCOUNTS = HR83528;

Chapter 9 Client Expectations

332

All SQL statements within this section must be rerun for each new consumer where

bespoke object content is created.

�Unentitled Objects
As the heading suggests, these objects are not entitled and can be passed straight

through to your share, bypassing the entitlement engine. Figure 9-8 illustrates how you

create and then share a new object called v_region.

Figure 9-8.  Unentitled object share

First, you set your execution context.

SET share_owner_role = 'share_owner_role';

SET tpc_database = 'tpc';

SET share_owner_schema = 'tpc.share_owner';

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

USE ROLE IDENTIFIER ($share_owner_role);

USE DATABASE IDENTIFIER ($tpc_database);

USE SCHEMA IDENTIFIER ($share_owner_schema);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Reference data is a common use case for passthrough objects; in this example you

will create a secure view.

Chapter 9 Client Expectations

333

CREATE OR REPLACE SECURE VIEW v_region COPY GRANTS

AS

SELECT r_regionkey,

 r_name,

 r_comment

FROM tpc.tpc_owner.region_baseline;

The share_owner database may contain objects sourced from many different

databases and schemas. The share_owner database is intended to be the container from

which your share is populated; you should containerize your objects for ease of later

maintenance and administration.

You cannot directly entitle your share called share_poc to access the new secure

view v_region_baseline using the role share_owner_role. Attempting to do so results

in the following error:

Share '"<YOUR ACCOUNT>.SHARE_POC"' does not exist or not
authorized.

You must first switch the role.

USE ROLE securityadmin;

Then use GRANT SELECT on individual views.

GRANT SELECT ON tpc.share_owner.v_region TO SHARE share_poc;

An alternative approach is to create all the desired nonview objects and then entitle

all of them using a single command per object type.

GRANT SELECT ON ALL TABLES �IN SCHEMA tpc.share_owner TO SHARE

share_poc;

GRANT SELECT ON ALL DYNAMIC TABLES �IN SCHEMA tpc.share_owner TO SHARE

share_poc;

GRANT SELECT ON ALL MATERIALIZED VIEWS �IN SCHEMA tpc.share_owner TO SHARE

share_poc;

To confirm entitlement and objects granted to your share share_poc, use this:

SHOW GRANTS TO SHARE share_poc;

Chapter 9 Client Expectations

334

�Importing a Share
Once your share has been populated and entitled for a consuming account, you must

log in to your new managed account. In this example, the URL is https://hr83528.eu-

west-2.aws.snowflakecomputing.com; yours will differ.

Using the managed account credentials repeated next, log in to your managed

account.

ADMIN_NAME = 'poc_admin'

ADMIN_PASSWORD = 'POC_admin_123'

Importing shares is performed by the ACCOUNTADMIN role:

USE ROLE accountadmin;

SHOW SHARES IN ACCOUNT;

You should see two inbound shares. Note that SNOWFLAKE is provided by Snowflake

Inc. You should also see database_name is unpopulated for the new share. You create a

database (see Figure 9-9).

Figure 9-9.  Inbound share listing

You now create a database from the inbound share. Note that the owner account and

share name will differ from yours.

CREATE DATABASE share_poc_database

FROM SHARE ACXELCQ.ZI95050.share_poc;

Now check that the database_name attribute is populated for your share.

SHOW SHARES IN ACCOUNT;

You should also see the new database listed in the database browser when refreshed,

as shown in Figure 9-10.

Chapter 9 Client Expectations

https://hr83528.eu-west-2.aws.snowflakecomputing.com
https://hr83528.eu-west-2.aws.snowflakecomputing.com

335

Figure 9-10.  Imported database listing

Now create a warehouse.

CREATE OR REPLACE WAREHOUSE poc_wh WITH

WAREHOUSE_SIZE = 'X-SMALL'

AUTO_SUSPEND = 60

AUTO_RESUME = TRUE

MIN_CLUSTER_COUNT = 1

MAX_CLUSTER_COUNT = 4

SCALING_POLICY = 'STANDARD'

INITIALLY_SUSPENDED = TRUE;

Set your session context to use your newly created warehouse.

USE WAREHOUSE poc_wh;

And later test your imported database once v_region has been provisioned (next) to

ensure you can SELECT data.

SELECT r_name,

 r_comment

FROM share_poc_database.share_owner.v_region;

Imported databases are owned by the ACCOUNTADMIN role by default. Your client must

create their own roles and grant entitlements for their internal use.

Chapter 9 Client Expectations

336

�Entitled Data Sharing
You will extend the newly created share share_poc to include entitled objects that

cannot pass straight through to your share. The entitlement engine curates the data

content of a shared object acting as the filter engine.

�Designing a Filter Engine
As you have seen, sharing unentitled objects is relatively simple. Sharing entitled objects,

that is, a subset of data contained within an object, is not simple.

Creating a limited scope number of bespoke objects for an individual client is easy.

When the limited scope changes, you will find yourself overwhelmed with demand.

Therefore, adopting a pattern-based approach to generating bespoke objects is the only

viable way forward.

The first decision is to determine where to build your entitlement engine, and for the

purposes of this example, you will reuse the tpc_owner schema. For a real-

world implementation, you may choose to develop your entitlement engine within a

separate schema.

�Filter Engine Requirements
For simplicity’s sake you will reuse the table base_customer_order from a previous

chapter as the data source for generating customer-specific filtered data.

Table 9-1 shows the table base_customer_order definition.

Table 9-1.  base_customer_order Table Definition

Attribute Name Datatype

customer_key NUMBER (38,0)

customer_name VARCHAR(25)

order_key NUMBER (38,0)

order_date DATE

nation_name VARCHAR(25)

region_name VARCHAR(25)

Chapter 9 Client Expectations

337

Let’s assume you are required to do the following:

•	 Generate an object containing a client-specific view of data

•	 Filter by region_name to generate only “Africa” data

•	 Mask the order_key to prevent identification of individual orders

Over time you can expect to have multiple clients with both differing region filters

and differing masking requirements. I assume your source data product tables and views

contain a complete superset of data.

�Filter Engine Model
Figure 9-11 shows the client entitlement, filter engine, and data product model.

Figure 9-11.  Filter engine design

You will now define each entity and focus on the minimal attributes to develop a

simple data model. Feel free to extend them according to your needs later.

While Snowflake does not enforce referential integrity, I will show how to implement

referential integrity to demonstrate the capability, because the optimizer may use

referential integrity to inform internal decision-making. By convention you use a

sequence per object to generate a surrogate primary key.

Filters and masks use substitution variables enclosed in square brackets, []. These

are evident within the corresponding data.

Chapter 9 Client Expectations

338

�Client

Clients are the consumers of curated data products; in real-world use, you may find

clients are mastered elsewhere and then fed along with entitlements into the data model.

Clients are the entry point to your model and later in this section will be used to drive the

generation of bespoke content.

First set your execution context.

SET tpc_owner_role = 'tpc_owner_role';

SET tpc_database = 'tpc';

SET tpc_owner_schema = 'tpc.tpc_owner';

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

/* Set execution context */

USE ROLE IDENTIFIER ($tpc_owner_role);

USE DATABASE IDENTIFIER ($tpc_database);

USE SCHEMA IDENTIFIER ($tpc_owner_schema);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Then create a table called client along with sequence seq_client_id to generate

surrogate keys.

CREATE OR REPLACE TABLE client

(

client_id NUMBER PRIMARY KEY,

name VARCHAR(255),

account VARCHAR(255)

);

CREATE OR REPLACE SEQUENCE seq_client_id START WITH 100000;

Now create your first client and extend the clients to suit your needs.

INSERT INTO client VALUES

(seq_client_id.NEXTVAL, 'POC', 'Proof of Concept Client');

Chapter 9 Client Expectations

339

�Client Object

Objects refer to the physical objects holding data or functionality, which your clients

have either purchased or licensed. Objects hold the superset of data products that you

seek to monetize.

Create a table called client_object along with sequence seq_client_object_id to

generate surrogate keys.

CREATE OR REPLACE TABLE client_object

(

client_object_id NUMBER,

client_id NUMBER REFERENCES client (client_id),

object_name VARCHAR(255)

);

CREATE OR REPLACE SEQUENCE seq_client_object_id START WITH 100000;

Assign a single database object base_customer_order to your client.

INSERT INTO client_object

SELECT seq_client_object_id.NEXTVAL,

 (SELECT client_id FROM client WHERE name = 'POC'),

 'base_customer_order';

�Client Filter

Filters refer to the object physical attributes holding data you want to filter on. Equivalent

to row-level security (RLS), this section enables data subsetting at object generation

time. You prefer to not use RLS when generating client-specific objects in order to do the

following:

•	 Reduce replicated data to a minimum

•	 Prevent resolving RLS for every SQL call made to the client object

•	 Remove the need to create RLS policies “on the fly”

Chapter 9 Client Expectations

340

Create a table called client_filter along with sequence seq_client_filter_id to

generate surrogate keys.

CREATE OR REPLACE TABLE client_filter

(

client_filter_id NUMBER,

client_id NUMBER REFERENCES client (client_id),

filter_name VARCHAR(255),

filter_attribute VARCHAR(255),

filter_value VARCHAR(255)

);

CREATE OR REPLACE SEQUENCE seq_client_filter_id START WITH 100000;

Apply a single filter to base_customer_order.region_name for AFRICA.

INSERT INTO client_filter

SELECT seq_client_filter_id.NEXTVAL,

 (SELECT client_id FROM client WHERE name = 'POC'),

 '[REGION]',

 'region_name',

 'AFRICA';

�Client Mask

Masks refer to the object physical attributes holding data you want to mask. Equivalent

to data masking, this section enables data masking at object generation time.

Create a table called client_mask along with a sequence called seq_client_mask_id

to generate surrogate keys.

CREATE OR REPLACE TABLE client_mask

(

client_mask_id NUMBER,

client_id NUMBER REFERENCES client (client_id),

mask_name VARCHAR(255),

mask_attribute VARCHAR(255),

mask_value VARCHAR(255)

);

CREATE OR REPLACE SEQUENCE seq_client_mask_id START WITH 100000;

Chapter 9 Client Expectations

341

Apply a single filter to base_customer_order.order_key, setting the value to

********:

INSERT INTO client_mask

SELECT seq_client_mask_id.NEXTVAL,

 (SELECT client_id FROM client WHERE name = 'POC'),

 '[ORDER_KEY_MASK]',

 'order_key',

 '''********''';

�Denormalize Client Information

With all your client entities both created and populated, you should denormalize the

client-specific components to make your data model more easily understood and user

friendly. You do this by creating a view called v_client_info to join all client-specific

tables together.

CREATE OR REPLACE VIEW v_client_info

AS

SELECT c.name AS client_name,

 c.account AS client_account,

 co.object_name,

 cf.filter_name,

 cf.filter_attribute,

 cf.filter_value,

 cm.mask_name,

 cm.mask_attribute,

 cm.mask_value

FROM client c,

 client_object co,

 client_filter cf,

 client_mask cm

WHERE c.client_id = co.client_id

AND c.client_id = cf.client_id

AND c.client_id = cm.client_id;

Chapter 9 Client Expectations

342

Next check you have a single record.

SELECT * FROM v_client_info;

�SQL Statement

SQL statements overlay data product objects providing the template for client-specific

data generation into client objects. For this example, you set the sql_statement name to

be the same as the client_object name in order to later join the data.

Create a table called sql_statement along with a sequence called seq_sql_

statement_id to generate surrogate keys.

CREATE OR REPLACE TABLE sql_statement

(

sql_statement_id NUMBER PRIMARY KEY,

name VARCHAR(255),

sql_statement VARCHAR(255)

);

CREATE OR REPLACE SEQUENCE seq_sql_statement_id START WITH 100000;

Define a SQL statement with substitution values for a filter and mask, noting you set

the name to be base_customer_order to join with the client configuration data.

INSERT INTO sql_statement VALUES

(seq_sql_statement_id.NEXTVAL, 'base_customer_order',

 �'SELECT customer_key, customer_name, [ORDER_KEY_MASK], order_date, nation_

name FROM base_customer_order WHERE region_name = ''[REGION]'' ');

�Client SQL Statement View

With all the entities defined, you now bring them together into a single usable

entitlement generation object.

Create a view called v_client_sql_statement.

CREATE OR REPLACE VIEW v_client_sql_statement

AS

SELECT c.client_name,

Chapter 9 Client Expectations

343

 �REPLACE (REPLACE (s.sql_statement, '[REGION]', c.filter_value),

'[ORDER_KEY_MASK]', c.mask_value) AS client_sql_statement,

 c.client_account,

 c.object_name,

 c.filter_name,

 c.filter_attribute,

 c.filter_value,

 c.mask_name,

 c.mask_attribute,

 c.mask_value,

 s.sql_statement

FROM v_client_info c,

 sql_statement s

WHERE c.object_name = s.name;

Now check that the view v_client_sql_statement returns the expected results.

SELECT * FROM v_client_sql_statement;

You should see attribute client_sql_statement returns the next SQL statement,

noting I have appended LIMIT 10 to restrict the returned result set.

SELECT customer_key, customer_name, '********',

 order_date, nation_name

FROM base_customer_order

WHERE region_name = 'AFRICA'

LIMIT 10;

With your view v_client_sql_statement prepared, you are ready to build your

filter engine.

�Building a Filter Engine
Building a filter engine brings together several components:

•	 Creation of containers to hold client-specific curated objects

•	 Creation of objects within a schema

•	 Granting entitlement on schema objects to the share

Chapter 9 Client Expectations

344

As with all code, full testing should be conducted and signed off on before scheduled

deployment.

We do not advocate the automated deployment of generated code.

You can now build a JavaScript stored procedure to generate your code passing

through a single parameter called P_CLIENT_NAME to generate the client-specific

containers and objects.

CREATE OR REPLACE PROCEDURE sp_create_share (P_CLIENT_NAME STRING)

RETURNS string

LANGUAGE javascript

EXECUTE AS CALLER

AS

$$

 var sql_stmt = "";

 var recset = "";

 var err_state = "";

 var result = "";

 var client_account = "";

 var share_grants = "";

 result = "/* Create a role to manage shared objects */\n"

 result += "USE ROLE accountadmin;\n"

 result += "CREATE SHARE IF NOT EXISTS share_" + P_CLIENT_NAME + ";\n\n"

 result += "/* Create a schema for shared objects */\n"

 result += "USE ROLE sysadmin;\n"

 �result += "CREATE SCHEMA IF NOT EXISTS tpc.share_owner_" + P_CLIENT_NAME

+ ";\n\n"

 result += "/* Entitle new share to access new schema */\n"

 �result += "GRANT USAGE ON DATABASE tpc

TO SHARE share_" + P_CLIENT_NAME + ";\n"

 �result += "GRANT REFERENCE_USAGE ON DATABASE tpc

TO SHARE share_" + P_CLIENT_NAME + ";\n"

Chapter 9 Client Expectations

345

 �result += "GRANT USAGE

ON SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO SHARE share_" +

P_CLIENT_NAME + ";\n\n"

 result += "/* Entitle new role to create objects in the new schema */\n"

 �result += "GRANT USAGE

ON SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n"

 �result += "GRANT CREATE TABLE

ON SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n"

 �result += "GRANT CREATE VIEW

ON SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n"

 �result += "GRANT CREATE MATERIALIZED VIEW

ON SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n"

 �result += "GRANT CREATE DYNAMIC TABLE

ON SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n\n"

 /* Fetch client curated objects */

 sql_stmt = "SELECT client_account,\n"

 sql_stmt += " object_name,\n"

 sql_stmt += " client_sql_statement\n"

 sql_stmt += "FROM v_client_sql_statement\n"

 sql_stmt += "WHERE client_name = :1;"

 �stmt = snowflake.createStatement({ sqlText: sql_stmt, binds:[P_CLIENT_

NAME] });

 try

 {

 recset = stmt.execute();

 while(recset.next())

 {

 client_account = recset.getColumnValue(1);

Chapter 9 Client Expectations

346

 �result += "CREATE OR REPLACE VIEW tpc.share_owner_" + P_CLIENT_

NAME + "." + recset.getColumnValue(2) + "\n"

 result += "AS\n"

 result += recset.getColumnValue(3) + ";\n\n"

 �share_grants += "GRANT SELECT ON tpc.share_owner_" + P_CLIENT_NAME

+ "." + recset.getColumnValue(2) + " TO SHARE share_" + P_CLIENT_

NAME + ";\n"

 }

 }

 catch(err)

 {

 err_state += "\nFail Code: " + err.code;

 err_state += "\nState: " + err.state;

 err_state += "\nMessage: " + err.message;

 err_state += "\nStack Trace:" + err.StackTraceTxt;

 err_state += "\nSQL Statement:\n\n" + result;

 result = err_state;

 }

 result += "/* Entitle new objects to share */\n"

 result += "USE ROLE securityadmin;\n"

 result += share_grants + "\n";

 �result += "/* Entitle new role to access objects in both existing schema

and new schema */\n"

 �result += "GRANT SELECT ON ALL TABLES

IN SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n"

 �result += "GRANT SELECT ON ALL DYNAMIC TABLES

IN SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n"

 �result += "GRANT SELECT ON ALL MATERIALIZED VIEWS

IN SCHEMA tpc.share_owner_" + P_CLIENT_NAME + " TO ROLE share_owner_

role;\n\n"

 result += "/* Make share available to consumer account */\n"

Chapter 9 Client Expectations

347

 result += "USE ROLE accountadmin;\n"

 �result += "ALTER SHARE share_" + P_CLIENT_NAME + " ADD ACCOUNTS = '" +

client_account + "';\n\n"

 return result;

$$;

Call sp_create_share with your client POC.

CALL sp_create_share ('POC');

The sp_create_share should return the following SQL statements noting the inline

comments to explain each section.

/* Create a role to manage shared objects */

USE ROLE accountadmin;

CREATE SHARE IF NOT EXISTS share_POC;

/* Create a schema for shared objects */

USE ROLE sysadmin;

CREATE SCHEMA IF NOT EXISTS tpc.share_owner_POC;

/* Entitle new share to access new schema */

GRANT USAGE ON DATABASE tpc TO SHARE share_POC;

GRANT REFERENCE_USAGE ON DATABASE tpc TO SHARE share_POC;

GRANT USAGE ON SCHEMA tpc.share_owner_POC TO SHARE share_POC;

/* Entitle new role to create objects in the new schema */

GRANT USAGE �ON SCHEMA tpc.share_owner_POC TO ROLE share_

owner_role;

GRANT CREATE TABLE �ON SCHEMA tpc.share_owner_POC TO ROLE share_

owner_role;

GRANT CREATE VIEW �ON SCHEMA tpc.share_owner_POC TO ROLE share_

owner_role;

GRANT CREATE MATERIALIZED VIEW �ON SCHEMA tpc.share_owner_POC TO ROLE share_

owner_role;

GRANT CREATE DYNAMIC TABLE ON SCHEMA tpc.share_owner_POC TO ROLE share_

owner_role;

CREATE OR REPLACE SECURE VIEW tpc.share_owner_POC.base_customer_order

Chapter 9 Client Expectations

348

AS

SELECT customer_key, customer_name, '********', order_date, nation_name

FROM base_customer_order WHERE region_name = 'AFRICA';

/* Entitle new objects to share */

USE ROLE securityadmin;

GRANT SELECT ON tpc.share_owner_POC.base_customer_order TO SHARE share_POC;

/* Entitle new role to access objects in both existing schema and new

schema */

GRANT SELECT ON ALL TABLES �IN SCHEMA tpc.share_owner_POC TO

ROLE share_owner_role;

GRANT SELECT ON ALL DYNAMIC TABLES �IN SCHEMA tpc.share_owner_POC TO

ROLE share_owner_role;

GRANT SELECT ON ALL MATERIALIZED VIEWS �IN SCHEMA tpc.share_owner_POC TO

ROLE share_owner_role;

/* Make share available to consumer account */

USE ROLE accountadmin;

ALTER SHARE share_POC ADD ACCOUNTS = 'ABC123';

�Deploying Generated Code
The following stored procedure sp_create_share can be extended in several ways. For

example:

•	 Writing output to a logging table

•	 Building tables, not views

•	 Generating test cases

Regardless of the actual code generated, I strongly recommend full testing is

conducted with business sign-off before deployment.

Chapter 9 Client Expectations

349

�Setting the Standard
Having discussed entitling your data products, let’s discuss how you can set the standard

for distributing your data products. I will not discuss this in great depth but will call out

some available options.

�Imported Database Entitlement
Imported databases created from shares or replicated databases do not import source

provider entitlement. By now you should all be familiar with role-based access control

(RBAC), you should provision a sample RBAC script segregating your shared objects

into data products for your client to begin integrating your data products with their local

data sets.

The sample RBAC should be accompanied by a data model and data catalog.

�Sample SQL for Common Use Cases
Regardless of whether your application has implemented embedded entitlement or

pre-filtered entitlement, you should provision a suite of SQL statements. These SQL

statements should implement common use cases and act as a starting point for your

clients by demonstrating how to extract business value from the data product.

A suite of tuned, performant example SQL statements will help remediate client

performance issues by demonstrating both functional and performant Snowflake

interaction. You must remember that the Snowflake optimizer functions differently than

legacy relational database management systems (RDBMSs). Therefore, your sample SQL

statements will also serve as a guide to uplift your client skills.

�Client Collaboration
Many clients use your organization’s data products in conjunction with both your

competitor data products and their own internal data products. Joining across imported

schemas where embedded entitlement logic exists in third-party data sets is highly likely

to result in performance issues.

I advise caution. Before purchasing a third-party data set, I suggest you fullly

understand all of the underlying query object implementations.

Chapter 9 Client Expectations

350

Clients are rightly protective of their intellectual property and in the event of a

performance issue, the data product provider will prefer access to the exact queries

issued by the consumer. However, sharing SQL is problematic; SQL often contains

bespoke logic, and consumers must be prevented from accessing a provider’s intellectual

property.

�Historized Data
Many data products are offered as point-in-time, current view only. That is, ingested data

overwrites earlier data without retaining a history. Ingested data may not contain every

intermediate transaction recorded by a source system; therefore, each uploaded file

contains a snapshot.

An easy-to-implement value-add is to retain the full history of all captured data.

By adding temporal attributes to record valid-from and valid-to date stamps, you can

provide the ability to reconstruct data at any point in time for the retained data.

You can find more information on slowly changing dimensions at https://

en.wikipedia.org/wiki/Slowly_changing_dimension.

Implementing temporal attributes offers an inexpensive approach to adding value to

your data particularly when generating your codebase.

�Data Model
At some point your clients may want your data product to be modeled in a particular

form so that it’s compatible with their existing implementation. The first step toward

integrating your data product with client data model is to publish an entity-relationship

diagram.

From a data provider’s perspective, offering consistent and interlinked data models

across all data product offerings is a worthy ambition. But this is hard to achieve in

practice. I do not prescribe any particular data modeling technique except to say 3NF,

DV2.0, and the dimensional approach each offers advantages and disadvantages.

Adopting an INSERT-only data model provides the fastest method of delivering data

into shared objects.

Chapter 9 Client Expectations

https://en.wikipedia.org/wiki/Slowly_changing_dimension
https://en.wikipedia.org/wiki/Slowly_changing_dimension

351

�Data Catalog
Data catalogs articulate both the business meaning and the technical metadata for each

entity and attribute within the data model. Providing contextual information is always a

good thing to do, and your clients will value knowing the provider supplied meaning to

enrich their own understanding and flesh out their own data catalog.

Large organizations find it difficult to articulate their whole data product shop

window using a single tool, and many organizations have incomplete catalogs. Provide

what you have while completing the remainder. Your clients both expect and appreciate

all available information.

�Shared Tag References
The ability to export data product context is becoming more important to clients. Data

without context is akin to data littering, a term coined by Dr Jon Talburt and referenced

within this article: https://tdan.com/data-speaks-for-itself-data-

littering/29122.

At the time of writing, shared tag references are a public preview feature for which

further information can be found at https://docs.snowflake.com/en/user-guide/

data-sharing-provider#shared-tag-references.

�Multiple Shares of Same Data
A common requirement from clients is to have the same data shared into multiple

accounts. Where the consumer account is co-located with the provider account, the

data does not move. For clients sharing objects access the same micro-partitions as the

provider, there is zero cost.

From a consumer perspective, with a single share, accessing the same data set in

multiple environments can be achieved only by replicating the reshared data, as shown

in Figure 9-12.

Chapter 9 Client Expectations

https://tdan.com/data-speaks-for-itself-data-littering/29122
https://tdan.com/data-speaks-for-itself-data-littering/29122
https://docs.snowflake.com/en/user-guide/data-sharing-provider#shared-tag-references
https://docs.snowflake.com/en/user-guide/data-sharing-provider#shared-tag-references

352

Figure 9-12.  Sharing limitation

Data shared within the same CSP and same region is readily achieved by enabling

the consuming account to access a single share. Offering multiple account consumption

for an existing share is a great way to win customer loyalty and significantly reduce both

friction and copy costs.

�Hydration Approach
Regardless of where you distribute your data products, you must ensure the consistent

application of entitlement across disparate data distribution venues. Your approach

must consider not just Snowflake, but all tooling and products dependent upon data

products mastered within Snowflake.

To protect your clients from internal system failure, you must also consider how,

and from where, you will hydrate your data. This point may not be obvious: your

clients should not be forced to invoke their disaster recovery plan due to an upstream

data supply failure from a provider. Furthermore, you should consider hydrating from

multiple sources wherever possible.

The timeliness of data must also be considered. If you curate your data within a

single environment and propagate change to consumers, with the exception of a Secure

Direct data share, latency is introduced. How you address latency is important; in the

previous chapter you saw how parallelizing feeds can reduce latency.

Chapter 9 Client Expectations

353

�Summary
This chapter by considering how clients interact with your data products, and you saw

some of the consumption challenges your clients may face. I explained two different

approaches to entitling data along with the pros and cons of each.

After explaining how to pass through unentitled objects, we decided upon delivering

curated data sets for each client. You then saw how to develop a simple code generator

delivering bespoke content according to your configured entitlement model.

The example illustrated within this chapter was intended to introduce how

client-specific entitled data can be both derived and delivered in a semi-automated

manner. The code was simplistic in its approach and will not suffice for more complex

requirements, and I encourage experimentation; you may want to add both entities

and attributes to extend filter engine capability. Furthermore, a combination of access

policies and data masking may suffice instead of data-driven curated data sets. Your use

cases will inform your decision-making.

The final section addressed some common challenges for which you can either

resolve very easily or initiate a conversation with your data product providers to identify

better solutions.

Views are not the only sharable object type. The Snowflake documentation at

https://docs.snowflake.com/en/user-guide/data-sharing-intro shows that the

following object types are sharable:

•	 Tables

•	 External tables

•	 Dynamic tables

•	 Secure views

•	 Secure materialized views

•	 Secure UDFs

The list of sharable object types has changed since writing my previous book,

Maturing the Snowflake Data Cloud, with the addition of dynamic tables.

You can now move on to the final chapter in this book, which covers what to look out

for and how to approach optimizing performance.

Chapter 9 Client Expectations

https://docs.snowflake.com/en/user-guide/data-sharing-intro

355
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6_10

CHAPTER 10

Optimizing Performance
In previous chapters, you investigated Snowflake performance tuning from different

perspectives and established a clear understanding through practical investigation

and hands-on examples. This final chapter brings all of your learnings together into

one place with the intention of providing a pragmatic guide to aid in your future

investigations.

I do not claim to cover 100 percent of all possible scenarios or Snowflake

performance issues in this chapter. With ever-expanding platform capability, Snowflake

continually finds ways to improve performance, improve available information,

and deliver tooling to improve processes. Its goals are to provide a starting point

for investigation and provide contextual information to open up new pathways for

investigation.

I have attempted to make this chapter light on code but provide template code

samples and summary queries. Many expanded code examples are contained in

previous chapters; my hope is that this book will be well used over time!

Tuning must be regarded as a continual activity. Treat the root cause, not the
symptoms!

Naturally some information overlaps occur when investigating performance issues;

this chapter is no exception. There is no single “right path” to begin an investigation.

Your entry point will depend upon what you already know and the context, whether

planning a new application, investigating a newly reported issue, or remediating a

known issue. Intersections between different investigation paths offer insight into new

avenues, possibilities, and opportunities for both learning and improvements to be

made. I encourage both investigation and experimentation. You will often learn more

through failure than success!

https://doi.org/10.1007/979-8-8688-0379-6_10#DOI

356

Snowsight provides a window into Snowflake performance but does not provide the

deep drill-down capability exposed in this book. I hope your efforts empower you to

both up-skill and deliver impactful business success by reducing costs and improving

your application code performance.

Let’s start by looking at design decisions made before a line of code is crafted.

�Early Design Decisions
Design decisions made during the early stages of platform choice often have a decisive

impact on system performance. In this section, I discuss some points to consider when

implementing Snowflake.

As noted in Chapter 1, tuning the design is the most effective way of achieving

optimal performance. This step occurs before attempting to write any code. The same

advice applies when working with any technology, not just Snowflake. There are many

ways to implement poor designs and far fewer ways to implement good designs.

As Tony Robbins observes, “Complexity is the enemy of execution.” We
should strive to reduce complexity at every opportunity.

�Snowflake Edition Costs
The edition of Snowflake you choose can have material impact on both cost and

feature availability. Throughout this book and for previous books in this series, I have

recommended all trial accounts be created using Business Critical Edition to ensure

the most complete feature set is available for use as you investigate Snowflake. But

Business Critical Edition is not the only option; compute costs per credit correlate to the

Snowflake edition chosen. You can find more information at https://www.snowflake.

com/en/data-cloud/pricing-options/.

When considering Snowflake, you must identify the minimum platform feature set

required to support your intended use case. Your applications may not use or require

every Snowflake feature, and you are wise to consult your cybersecurity colleagues for

their input before deciding on a Snowflake edition. I consider Business Critical Edition

to be the optimal edition for its security profile and extended capability for continuous

data protection (failover and client redirect).

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_1
https://www.snowflake.com/en/data-cloud/pricing-options/
https://www.snowflake.com/en/data-cloud/pricing-options/

357

Please refer to the feature list tables and overview of the Snowflake core

platform capabilities by edition found here: https://docs.snowflake.com/en/

user-guide/intro-editions?utm_source=snowscope&utm_medium=serp&utm_

term=edition#feature-edition-matrix.

�Data Model Approach
Snowflake is “model agnostic.” Third normal form, Data Vault 2.0, and star schema all

work very well. You must understand your data volume, velocity, and variety in order to

decide upon a data modeling approach. Choosing the wrong model for your data profile

can adversely affect performance and increase costs. In general, you know from earlier

investigations conducted in this book that both UPDATE and MERGE operations are expensive,

whereas INSERT and many (but not all) DELETE operations are relatively inexpensive.

You must balance your approach with the need to query data. Because reading data is

performed far more often than writing data, tuning SELECT statements is always worthwhile.

Where your application requires historized or bi-temporal data, adopting an insert-

only pattern such as Data Vault 2.0 will provide optimal performance throughout the

application life cycle.

Snowflake performs best with high-volume, low-frequency data operations and

is less performant with low-volume, high-frequency data operations. Transactional

workloads should be avoided when not using hybrid tables. Note that any use of hybrid

tables should be limited to low millions of records according to conversation with the

Snowflake Sales Support engineering staff. Mitigation by partitioning workloads as

described earlier in this book can be very effective.

Regardless of the data modeling approach, avoid forcing object and attribute names

to either mixed or lowercase. I prefer most objects and attributes names to remain in

uppercase, preventing objects and attributes from being referenced in double quotes in

SQL statements. Procedure and function names may benefit from mixed-case naming

according to preference.

�Platform Differences
A full treatise on migrating from disparate legacy platforms to Snowflake is beyond

the scope of this book. Various guides exist to begin the migration process, though not

all the details are covered. You can find a good starting point at https://community.

snowflake.com/s/article/So-You-Want-to-Migrate-to-Snowflake-Part-One.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/intro-editions?utm_source=snowscope&utm_medium=serp&utm_term=edition#feature-edition-matrix
https://docs.snowflake.com/en/user-guide/intro-editions?utm_source=snowscope&utm_medium=serp&utm_term=edition#feature-edition-matrix
https://docs.snowflake.com/en/user-guide/intro-editions?utm_source=snowscope&utm_medium=serp&utm_term=edition#feature-edition-matrix
https://community.snowflake.com/s/article/So-You-Want-to-Migrate-to-Snowflake-Part-One
https://community.snowflake.com/s/article/So-You-Want-to-Migrate-to-Snowflake-Part-One

358

Some additional considerations also apply; note that the following list is incomplete:

•	 Oracle incorrectly implements NULL logic according to the ANSI

standard, whereas Snowflake implements NULL correctly.

•	 Never use SELECT * in Snowflake; always declare every attribute even

if all attributes from the table are used in the wider query.

•	 Snowflake does not support physical table partitioning, though

a similar effect can be achieved with parallelizing operations, as

described in Chapter 8.

•	 Not all legacy RDBMS implement ACID transactions by default.

For some, the isolation level must be set to block writes to prevent

dirty reads.

In Chapter 1 I discussed migration guides and listed several common legacy RDBMS

platform guides. I also noted the availability of SnowConvert and detailed alternative

options. You can find more information on migration kits at https://www.snowflake.

com/migrate-to-the-cloud/.

�Logging
All applications require process metadata to be stored to trace the inevitable feed

ingestion issues arising during the course of day-to-day operation.

A single logging table effectively serializes all concurrent parallel processing due

to the immutable nature of micro-partitions and locking operation where constant

micro-partition churn occurs. My recommendation is to use an Event table as described

previously, which removes the serialization issue. Note that a latency of a few minutes is

commonly experienced between event creation and event observability.

The forthcoming Unistore workload uniting transactional and analytical data using

hybrid tables may provide a single logging table capability without blocking parallel

transactions. We have not proven Unistore workloads in this book, but I bring this to

your attention for future reference. You can find more details on Unistore at https://

www.snowflake.com/en/data-cloud/workloads/unistore/.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_8
https://doi.org/10.1007/979-8-8688-0379-6_1
https://www.snowflake.com/migrate-to-the-cloud/
https://www.snowflake.com/migrate-to-the-cloud/
https://www.snowflake.com/en/data-cloud/workloads/unistore/
https://www.snowflake.com/en/data-cloud/workloads/unistore/

359

�Role-Based Access Control
When implemented optimally, Snowflake role-based access control (RBAC) provides an

excellent approach to securing objects, attributes, and data. When poorly implemented

by nesting several layers of roles, performance issues arise due to the optimizer drilling

down through each layer and through view definitions to determine object access

entitlement.

Snowflake provides core administrative roles that may be wrapped for both single-

tenant and multitenant environments, a practice discussed in Maturing the Snowflake

Data Cloud. In addition to the Snowflake-supplied roles, you should define separate

roles for the following:

•	 Application-owned objects

•	 Data manipulation in application objects

Segregating object ownership from object usage is critical. Each logical grouping

of objects should have its own ownership role. Furthermore, you should implement

data manipulation (or object usage) roles according to their function, as shown in

Figure 10-1.

Figure 10-1.  Data manipulation roles

These are the application roles:

•	 ELT role: Used to ingest data into our application; scope is limited to

staging/raw table population and triggering functionality to begin the

curation process.

•	 Core role: Used to perform all curation activity to build our data

products in preparation for presentation.

Chapter 10 Optimizing Performance

360

•	 Presentation role: Used to implement client-specific data sets and

data sharing capability; references curated data products.

•	 Consumer role: There may be many consumer roles according to

end-user requirements. These roles are for directly connected users

and reference specific presentation objects.

A multitenant environment will have bespoke application roles for each tenant.

You should be mindful of tooling, which purports to simplify RBAC. I strongly

caution against those tools that implement a role per user and that insist all RBAC is

defined in their tooling for management. These issues can arise:

•	 Role proliferation will cause performance issues when resolving

object entitlement.

•	 Over-enthusiastic application of data masking policies will result in

slow metadata operations.

•	 Vendor lock-in will occur where a product exclusively encapsulates

RBAC management.

We recommend roles are kept to a minimum with few nested layers and that data

masking policies are applied sparingly.

Just because a feature is available does not mean the feature should be used

ubiquitously.

�Declare Constraints
Snowflake allows referential integrity to be declared but not enforced. With the exclusion

of hybrid tables, the only constraint enforced is NOT NULL. You can find more information

at https://docs.snowflake.com/en/sql-reference/constraints-overview.

The presence of unenforced constraints may influence query optimizer processing

and greatly assist self-discovery by third-party tooling. I therefore recommend that

constraints are declared wherever possible.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/sql-reference/constraints-overview

361

�Transient or Permanent Tables?
I am assuming that inbound data feeds are repeatable and therefore suggest ingestion

of raw or staging tables should use transient tables with Time Travel set to 0 as transient

tables do not utilize Fail-Safe. You might also consider using transient tables for

frequently refreshed data generated for point-in-time reporting.

Permanent tables should be reserved for persistent storage where Time Travel is

required. Note that the seven-day Fail-Safe period follows. Typically, permanent tables

are used for storing both curated and historized data.

Parallelizing data loads as shown in Chapter 8 can significantly reduce micro-

partition churn for permanent tables.

�Warehouse Considerations
Correctly sizing and scaling a warehouse is dependent upon a full understanding of

workload under “steady state” conditions. Previously in Chapter 8 we asked these

questions:

•	 Is queueing, spills to disk, or OOMs evident?

•	 Is the warehouse overloaded, queueing, or blocking?

•	 Is the data feed overrunning its schedule leading to feeds backing up?

•	 Are costs increasing over time?

Later in this chapter I summarize queries to answer each question noting that there

are several ways to answer these questions.

As discussed in Chapter 6, I prefer fixed-size warehouses where the warehouse

declaration remains constant.

I do not advocate dynamically resizing warehouses. This is a poor approach to
performance tuning.

A known, fixed suite of declared warehouses is preferable to dynamically managed

warehouses. Dynamically resizing warehouses disables the warehouse cache.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_8
https://doi.org/10.1007/979-8-8688-0379-6_8
https://doi.org/10.1007/979-8-8688-0379-6_6

362

Additionally, I advocate consolidating warehouses of the same size into a single

declaration. I also propose query tags with JSON to differentiate usage as discussed next.

You also want minimal warehouse lag. Suspending and resuming warehouses introduce

latency, and some use cases benefit from keeping warehouses “warm.” Conversely,

starting and stopping warehouses in an ad hoc manner can result in under-utilization

and additional spend, which delivers no value.

�Workload Monitoring
Where workloads are consolidated into generic warehouses, consumption metrics are

more difficult to attribute to the consuming source. To maintain the efficiencies gained

by consolidating workloads, query tags should be set before a SQL statement is issued,

and unset, or set to a new value for subsequent SQL statements.

You should set individual query tags for every SQL operation in your system. The

use of query tags provides a very fine grain of traceability back to the source when

investigating performance issues.

I strongly recommend implementing query tags to assist in later investigations.

An individual query tag may contain up to 2,000 characters and can contain JSON.

ALTER SESSION SET query_tag = '{"Team": "Finance", "Query":

"BusinessLineYTD"}';

You can investigate query tag values using the SHOW command.

SHOW PARAMETERS LIKE 'query_tag';

Then extract the “value” programmatically.

SELECT "key",

 "value"

FROM TABLE (RESULT_SCAN (last_query_id()));

Likewise, you can unset a query tag.

ALTER SESSION UNSET query_tag;

Chapter 10 Optimizing Performance

363

�Managed (or Reader) Accounts
Managed accounts enable providers to share data with non-Snowflake customers as

they are created, managed, and owned by the provider account. In addition to creating

managed accounts for our client use, managed accounts are also useful for local testing.

You can find more information on managed accounts at https://docs.snowflake.com/

en/user-guide/data-sharing-reader-create.

Figure 10-2 shows the relationship between Snowflake-supported containers used

to implement data sharing. Note the tight coupling between a primary account and a

managed account.

Figure 10-2.  Managed account in context

Managed accounts use the same credit allocation as the creating primary account.

Provisioning managed accounts may lead to uncontrolled credit consumption. If

managed accounts are provisioned, warehouses in the managed account can consume

unlimited credits from the providers budget; therefore, a resource monitor to limit usage

should be set up. You can find more information on resource monitors at https://docs.

snowflake.com/en/sql-reference/sql/create-resource-monitor.

I do not advise the creation of managed accounts but instead prefer each client to

develop their own relationship with Snowflake Inc. However, managed accounts can

be useful when testing shares as this approach removes the need to spin up a second

Snowflake account.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/data-sharing-reader-create
https://docs.snowflake.com/en/user-guide/data-sharing-reader-create
https://docs.snowflake.com/en/sql-reference/sql/create-resource-monitor
https://docs.snowflake.com/en/sql-reference/sql/create-resource-monitor

364

�Replication
Replication data volumes are impacted by your approach to data ingestion and curation.

As covered in Chapter 8, parallelization has the potential to minimize replicated data

through minimizing the number of micro-partitions changed for a given object. You will

observe that data replication costs can far exceed curation costs; therefore, you must

retain a tight focus on all parts of the data distribution.

Chapter 9 discussed how entitlements can be implemented, offering two different

implementation patterns. The “all-or-nothing” approach leads to a high probability of

data being replicated but with significant portions unused by clients. The bespoke client-

centric approach of prefiltering data prior to presentation for client consumption may

reduce replicated data sets, but at additional provider curation and refresh cost.

Snowflake replication costs are always paid by the data provider regardless of the
data transfer mechanism.

From a producer perspective, you should always be mindful of your client

consumption costs. From a consumer perspective, you should insist your consumption

costs are minimized. Producers should facilitate their consumers by enabling multiple

accounts to ingest the same share. Where data products are subject to user license limits,

I suggest enabling multiple accounts to consume the same share offers additional sales

opportunities due to higher usage and increased data product license requirements.

�Multiplatform Distribution
Snowflake does not exist in isolation as the sole data marketplace. Figure 10-3 illustrates

one possible ecosystem where Snowflake is used to curate and master data products and

then distribute to multiple distribution venues.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_8
https://doi.org/10.1007/979-8-8688-0379-6_9

365

Figure 10-3.  Multiplatform data publishing

Figure 10-3 does not cover all distribution venue possibilities; other cloud

distribution venues are available.

�Consumption Monitoring
Consumption metrics for published data will prove very useful to our marketing

and sales colleagues. I suggest that collating all available consumption metrics into

a consolidated reporting account for centralized reporting is sensible, as shown in

Figure 10-4.

Chapter 10 Optimizing Performance

366

Figure 10-4.  Multiplatform metric ingestion

Available consumption metrics will not include detailed SQL statements as these are

likely to contain consumer intellectual property. Snowflake explicitly prevents producers

from accessing their client SQL statements. Nonetheless, collated consumer metrics

offer a degree of insight. Note that each platform’s metrics may require conforming to a

certain format for reporting purposes.

�Optimizing Consumption
When developing applications, you will usually focus on achieving both system

performance and cost to deliver data products. Usually this is a linear process deliver

to either “like-for-like” capability when porting from an existing application or to build

a minimum viable product for delivery to clients. Rarely do developers consider how

clients will interact with a data product.

When ingesting data and combining intellectual property to curate data products,

you must also consider adding features to facilitate client consumption of your data

products. Some attributes lend themselves to improving query performance at little to

no cost.

Chapter 10 Optimizing Performance

367

Consider date ranges. Many data feeds contain date attributes, and some are suitable

for summarizing into an additional attribute containing YYYYMM only. By adding a new

month-based attribute, you will enable filtering by month, which may facilitate micro-

partition pruning.

Design for consumption. Ingestion (usually) happens once, whereas consumption
happens many times for the same data set.

�Benchmark CSP Performance
Most organizations have strategic platforms and commercial arrangements with one,

two, or all three CSPs. Where choice exists, perform benchmark testing to identify the

best-performing CSP for identical workloads. We are aware of performance differences

in comparable virtual environments across different CSPs.

While not broken down by CSP, Snowflake publishes a performance index showing

workload performance improvements over time for which further information can be

found at https://www.snowflake.com/en/data-cloud/pricing/performance-index/.

�Query Performance
Identifying query performance can be performed using several out-of-the-box tools; we

highlight some available options next.

Figure 10-5 shows the Snowsight tools referenced in this section.

Chapter 10 Optimizing Performance

https://www.snowflake.com/en/data-cloud/pricing/performance-index/

368

Figure 10-5.  Snowsight performance-related tooling

The tools shown in Figure 10-5 provide a quick way to identify recent performance

hot spots but do not provide wider contextual information required for a thorough

investigation.

Snowsight is constantly evolving with new functionality and screens. We recommend

periodic review of Snowsight capabilities; in fact, while writing this book new screens

became available.

�Warehouse Monitor
Snowsight offers a Warehouse screen accessible from the Admin link on the left side of

the browser. Select Warehouses where summary information for the previous two weeks

is displayed (shorter time periods can be displayed).

In the Query History section, the Status drop-down list provides several options, two

of which are Queued and Blocked. Both options provide immediate visibility of recent

issues with corresponding queries available for selection.

�Cost Management Screen
Snowsight offers a Cost Management screen accessible from the Admin link on the left

side of the browser. Select Cost Management and then Account Overview, where summary

information about costs and the most expensive queries are displayed. At the time of

writing, Account Overview is in public preview, and the capability will increase over time.

Chapter 10 Optimizing Performance

369

�Query History
Snowsight offers a Query History screen accessible from the Monitoring link on the

left side of the browser. Select Query History where the summary information for the

previous 14 days is displayed; shorter time periods can be displayed along with a Custom

option where a user-defined time period can be selected.

Use the DURATION column to order results by execution runtime.

�Query Profile
Query profiles are useful for providing a visual indication of query execution operations

and for identifying the following:

•	 How the query is physically executed

•	 Warehouse size used for execution

•	 Query execution order

•	 Ordered list of operation costs

•	 Spills to disk and out-of-memory (OOM) errors

•	 Cache reuse

•	 Micro-partition pruning

I discussed each aspect in detail in Chapter 3, noting preference for the following:

•	 Small build-side tables

•	 Large probe-side tables

•	 Right deep tree joins

Recognizing “good” patterns is important when tuning Snowflake code; the query

profile tree and profile overview provide invaluable tools for performance tuning

queries.

Figure 10-6 shows an example query profile reused from Chapter 3; note that the

color coding in the PDF version is mine.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_3
https://doi.org/10.1007/979-8-8688-0379-6_3

370

Figure 10-6.  Sample query profile

�Explain Plan
Evaluating queries before execution is another invaluable tool when performance tuning

code. An explain plan shows the sequential steps performed by the optimizer when

running the SQL statement. You can use an explain plan to evaluate the compile-time

query plan, but note that an explain plan cannot expose runtime optimizations applied

by the execution engine. These optimizations may occur due to prefiltered data from

earlier processing, data distribution patterns, and automatic data skew optimizations.

Chapter 10 Optimizing Performance

371

You must regard an explain plan as a window into the optimization process just prior

to the point of actual execution where further optimizations may occur.

Explaining SQL statements is a metadata operation; therefore, no warehouse is

required; zero runtime cost are incurred though cloud service costs accrue.

In addition to the immediate knowledge gained for SQL statement execution, other

use cases illustrate the value of explain plan.

•	 Delivering explain plan output as part of the software delivery life

cycle provides a baseline for reference when the application has

matured.

•	 Using an explain plan is good practice, instills discipline, and catches

preventable issues early.

•	 Tabular format allows programmatic identification of issues.

To illustrate how EXPLAIN works, let’s reuse the earlier known-good example query

referencing v_supplier_part. In this example, I will request TABULAR output but might

instead prefer JSON output:

EXPLAIN USING TABULAR

SELECT <attributes>

FROM <table>

WHERE <predicates>

ORDER BY <ordering>;

Figure 10-7 reuses the sample explain plan output from Chapter 3; note that further

information is available if you scroll off to the right of the screen (not shown).

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_3

372

Figure 10-7.  Sample explain plan output

An explain plan also identifies micro-partition pruning through the GlobalStats and

TableScan operators. You can also see the table aliases declared under the alias column;

I will discuss aliases later. Figure 10-8 shows the effect of micro-partition pruning for the

table PART_BASELINE. Note that partitionsAssigned is not an absolute value subject to

later execution optimization.

Figure 10-8.  Explain plan micro-partition pruning

�GET_QUERY_OPERATOR_STATS
GET_QUERY_OPERATOR_STATS returns query operator information for completed queries.

GET_QUERY_OPERATOR_STATS is limited to queries executed in the past 14 days, which sets

the maximum timeframe for how frequently any automated monitoring solution can run

without missing information.

Chapter 10 Optimizing Performance

373

The general form of GET_QUERY_OPERATOR_STATS is as follows:

SELECT <attributes>

FROM TABLE (get_query_operator_stats(<your value here>))

WHERE <predicates>

ORDER BY <ordering>;

GET_QUERY_OPERATOR_STATS accepts a single value, which must be one of the

following:

•	 The value returned by last_query_id()

•	 A session variable containing a valid query_id

•	 A string literal set to valid query_id

You might also use GET_QUERY_OPERATOR_STATS to investigate the most recently

executed SQL statement:

SELECT *

FROM TABLE (get_query_operator_stats(last_query_id()));

Refer to Chapter 4 for further information on using GET_QUERY_OPERATOR_STATS. You

can find more information about common query problems identified by GET_QUERY_

OPERATOR_STATS at https://docs.snowflake.com/en/user-guide/ui-snowsight-

activity#common-query-problems-identified-by-query-profile.

�Optimizing Code
In this section, you will consider how to optimize your code to match Snowflake’s “best

practices” to optimize both costs and query performance. Some of the identified actions

are zero risk and immediate benefits; others are more invasive.

You are responsible for ensuring the quality of your submitted SQL statements.
Keep It Simple, Stupid.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_4
https://docs.snowflake.com/en/user-guide/ui-snowsight-activity#common-query-problems-identified-by-query-profile
https://docs.snowflake.com/en/user-guide/ui-snowsight-activity#common-query-problems-identified-by-query-profile

374

�Time Travel Setting
Incorrectly setting Time Travel to retain data for longer than required incurs additional

storage costs. In Chapter 4, I discussed various considerations that may facilitate a

reduction in your Time Travel setting for each object.

•	 Where ingested data can easily be reloaded, choose either temporary

or transient tables.

•	 Where processed data is subject to high-frequency, low-volume DML

activity, set Time Travel as low as acceptable.

•	 Build intermediate data sets into temporary tables before loading

into core tables.

•	 Parallelize high-frequency, low-volume data loads to reduce micro-

partition churn.

•	 Adopt an insert-only design pattern such as Data Vault 2.0.

•	 Where consumed data is periodically recreated, choose

transient tables.

•	 For large tables, implement optimal clustering keys to match the

most common data access paths.

�Use Clones
When testing, you will often require either a baseline data set or a known configuration

to reset at a known point in time. I will discuss cloned objects in detail in Chapter 4.

The overuse of clones is guaranteed to increase storage costs and, under certain

circumstances, may contribute to metadata queries running slowly.

Remove all redundant cloned objects at the earliest possible opportunity.

�Warehouse AUTO_SUSPEND
The minimum runtime for a warehouse is 60 seconds. You must ensure your warehouses

cease execution after 60 seconds; this occurs only where there is no load on the

warehouse.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_4
https://doi.org/10.1007/979-8-8688-0379-6_4

375

SHOW warehouses;

ALTER WAREHOUSE compute_wh SET auto_suspend = 60;

Unless there are compelling reasons to retain an active, running warehouse, repeat

for every warehouse in the account.

�Warehouse Size
Don’t be frightened of using a Large or bigger warehouse. They can be more time and

cost effective than using a smaller warehouse. Note that failure to set the warehouse size

correctly will result in excessive consumption charges.

Conversely, and in line with the best practices outlined in this book, if your code

has been properly tuned, then you may be able to reduce your warehouse size while

achieving the same or better process runtimes. Reducing warehouse size by one size

halves the runtime cost.

Always seek to parallelize processes to concurrently use all the available warehouse

processing units.

Warehouse scaling must also be considered; I will discuss warehouse scaling in

Chapter 6.

�Warehouse Usage
There are many considerations when optimally sizing and using your warehouses. Some

of these are as follows:

•	 Is the workload consistent with historical “steady-state” workloads?

•	 How many concurrent workloads are running against the warehouse?

•	 What is your warehouse concurrency set to?

•	 Are workloads queueing?

•	 Is warehouse clustering enabled and, if so, to what degree?

•	 For each workload, are any workloads spilling to disk?

•	 Is object locking evident?

•	 Does the warehouse run too frequently?

•	 Are too many warehouses of same size declared?

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_6

376

•	 Is there low warehouse cache reuse?

•	 Is there an incorrect auto_suspend setting?

•	 Is there an artificial warehouse size constraint imposed?

•	 Are files correctly sized for ingestion?

•	 Is the warehouse correctly sized for the workload?

•	 Is serial or parallel logging implemented?

•	 Are warehouse scaling policies appropriate for the operating

environment?

•	 Are warehouse modes correct for the expected workload?

To reduce the number of warehouses, use query tags when consolidating workloads

onto warehouses.

�Warehouse Scaling Policy
By default, multicluster warehouses are created with the Standard scaling policy.

While appropriate for production environments, most nonproduction environment

warehouses will benefit from using the economy scaling policy to achieve a better

balance of speed and performance. With the economy scaling policy, nonproduction

environments can tolerate a higher degree of queueing to ensure greater warehouse

processing unit utilization.

ALTER WAREHOUSE <warehouse_name> SET SCALING_POLICY = 'ECONOMY';

You can find more information on warehouse scaling policies at https://docs.

snowflake.com/en/user-guide/warehouses-multicluster#setting-the-scaling-

policy-for-a-multi-cluster-warehouse.

�Warehouse Mode
Warehouses operating in auto-scale mode are identified where the maximum and

minimum number of clusters have different values. In this scenario, a single cluster is

started at warehouse instantiation with further clusters starting (subject to maximum

clusters setting) according to workload. Auto-scale is the most common warehouse

mode and is useful for varying workloads.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/warehouses-multicluster#setting-the-scaling-policy-for-a-multi-cluster-warehouse
https://docs.snowflake.com/en/user-guide/warehouses-multicluster#setting-the-scaling-policy-for-a-multi-cluster-warehouse
https://docs.snowflake.com/en/user-guide/warehouses-multicluster#setting-the-scaling-policy-for-a-multi-cluster-warehouse

377

ALTER WAREHOUSE <warehouse_name> SET MIN_CLUSTER_COUNT = 1;

ALTER WAREHOUSE <warehouse_name> SET MAX_CLUSTER_COUNT = 4;

Warehouses operating in maximized mode are identified where the maximum and

minimum number of clusters are the same value. In this scenario, all clusters are started

at warehouse instantiation and may be useful for known, static workloads.

ALTER WAREHOUSE <warehouse_name> SET MIN_CLUSTER_COUNT = 2;

ALTER WAREHOUSE <warehouse_name> SET MAX_CLUSTER_COUNT = 2;

You can find more information on warehouse maximized mode at https://

docs.snowflake.com/en/user-guide/warehouses-multicluster#maximized-vs-

auto-scale.

�Bind Variables
Bind variables enable query reuse. The first time a SQL statement is seen by the

optimizer, a hard-parse is performed, all subsequent query submissions reuse the

original execution plan and substitute values for the bound variables.

Overall query performance suffers where SQL statements are always hard-parsed,

the optimizer cannot re-use queries. Bind variables are always considered best practice

where the main body of a query remains static. Implementation costs for implementing

bind variables result in both lower execution costs and reduced code maintenance

overheads.

�Eliminate SELECT *
Snowflake only access those explicitly named attributes from base tables. SELECT * is an

obvious candidate for removal and replacement with explicitly named attributes. In real-

world testing we observe performance improvements by removing SELECT *.

Replace SELECT * with only those attributes required to satisfy the query. Do not add

extraneous or unused attributes as these result in extra workload.

SELECT * with UNION (not UNION ALL) results in a full table scan for each side of

the UNION.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/warehouses-multicluster#maximized-vs-auto-scale
https://docs.snowflake.com/en/user-guide/warehouses-multicluster#maximized-vs-auto-scale
https://docs.snowflake.com/en/user-guide/warehouses-multicluster#maximized-vs-auto-scale

378

�Eliminate DISTINCT
I occasionally observe the use of the DISTINCT clause to enforce uniqueness. Closer

examination often reveals a missing join condition from the query predicates or poor

data model implementation.

Identify and remove all DISTINCT clauses wherever possible, and use the previously

covered query performance tools to aid investigation.

�Examine Common Table Expressions (CTEs)
Where a CTE is referenced more than once in the same SQL statement, you may find

attribute pruning is disabled.

I recommend the use of CTEs to abstract complex logic and simplify code, but not in

all situations.

Please refer to the corresponding section in Chapter 3 for further details.

�Window Functions
QUALIFY provides the same functionality for window functions as HAVING does for

aggregate GROUP BY functions. QUALIFY may reduce memory usage by limiting results;

see https://docs.snowflake.com/en/sql-reference/constructs/qualify.

Use the same keys for PARTITION BY and ORDER BY clauses. Using different keys will

result in a performance penalty.

Implement a single consistent windowing pattern for multiple analytic function calls

in the same SQL statement.

Always implement a PARTITION BY clause in a window function regardless of

whether the query is successfully processed. Where no obvious partitioning pattern

matches the requirement, use either PARTITION BY NULL or PARTITION BY 1.

�Returned Query Attributes
Snowflake prefers fewer attributes to be returned from individual queries and suggests

using 100 or fewer attributes (according to Jiaqi Yan, principal software engineer, and

Minzhen Yang, principal engineer and tech lead, at Snowflake Inc).

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_3
https://docs.snowflake.com/en/sql-reference/constructs/qualify

379

Micro-partitions underpin every SQL statement. You must consider how data is

stored and maintained in storage when making query decisions. You should optimize

your physical base table storage for query performance. Performance may be improved

by separating VARIANT attributes into a separate table where most queries do not

reference the VARIANT attributes.

�Reduce Nested Views
Wherever possible, nested views should be removed from queries. In general, query

optimizers must resolve each nested view before resolving the main query. You can see

how nesting views may lead to performance issues both in terms of increased query

compilation time and execution time.

Nested views are often difficult to debug as they act as a translation, filter,

summary, or aggregate layer between source objects and consuming objects or queries.

Temporarily replacing an intermediary view with a table of the same name and contents

helps resolve issues as the query profile will be far simpler. Better still, replace nested

views with more elegant SQL encompassing view functionality.

I discuss how to identify object types later in this chapter as the naming convention

alone cannot be relied upon.

�Replace Subqueries
Snowflake may not always optimize subqueries to dynamically prune micro-partitions,

and rewriting a query may not always convert a subquery to a join. Instead, convert

subqueries to direct joins or CTEs where appropriate. There is usually no benefit to

ordering data in a subquery or CTE except to obtain an intermediate top ‘n’ rowset.

As always, test and then retest to prove that the changes are effective.

�Optimization Focus
When optimizing SQL statements, the most impact will be realized by optimizing the

number of rows returned. In order of preference, your approach should focus on the

following:

•	 Reducing the number of objects accessed

•	 Ensuring join conditions are complete and correct

Chapter 10 Optimizing Performance

380

•	 Making sure filter criteria are sufficiently selective and match any

defined clustering keys

•	 Minimizing aggregations and aggregate filters

•	 Reducing analytic operations

•	 Removing ordering and record limits

�Optimize INSERTs
Occasionally you will encounter individual INSERT statements that may be consolidated

into multirow INSERT statements.

A multirow INSERT statement is considerably more efficient than many individual

INSERT statements because of the immutable nature of micro-partitions. Every

individual INSERT statement causes a new micro-partition write for each row, whereas a

multirow INSERT causes fewer micro-partition writes.

�UNION or UNION ALL
UNION forces a SORT, whereas UNION ALL does not enforce a SORT. Replace UNION with

UNION ALL where appropriate.

�Joins
Joins can be improved by rewriting code for efficiency; I explain some of the more

common issues encountered with joins next.

�Remove Disjunctive Joins

The Snowflake optimizer prefers conjunctive (additive) joins; these are predicates with

AND operators. Predicates with OR operators are disjunctive (subtractive) joins that are

known to affect performance. Disjunctive joins should be rewritten using UNION/UNION

ALL to improve performance.

Chapter 10 Optimizing Performance

381

�Missing Joins

Identify missing join criteria as this is the most likely root cause. Note that missing

composite key attributes are far harder to identify than single attribute primary key/

foreign key relationships. A general rule of thumb is that the number of AND join

conditions should always be equal to the number of tables minus 1. This works for many

scenarios.

�Type Casting

Multiple layers of type casting on join keys prevents static micro-partition pruning at

compile time. Consider adding typecast attributes at table creation time for population

by ingestion or curation processes. By way of example, add an “YYYYMM” attribute

where a DATE attribute would normally be used. The additional low-cardinality attribute

may be a suitable candidate for clustering key definition to enable more efficient

pruning.

�Optimizing Joins

Numeric data type joins are the fastest of all. I prefer sequence generated surrogate

primary keys over natural or composite keys for all tables along with declared referential

integrity. Numeric data types are also preferred for clustering keys where the number

range is low cardinality. Sequences do not make good candidates for leading attributes

in clustering keys.

Dates and timestamps are stored internally in numeric format and therefore are

good candidates for both join conditions and clustering keys. I prefer to reduce the

cardinality of both date and timestamp attributes when used as leading attributes in

clustering keys; I suggest reducing cardinality to the year/month (YYYYMM) format to

improve pruning.

Cardinality can be determined from both metadata and Snowflake-supplied

nondeterministic estimation functions such as HYPERLOGLOG for which further

information can be found here at https://docs.snowflake.com/en/sql-reference/

functions/hll. Bitmaps can also be used to improve performance; see https://docs.

snowflake.com/en/user-guide/querying-bitmaps-for-distinct-counts.

Remove type casting from join key attributes; instead, pre-type cast into new

attributes at the point of data ingestion.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/sql-reference/functions/hll
https://docs.snowflake.com/en/sql-reference/functions/hll
https://docs.snowflake.com/en/user-guide/querying-bitmaps-for-distinct-counts
https://docs.snowflake.com/en/user-guide/querying-bitmaps-for-distinct-counts

382

�Table Join Order

Table join order on SQL statements can be significant. Start with the smallest cardinality

tables first to eliminate the greatest number of micro-partitions early in the query

optimization stage. Also check that the query filter criteria are sufficiently selective to

improve micro-partition pruning.

�Simplify Logic

Wherever possible, remove aggregations and summaries from join, group by, and order

by operations as cardinality estimates suffer. Instead, create materialized views to pre-

aggregate and summarize attributes.

Reduce the number of levels navigated to resolve query result sets.

�Missing Referential Integrity
Referential integrity may be retrospectively applied by using an ALTER TABLE statement;

see https://docs.snowflake.com/en/sql-reference/sql/create-table-constraint.

�Missing Aliases
At all times you should remove metadata lookups by adding aliases to all referenced

objects. Adding meaningful aliases aids readability and code maintenance too.

�Temporary Tables
Temporary tables are restricted to the local session and are removed when the session

closes. Temporary should be regarded as an interim, nonpersistent step in a process,

recognizing the contents cannot be inspected after the session closes.

Temporary tables have these characteristics:

•	 Avoid name conflicts for temporary tables with base tables. If

common, then the temporary table will be referenced in the

statement.

•	 Separate micro-partition metadata and statistics maintained

throughout their life cycle.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/sql-reference/sql/create-table-constraint

383

•	 Materialize intermediate data sets for use in the session.

•	 Statistics inform the optimizer decision-making process.

•	 Work with EXPLAIN PLAN.

�Set LIMIT
While developing applications, you may need to examine a small data sample to identify

filters and test your code functions correctly. Restricting sample data is readily achieved

by adding a LIMIT clause to your SQL statements.

�Skewed Data
Performance tuning is not a once-off activity. Data profiles change over time, and

INSERT, UPDATE, and DELETE operations can cause skewed data where the distribution of

data in a table or database becomes increasingly imbalanced or uneven. The impact of

data skew over time can be significant, particularly when it comes to query performance.

Hash partition joins are used to join large tables, and skewed data may result in

warehouse processing unit overload. Skewed data may be handled more efficiently by

parallelizing data operations, as explained in Chapter 8.

Skewed data may impact clustering. I will discuss clustering keys next.

�Ineffective Pruning
Micro-partition pruning is dependent upon several factors including the following:

•	 Use of appropriate filter attribute(s)

•	 Simple filter expressions, i.e., no operators applied.

•	 For unclustered tables, filter attributes matching natural clustering

order of ingested data

Where a table has an explicitly declared clustering key and our SQL statement

predicates do not match the clustering key declaration, a materialized view may provide

an optimal search path noting the additional storage and serverless compute required

for maintenance.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_8

384

�Fully Sorted Table
When rebuilding tables, you may prefer to initialize the data by pre-ordering using

the explicit ORDER BY syntax. This approach works for both CTAS and INSERT

OVERWRITE. Pre-seeding data in an ordered manner may facilitate later creation of a

clustering key.

The initial creation of micro-partitions for pre-ordered data will be faster than

later relying upon the automated clustering service where a clustering key is defined.

However, spills to disk and OOMs may occur. Subsequent DML operations may result in

skewed data.

�Clustering Keys
Clustering keys should not be your first consideration when performance tuning code.

Ensure all other options have been tried first.

Clustering key maintenance is impacted by high-velocity, low-volume Data

Manipulation Language (DML) operations where the asynchronous Automatic

Clustering service may not cope with the speed of change.

Clustering keys prefer low-cardinality leading attributes to maximize pruning, and

clustering keys should be limited to three or four attributes only. For String datatypes,

only the first five to six characters should be used to minimize cardinality; otherwise,

numeric datatypes with low cardinality are preferred.

Clustering keys support micro-partition pruning. Optimize key attributes for
maximum pruning effectiveness.

Most use cases do not require a clustering key. Snowflake suggests tables of 1TB or

greater should be considered as candidates for clustering key declarations. For those

use cases where a clustering key is defined, you must understand the attribute order and

cardinality, preferring low-cardinality attributes first.

Clustering keys alone are not a silver bullet. They are part of an overall
performance tuning strategy.

Chapter 10 Optimizing Performance

385

Operational considerations for clustering keys management include the following:

•	 Clustering keys should be defined only for high-frequency queries

with matching query predicates.

•	 Clustering key maintenance may not happen concurrent with

DML operation completion; maintenance requires a finite time to

complete.

•	 Frequent DML operations may result in costly reclustering operations

and, in worst-case scenarios, constant micro-partition “churn.”

•	 Clustering is most cost effective for low-volume DML and high-

volume query operations.

•	 Reclustering invalidates cached results.

For those inclined to dive deeper into clustering, the Snowflake founders’ patent can

be found at https://www.freepatentsonline.com/y2018/0068008.html.

Please refer to Chapter 5 for a thorough investigation of clustering keys, paying

particular attention to clustering width and clustering depth.

�Introspection Calls
In Snowflake, an introspection call is a SQL statement used to interrogate the Account

Usage Store or information schema of a particular database to identify metadata for

objects, columns, and their attributes.

Performance issues with introspection calls may be caused by the following:

•	 Unexpected or unpredictable changes made to object definitions

causing ad hoc metadata changes

•	 High numbers of nested roles or masking policies

•	 High number of redundant cloned objects

As suggested by Nadir Doctor, queries using Account Usage Store can be significantly

improved via referencing a base local target table, created via a CTAS operation to

contain a backup of data from a source view.

Chapter 10 Optimizing Performance

https://www.freepatentsonline.com/y2018/0068008.html
https://doi.org/10.1007/979-8-8688-0379-6_5

386

�File Size Optimization
The recommended file size for Snowpipe and COPY commands is 100MB to 250MB

compressed. Ingesting smaller files leads to both increased cost and longer warehouse

runtimes.

�Check All Tasks
Tasks may fail for a variety of reasons, many of which can be diagnosed from information

found here: https://docs.snowflake.com/en/user-guide/tasks-ts. Tasks may auto-

suspend according to the value of the parameter SUSPEND_TASK_AFTER_NUM_FAILURES for

which further information can be found here: https://docs.snowflake.com/en/sql-

reference/parameters#suspend-task-after-num-failures.

For tasks dependent upon streams, when the stream goes stale, the task will fail. The

parameter MAX_DATA_EXTENSION_TIME_IN_DAYS can be set independent of the parent

table; see https://docs.snowflake.com/en/sql-reference/parameters#max-data-

extension-time-in-days.

Periodically check tasks to see if any can be disabled or, better still, removed.

Check task start times to determine whether tasks can be retimed and/or

consolidated into fewer warehouses to parallelize processing.

�Session Settings
This section illustrates some useful SQL statements to aid your testing.

�Statement Timeout

While testing code, you may prefer to set statement_timeout_in_seconds in the

current session to avoid overspend. In this example, I set the timeout to 600 seconds (10

minutes), but note the smaller of the user or warehouse setting applies:

ALTER SESSION SET statement_timeout_in_seconds = 600;

�Statement Queueing

Except when set to zero, Snowflake automatically cancels individual queries queued in

excess of statement_queued_timeout_in_seconds.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/tasks-ts
https://docs.snowflake.com/en/sql-reference/parameters#suspend-task-after-num-failures
https://docs.snowflake.com/en/sql-reference/parameters#suspend-task-after-num-failures
https://docs.snowflake.com/en/sql-reference/parameters#max-data-extension-time-in-days
https://docs.snowflake.com/en/sql-reference/parameters#max-data-extension-time-in-days

387

�Task Timeout

An individual task invocation will run for user_task_timeout_ms before being cancelled

by Snowflake.

�Concurrency

The number of concurrent processes executed by a warehouse can be set by max_

concurrency_level.

�Execution Context

The current session execution context can be derived by this query:

SELECT current_account(),

 current_user(),

 current_role(),

 current_warehouse(),

 current_database(),

 current_schema();

�Clearing Warehouse Cache

To ensure raw performance figures are not skewed by the cache when testing or

investigating, ignore cached results causing every SQL statement to be executed.

ALTER SESSION SET use_cached_result = FALSE;

The warehouse declaration does not clear out the warehouse cache, so you must

suspend and restart the warehouse, which also aborts all the active SQL statements.

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_xs) SUSPEND;

ALTER WAREHOUSE IDENTIFIER ($tpc_warehouse_xs) RESUME;

Micro-partition reclustering or consolidation causes cached result sets to be

invalidated preventing reuse.

Chapter 10 Optimizing Performance

388

�Referenced Objects
When tuning SQL, you must understand the type of object referenced. Object naming

conventions alone are no guarantee of the underlying object type; you must explicitly

know whether your code addresses tables, external tables, hybrid tables, dynamic tables,

views, or materialized views.

For dynamic tables, views, and materialized views, the distinction is important. All of

these objects contain stored queries that must be executed to return a summary data set

before being joined to other tables and views. You may also encounter the following:

•	 Latency for dynamic tables due to underlying data changes not being

immediately reflected into the object

•	 Performance penalty for materialized views where Snowflake either

updates the materialized view or uses the up-to-date portions of the

materialized view and retrieves any required newer data from the

base table

•	 Views and secure views exhibiting different performance

characteristics

•	 Increased costs for maintaining dynamic tables and materialized

views for frequent underlying data changes

You can find more information on views, secure views, and materialized views at

https://www.linkedin.com/pulse/materialized-view-vs-secure-regular-

minzhen-yang/.

Nesting logic in views is a common way to abstract (or hide) complexity, and

experience suggests performance issues may be buried inside views.

�Identifying Object Types
When performance tuning SQL statements, you must identify all in-scope objects for the

current role.

Let’s start by setting the execution context.

SET tpc_owner_role = 'tpc_owner_role';

SET tpc_warehouse_XS = 'tpc_wh_xsmall';

SET tpc_database = 'tpc';

SET tpc_owner_schema = 'tpc.tpc_owner';

Chapter 10 Optimizing Performance

https://www.linkedin.com/pulse/materialized-view-vs-secure-regular-minzhen-yang/
https://www.linkedin.com/pulse/materialized-view-vs-secure-regular-minzhen-yang/

389

USE ROLE IDENTIFIER ($tpc_owner_role);

USE DATABASE IDENTIFIER ($tpc_database);

USE SCHEMA IDENTIFIER ($tpc_owner_schema);

USE WAREHOUSE IDENTIFIER ($tpc_warehouse_xs);

Somewhat surprisingly, Snowflake does not provide a single account_usage

or information_schema view to identify all objects, their types, and their location.

Investigating the available account_usage or information_schema views may return

misleading results. For example, dynamic tables are referenced as type NULL.

SHOW always returns information for the current role.

At the time of writing, using the SHOW OBJECTS command also returns the incorrect

object type of VIEW. Where you would expect to see MATERIALIZED VIEW, a change

request with Snowflake has been raised to normalize behavior.

SHOW OBJECTS;

However, you find issuing SHOW command for each target object type works as

expected. Note that each SHOW command returns differing attributes.

SHOW TABLES;

SHOW DYNAMIC TABLES;

SHOW EXTERNAL TABLES;

SHOW HYBRID TABLES;

SHOW VIEWS;

SHOW MATERIALIZED VIEWS;

Your objective is to extract a consistent form of metadata for each of the SHOW

commands for consistent later use. This SQL statement works for the previous SHOW

commands. Note that the object_type should be changed according to the desired

object type. You can also filter out objects created using supplied Snowflake roles.

SELECT "database_name"||'.'||"schema_name"||'.'||"name" AS path_to_object,

 'TABLE | VIEW | etc' AS object_type,

 "owner",

 "owner_role_type"

Chapter 10 Optimizing Performance

390

FROM TABLE (RESULT_SCAN (last_query_id()))

WHERE "owner" NOT IN ('ACCOUNTADMIN', 'SECURITYADMIN', 'SYSADMIN')

ORDER BY 1 ASC;

Identifying procedures and functions is largely similar in form to the tables and

views shown earlier:

SHOW PROCEDURES;

SHOW FUNCTIONS;

As shown earlier, your objective is to extract a consistent form of metadata for each of

the SHOW commands for consistent later use. This SQL statement works for the previous

SHOW commands noting the object_type should be changed according to the desired

object type. You can also filter out objects created without a schema; the schema_name is

empty string.

SELECT "catalog_name"||'.'||"schema_name"||'.'||"name" AS path_to_object,

 'PROCEDURE | FUNCTION' AS object_type

FROM TABLE (RESULT_SCAN (last_query_id()))

WHERE "owner" NOT IN ('ACCOUNTADMIN', 'SECURITYADMIN', 'SYSADMIN')

AND "schema_name" != ''

ORDER BY 1 ASC;

You may prefer to wrap all the previous SHOW commands and extend subsequent SQL

statements to insert into tables. I suggest a stored procedure encapsulating logic into a

single container for periodic reuse.

�Identifying Object Dependencies
Object dependencies are created when a parent object references a child object. For

example, a view is an example of a parent object with dependencies on those objects

referenced in the view declaration. In this manner, you can observe object dependencies

exist in hierarchical form, as shown in Figure 10-9.

Chapter 10 Optimizing Performance

391

Figure 10-9.  View v_client_info object dependencies

Object dependencies may exist across more than one database in an account.

Snowflake maintains object dependency metadata in the Account Usage Store view

object_dependencies. Note that latency of up to three hours may be experienced.

SELECT referenced_database||'.'||

 referenced_schema||'.'||

 referenced_object_name AS path_to_object,

 dependency_type

FROM snowflake.account_usage.object_dependencies

WHERE referencing_database = 'TPC'

AND referencing_schema = 'TPC_OWNER'

AND referencing_object_name = 'V_CLIENT_INFO'

ORDER BY 1;

A more sophisticated method for deriving object dependencies involves the use of a

“tree walk” where a top-level object is named, and all child dependencies are resolved.

Note the inclusion of both parent and child attributes.

SELECT referenced_database||'.'||

 referenced_schema||'.'||

 referenced_object_name AS path_to_object,

 referencing_database||'.'||

 referencing_schema||'.'||

 referencing_object_name AS path_to_parent,

 dependency_type

Chapter 10 Optimizing Performance

392

FROM snowflake.account_usage.object_dependencies

WHERE referencing_database = 'TPC'

AND referencing_schema = 'TPC_OWNER'

START WITH referencing_object_name = 'V_CLIENT_SQL_STATEMENT'

CONNECT BY referencing_object_name = PRIOR referenced_object_name

ORDER BY 1;

These approaches also work for materialized views but do not work for

dynamic tables.

You can find more information on the object_dependencies view at https://docs.

snowflake.com/en/sql-reference/account-usage/object_dependencies. You can

find a fuller explanation of how object dependencies are tracked at https://docs.

snowflake.com/en/user-guide/object-dependencies.

�Identifying Constraints
Referential integrity may exist across more than one database in an account. Snowflake

maintains referential integrity metadata in the Account Usage Store view table_

constraints. Note that latency of up to two hours may be experienced.

SELECT table_catalog||'.'||

 table_schema||'.'||

 table_name AS path_to_object,

 constraint_name,

 constraint_type

FROM snowflake.account_usage.table_constraints

WHERE constraint_catalog = 'TPC'

AND constraint_schema = 'TPC_OWNER'

AND deleted IS NULL

ORDER BY 1;

You can find more information on the table_constraints view at https://docs.

snowflake.com/en/sql-reference/account-usage/table_constraints.

For primary keys, only the SHOW command proves useful. Note the addition of

attributes that comprise the primary key.

SHOW PRIMARY KEYS IN SCHEMA;

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/sql-reference/account-usage/object_dependencies
https://docs.snowflake.com/en/sql-reference/account-usage/object_dependencies
https://docs.snowflake.com/en/user-guide/object-dependencies
https://docs.snowflake.com/en/user-guide/object-dependencies
https://docs.snowflake.com/en/sql-reference/account-usage/table_constraints
https://docs.snowflake.com/en/sql-reference/account-usage/table_constraints

393

This SQL statement works for the previous SHOW commands, and note the explicit

ordering of path_to_obejct and key_sequence to ensure primary key attributes are

displayed consecutively.

SELECT "database_name"||'.'||"schema_name"||'.'||"table_name" AS path_

to_object,

 "column_name",

 "key_sequence",

 "constraint_name"

FROM TABLE (RESULT_SCAN (last_query_id()))

ORDER BY path_to_object, "key_sequence";

You might also use the referential_constraints view though the results are less

useful. I leave this to you for your further investigation. See https://docs.snowflake.

com/en/sql-reference/info-schema/referential_constraints. A fuller explanation

of how constraints are supported can be found at https://docs.snowflake.com/en/

sql-reference/constraints-overview.

�GET_DDL
As you have seen, Snowflake does not provide a simple method to identify objects

related by referential integrity; you can only access related information, not the

relationship information.

An alternative method for identifying referential integrity declarations is to examine

each object definition. In this example, you use the get_ddl function to extract object

metadata for the table client_mask.

SELECT get_ddl ('TABLE', 'TPC.TPC_OWNER.CLIENT_MASK', TRUE);

The returned string contains the following:

create or replace TABLE CLIENT_MASK (

 CLIENT_MASK_ID NUMBER(38,0) NOT NULL,

 CLIENT_ID NUMBER(38,0),

 MASK_NAME VARCHAR(255),

 MASK_ATTRIBUTE VARCHAR(255),

 MASK_VALUE VARCHAR(255),

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/sql-reference/info-schema/referential_constraints
https://docs.snowflake.com/en/sql-reference/info-schema/referential_constraints
https://docs.snowflake.com/en/sql-reference/constraints-overview
https://docs.snowflake.com/en/sql-reference/constraints-overview

394

 primary key (CLIENT_MASK_ID),

 foreign key (CLIENT_ID) references TPC.TPC_OWNER.CLIENT(CLIENT_ID)

);

In the get_ddl returned string, you see foreign key (CLIENT_ID) references

TPC.TPC_OWNER.CLIENT(CLIENT_ID), which may be programmatically extracted for use.

While not directly relevant to identifying referential integrity, get_ddl may also be

used to derive definitions for a wide variety of objects, in this example, for a view called

v_client_sql_statement.

SELECT get_ddl ('VIEW', 'V_CLIENT_SQL_STATEMENT');

You can find information on the get_ddl view at https://docs.snowflake.com/en/

sql-reference/functions/get_ddl.

�User Defined Objects
In this section I identify some performance limitations and restrictions for several user-

defined objects including tables, views, materialized views, dynamic tables, procedures,

and functions.

�Tables
I highlighted the differences between transient and permanent tables earlier in this

chapter, and as I am discussing user-defined objects here, I will repeat the advice for

completeness.

I suggest ingestion raw or staging tables should use transient tables with Time Travel

set to 0 as transient tables do not utilize Fail-Safe. You might also consider transient

tables for frequently refreshed data generated for point-in-time reporting.

Permanent tables should be reserved for persistent storage where Time Travel is

required. Note that the seven-day Fail-Safe period follows. You should optimize the

default database Time Travel setting along with each table Time Travel setting according

to tour use cases. Setting Time Travel to 90 days is often overkill, and a shorter time

period is preferable particularly where high-velocity, low-volume DML operations cause

significant micro-partition churn.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/sql-reference/functions/get_ddl
https://docs.snowflake.com/en/sql-reference/functions/get_ddl

395

Most use cases do not require a clustering key. For those use cases where a clustering

key is defined, you must understand the attribute order and cardinality.

�Views and Dynamic Tables
Both views and dynamic tables share the common feature of facilitating data model

denormalization by joining tables and applying filters and aggregates to provide a

composite representation of the result set. While the delivery mechanisms differ

insofar as a view is an abstracted query and a dynamic table is a periodically refreshed

abstracted query, the underlying principles for deriving data are the same.

Both views and dynamic tables may suffer from the same performance impacting

issues, I highlight this when optimizing code. I prefer to drill down into all child views,

building knowledge from the ground up and then deciding upon an appropriate course

of action. For complex relationships, I suggest an entity relationship diagram (ERD) will

assist in resolving performance issues.

While there are no additional storage costs for views, you can incur additional

storage costs along with serverless compute costs for provisioning dynamic tables. As

with standard tables, high-velocity, low-volume DML operations cause significant micro-

partition churn for dynamic tables.

�Secure Views
Secure views prevent the view definition from being exposed to unauthorized users and

prevent access to the underlying SQL query for all roles except the role that owns the

secure view. In addition to the comments highlighted earlier when optimizing code, the

high-security profile for secure views restricts optimization to a subset of data points

available for optimizing normal views.

During query processing pushdown optimization, the query processor prefilters

rows by dynamically pruning micro-partitions to improve performance and reduce

memory consumption. With normal views, pushdown can allow confidential data to

be exposed indirectly. You can find more information on pushdown at https://docs.

snowflake.com/en/developer-guide/pushdown-optimization.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/developer-guide/pushdown-optimization
https://docs.snowflake.com/en/developer-guide/pushdown-optimization

396

Secure views prevent the exposure of confidential information; by default, most

pushdown optimizations are disabled. These operations prevent pushdown, and there

may be more:

•	 Arithmetic operations in query WHERE clauses

•	 UNION operations

•	 Scalar functions that take a row or value and return a single value

As with all SQL statements, avoid complexity, and simplify code wherever possible.

There are no additional storage costs associated with secure views.

You can find more information on secure views at https://docs.snowflake.com/

en/user-guide/views-secure.

�Materialized Views
As discussed in Chapter 3, a materialized view can be declared only on a single table

and is a way either to declare alternative clustering keys on a base table or to summarize

or aggregate data. Using materialized views facilitates micro-partition pruning, as

discussed in Chapter 4.

Materialized views incur maintenance, runtime, and storage costs. Before

implementing and using materialized views, a balance must be struck to ensure

optimally cost-effective solutions are developed and delivered. You can incur additional

storage costs along with serverless compute costs for provisioning materialized views. As

with standard tables, high-velocity, low-volume DML operations cause significant micro-

partition churn for materialized views.

You can find information on materialized views at https://docs.snowflake.com/

en/user-guide/views-materialized. I also found this article on the different types

of views by Minzhen Yang useful: https://www.linkedin.com/pulse/materialized-

view-vs-secure-regular-minzhen-yang/.

�User-Defined Functions (UDFs)
In similar manner to views, UDFs provide the capability to implement bespoke

functionality callable using standard SQL. The key difference between a view and a

UDF is the degree of complexity that can be accomplished. UDFs offer a far wider range

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/views-secure
https://docs.snowflake.com/en/user-guide/views-secure
https://doi.org/10.1007/979-8-8688-0379-6_3
https://doi.org/10.1007/979-8-8688-0379-6_4
https://docs.snowflake.com/en/user-guide/views-materialized
https://docs.snowflake.com/en/user-guide/views-materialized
https://www.linkedin.com/pulse/materialized-view-vs-secure-regular-minzhen-yang/
https://www.linkedin.com/pulse/materialized-view-vs-secure-regular-minzhen-yang/

397

of programming options than SQL; UDFs can be implemented using Java, JavaScript,

Python, Scala, and SQL.

Whenever you encounter UDFs embedded in SQL statements, the root cause is

typically to abstract very complex logic to return a readily understood answer compatible

with the calling SQL query body. UDFs are called for every row in the calling SQL body

and therefore often result in performance bottlenecks.

Wherever possible, I prefer to remove inline UDFs and instead resolve complex logic

using standard SQL. This approach does not suit all use cases.

You can find more information on UDFs at https://docs.snowflake.com/en/

developer-guide/udf/udf-overview.

�Identifying Issues
Previous sections in this chapter have addressed how to design for performance and

remediate SQL statements to improve performance. In this section, I focus on identifying

SQL statements by investigating the information_schema.query_history view for

metrics. Note the 14-day limit on data retention. Alternatively, you may prefer to use the

corresponding Account Usage Store view, which both retains information for 1 year and

has up to 45 minutes latency.

�Warehouse Queueing
Queueing is identified where queued_overload_time represents the amount of time the

query waits before execution commences. The following query is offered as a starting

point for your investigation. Chapter 6 contains a thorough investigation of warehouse

queueing from which these queries are derived; please refer to Chapter 6 for a fuller

explanation.

SELECT query_type,

 query_id,

 query_text,

 role_name,

 warehouse_name,

 queued_overload_time,

 execution_time

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/developer-guide/udf/udf-overview
https://docs.snowflake.com/en/developer-guide/udf/udf-overview
https://doi.org/10.1007/979-8-8688-0379-6_6
https://doi.org/10.1007/979-8-8688-0379-6_6

398

FROM TABLE (information_schema.query_history())

WHERE queued_overload_time > 0

AND execution_time > 0;

You can find information on queueing at https://community.snowflake.com/s/

article/Understanding-Queuing.

�Warehouse Workload
Identifying workload peaks and troughs may provide the means to balance your

workloads throughout the day. For example, housekeeping processes and generating

summaries can often be moved to quiet times or parallelized to consume more

processing units from a running but under-utilized warehouse. Please refer to Chapter 6

for a fuller explanation.

SELECT warehouse_name,

 start_time,

 end_time,

 query_id,

 query_text,

 total_elapsed_time / 1000 AS total_elapsed_time_in_secs,

 transaction_blocked_time,

 DATE_PART ('YYYY', start_time)||

 LPAD (DATE_PART ('MM', start_time), 2, '0')||

 LPAD (DATE_PART ('DD', start_time), 2, '0')||'_'||

 LPAD (DATE_PART ('HOUR', start_time), 2, '0')

 AS date_time

FROM snowflake.account_usage.query_history

WHERE execution_time <> 0

ORDER BY warehouse_name,

 start_time DESC;

The previous query provides a high-level view of activity only.

Chapter 10 Optimizing Performance

https://community.snowflake.com/s/article/Understanding-Queuing
https://community.snowflake.com/s/article/Understanding-Queuing
https://doi.org/10.1007/979-8-8688-0379-6_6

399

�Blocked Transactions
Blocked transactions are those DML operations waiting for an object lock before

completing. I previously discussed how multiple concurrent processes logging into a

single table will serialize processing as each process must acquire a table lock before

completing their DML operation. The Account Usage Store query_history table

provides information on blocked transactions, as shown next:

SELECT query_type,

 query_id,

 query_text,

 total_elapsed_time,

 transaction_blocked_time

FROM TABLE (information_schema.query_history())

WHERE transaction_blocked_time > 0

ORDER BY transaction_blocked_time DESC;

Blocked transactions may time out waiting for a lock, and you may set a session

variable called LOCK_TIMEOUT to adjust the default from 12 hours to a more suitable

value, in this example, an hour.

ALTER SESSION SET LOCK_TIMEOUT = 3600;

You can find more information on setting session values at https://docs.

snowflake.com/en/sql-reference/sql/alter-session. I also found this article useful

where LOCK_TIMEOUT is not honored by transactions: https://community.snowflake.

com/s/article/LOCK-TIMEOUT-not-honoured-by-transactions.

You can find more information on blocked transactions at https://docs.

snowflake.com/en/sql-reference/transactions#label-analyzing-blocked-

transactions.

�Join Explosion
Identifying join explosions is a two-step process. Here I present the two SQL statements

required.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/sql-reference/sql/alter-session
https://docs.snowflake.com/en/sql-reference/sql/alter-session
https://community.snowflake.com/s/article/LOCK-TIMEOUT-not-honoured-by-transactions
https://community.snowflake.com/s/article/LOCK-TIMEOUT-not-honoured-by-transactions
https://docs.snowflake.com/en/sql-reference/transactions#label-analyzing-blocked-transactions
https://docs.snowflake.com/en/sql-reference/transactions#label-analyzing-blocked-transactions
https://docs.snowflake.com/en/sql-reference/transactions#label-analyzing-blocked-transactions

400

First, identify candidate long-running queries, noting that not all long-running

queries will suffer from join explosion.

SELECT query_id

FROM TABLE (information_schema.query_history())

WHERE query_type IN ('SELECT', 'CREATE_TABLE_AS_SELECT')

AND warehouse_name IS NOT NULL

AND execution_status = 'SUCCESS'

AND bytes_scanned > 0

AND total_elapsed_time > 1000;

With the candidate query_id values identified, you can investigate each for

CartesianJoin operations.

SELECT operator_type,

 operator_id,

 operator_attributes,

 �operator_statistics:output_rows / operator_statistics:input_rows AS

row_multiple

FROM TABLE (get_query_operator_stats('<YOUR_QUERY_ID_HERE>'))

WHERE operator_type = 'CartesianJoin';

Join explosions are usually caused by a missing join condition in the query

predicates (WHERE clause).

Guidance on resolving join explosions is provided in Chapter 3. You can find more

information on join explosion at https://community.snowflake.com/s/article/

Recognizing-Row-Explosion and https://docs.snowflake.com/en/sql-reference/

functions/get_query_operator_stats#identifying-exploding-join-operators.

�Long Compilation Time
Long compilation time identifies records where the compilation time exceeds the

execution time. Please refer to Chapter 3 for a full explanation.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 compilation_time,

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_3
https://community.snowflake.com/s/article/Recognizing-Row-Explosion
https://community.snowflake.com/s/article/Recognizing-Row-Explosion
https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats#identifying-exploding-join-operators
https://docs.snowflake.com/en/sql-reference/functions/get_query_operator_stats#identifying-exploding-join-operators
https://doi.org/10.1007/979-8-8688-0379-6_3

401

 CASE execution_time

 WHEN 0 THEN 1

 ELSE execution_time

 END AS execution_time_1,

 compilation_time / execution_time_1

FROM TABLE (information_schema.query_history())

WHERE (compilation_time / execution_time_1) > 1

AND warehouse_size IS NOT NULL;

Guidance on resolving long compilation time is provided in Chapter 3. You can find

more information on long compilation time at https://community.snowflake.com/s/

article/Understanding-Why-Compilation-Time-in-Snowflake-Can-Be-Higher-than-

Execution-Time.

�Long Execution Time
Long execution time occurs after a query has been compiled and relates to the physical

amount of time required to return a result set. Please refer to Chapter 3 for a full

explanation.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 total_elapsed_time / 1000 AS query_execution_time_s

FROM TABLE (information_schema.query_history())

WHERE warehouse_name IS NOT NULL

AND execution_status = 'SUCCESS'

AND bytes_scanned > 0

AND total_elapsed_time > 1000;

Guidance on resolving long execution time is provided in Chapter 3. You can find

more information on long execution time at https://docs.snowflake.com/en/user-

guide/performance-query-exploring.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_3
https://community.snowflake.com/s/article/Understanding-Why-Compilation-Time-in-Snowflake-Can-Be-Higher-than-Execution-Time
https://community.snowflake.com/s/article/Understanding-Why-Compilation-Time-in-Snowflake-Can-Be-Higher-than-Execution-Time
https://community.snowflake.com/s/article/Understanding-Why-Compilation-Time-in-Snowflake-Can-Be-Higher-than-Execution-Time
https://doi.org/10.1007/979-8-8688-0379-6_3
https://doi.org/10.1007/979-8-8688-0379-6_3
https://docs.snowflake.com/en/user-guide/performance-query-exploring
https://docs.snowflake.com/en/user-guide/performance-query-exploring

402

�Long Table Scan
A long table scan occurs where most of the processing time is spent servicing remote

disk I/O. This query references partition… information available only from the Account

Usage Store; note that latency of up to 45 minutes applies. Entries are only inserted in

snowflake.account_usage.query_history after the statement runs completely or is

cancelled.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 partitions_scanned / partitions_total AS partition_scan_ratio,

 partitions_scanned,

 partitions_total

FROM snowflake.account_usage.query_history

WHERE warehouse_name IS NOT NULL

AND execution_status = 'SUCCESS'

AND bytes_scanned > 0

AND total_elapsed_time > 1000

AND (partitions_scanned / partitions_total) > 0.5;

Guidance on resolving long table scan is provided in Chapter 3.

�Spills to Disk and Out of Memory
Spills to disk are identified by examining the bytes_spilled… attributes. This query

references bytes_spilled… information available from the Account Usage Store; note

that latency of up to 45 minutes applies.

SELECT query_id,

 warehouse_name,

 warehouse_size,

 bytes_spilled_to_local_storage,

 bytes_spilled_to_remote_storage,

 bytes_sent_over_the_network

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_3

403

FROM snowflake.account_usage.query_history

WHERE warehouse_name IS NOT NULL

AND bytes_spilled_to_local_storage > 0

AND bytes_spilled_to_remote_storage > 0;

Guidance on resolving spills to disk and OOM is provided in Chapter 3. You can find

more information on spills to disk at https://community.snowflake.com/s/article/

Performance-impact-from-local-and-remote-disk-spilling.

�Snowflake Support
In the event all of the previous does not identify a root cause for the issues encountered,

Snowflake Support is the first point of contact. During the writing of this book, I used

trial accounts and found Snowflake Support very responsive and helpful. I recommend

contacting Snowflake Support where required, even for trial accounts; you can find more

information at https://www.snowflake.com/support/. You can raise a support case by

following the guide at https://community.snowflake.com/s/article/How-To-Submit-

a-Support-Case-in-Snowflake-Lodge.

Depending upon the level of support provided to your organization, there may be

a sales engineer or performance expert dedicated to assisting you. The very best sales

engineers proactively monitor consumption and will highlight problematic queries for

your further investigation. I advise you to cultivate a good working relationship with your

sales engineer and, where available, your performance expert too.

�Snowflake Feature Use Cases
If you have arrived at this section without developing a deep understanding of your

performance issue root cause, I recommend working through this chapter from the start.

I do not recommend blindly implementing any feature without a full understanding of

the potential impact.

In this chapter, you have examined many performance tuning tips to both reduce

costs and reduce query runtimes. I expect these tips to deliver impactful business

benefits, and I recommend both thorough investigation and testing before proceeding

further.

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_3
https://community.snowflake.com/s/article/Performance-impact-from-local-and-remote-disk-spilling
https://community.snowflake.com/s/article/Performance-impact-from-local-and-remote-disk-spilling
https://www.snowflake.com/support/
https://community.snowflake.com/s/article/How-To-Submit-a-Support-Case-in-Snowflake-Lodge
https://community.snowflake.com/s/article/How-To-Submit-a-Support-Case-in-Snowflake-Lodge

404

In addition to the advice and guidance presented in this book, Snowflake presents

several features aimed at remediating performance issues. Knowing when and how to

enable Snowflake features is not just an important aspect of performance tuning; there is

an implicit assumption that all code has been optimized before arriving at this section.

All features referenced in the following sections make use of serverless compute;

see https://docs.snowflake.com/en/user-guide/cost-understanding-

compute#serverless-features.

Let’s now investigate these features.

�Automatic Clustering
Automatic clustering works well for large tables; Snowflake recommends adding

clustering keys for tables of 1TB or larger, but this is not a hard-and-fast rule. For

optimal micro-partition pruning, clustering keys should match query predicates. Where

date ranges are frequently selected, reducing the cardinality of dates to months by

adding an extra attribute during data load may provide a performance benefit when

predicates match.

Snowflake implements asynchronous automatic clustering via a background process

that periodically reorganizes a small set of micro-partitions to achieve an acceptable

performance standard.

Automatic clustering does not work well for query predicates that do not match

the clustering keys. High-velocity, low-volume DML operations may overwhelm

the automatic clustering service capability to re-cluster before the next batch of

changes arrive.

Re-clustering incurs compute cost, and significant additional storage costs may

accrue as micro-partitions are immutable.

Refer to Chapter 5 for a detailed investigation of automatic clustering.

�Materialized Views
Currently, a materialized view can exist on a single table only. Materialized views work

well for tightly focused subsets of data. Materialized views created for pre-aggregated

or prefiltered data sets prevent expensive warehouse operations where the data is

frequently accessed. Query plans may prefer a materialized view over base table access.

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/cost-understanding-compute#serverless-features
https://docs.snowflake.com/en/user-guide/cost-understanding-compute#serverless-features
https://doi.org/10.1007/979-8-8688-0379-6_5

405

Materialized views should not be used where the contents are largely similar to

the parent table. Materialized views should not be used for simple queries, i.e., those

without aggregates or filters. High-velocity, low-volume DML operations may overwhelm

the materialized view service capability to maintain materialized views before the next

batch of changes arrive.

Maintaining materialized views incurs both compute cost and additional

storage costs.

�Search Optimization
Search optimization prebuilds optimized data structures called search access paths

predicated upon high-cardinality attribute values spread across many micro-partitions.

Search optimization prefers accessing very small subsets of data via equality predicates

mapped via “search access paths.” Snowflake recommends usage for tables of 100GB or

larger; costs will be prohibitive for tables of less than 10GB. Search optimization may

be implemented against tables with clustering keys where predicates do not match the

clustering key or for unclustered tables.

Search optimization should not be used for accessing large sets of filtered data

or for “search access paths” built on low-cardinality data sets. Inequality predicate

matches are not suitable for search optimization. You can find more information on

supported predicate types at https://docs.snowflake.com/en/user-guide/search-

optimization/queries-that-benefit#supported-predicate-types.

High-velocity, low-volume DML operations may overwhelm the search optimization

service capability to maintain “search access paths” before the next batch of

changes arrive.

Maintaining search optimization incurs both compute cost and additional

storage costs.

Refer to Chapter 7 for a detailed investigation of search optimization.

�Query Acceleration
Query acceleration adds processing units to an existing warehouse as demand increases

without increasing size. This is useful where the workload does not justify spinning up

additional warehouse clusters, but the occasional availability of extra processing units

would prevent queueing. The query optimizer may make use of extra processing units to

Chapter 10 Optimizing Performance

https://docs.snowflake.com/en/user-guide/search-optimization/queries-that-benefit#supported-predicate-types
https://docs.snowflake.com/en/user-guide/search-optimization/queries-that-benefit#supported-predicate-types
https://doi.org/10.1007/979-8-8688-0379-6_7

406

parallelize some operations specifically for large table scans and ad hoc analytics. Mixed

workloads may also benefit from query acceleration.

Before enabling query acceleration, test the existing configuration by decreasing the

warehouse size and/or number of clusters to reduce the number of available processing

units and then enable query acceleration. Look for queueing under the normal system

load conditions.

Query acceleration incurs compute cost only; no additional storage costs accrue.

Refer to Chapter 6 for a detailed investigation of query acceleration.

�Resource Monitors
Snowflake provides resource monitors as a means to control warehouse consumption,

which is a reactive approach to limiting costs once the specified threshold has been

reached.

�Serverless Compute
Snowflake features increasingly offer serverless compute for cost-effective and simple

implementation, but costs can quickly escalate.

The following table illustrates serverless compute components along with a brief

summary of capabilities provisioned as derived from https://docs.snowflake.com/en/

user-guide/cost-understanding-compute#serverless-credit-usage.

Component Feature Compute

Automatic

Clustering

Automated background maintenance of each clustered table,

including initial clustering and reclustering as needed

Serverless only

External Tables Automated refreshing of the external table metadata with the

latest set of associated files in the external stage and path

Serverless only

Materialized Views Automated background synchronization of each materialized

view with changes in the base table for the view

Serverless only

Query Acceleration

Service

Execution of portions of eligible queries Serverless only

(continued)

Chapter 10 Optimizing Performance

https://doi.org/10.1007/979-8-8688-0379-6_6
https://docs.snowflake.com/en/user-guide/cost-understanding-compute#serverless-credit-usage
https://docs.snowflake.com/en/user-guide/cost-understanding-compute#serverless-credit-usage

407

Component Feature Compute

Replication Automated copying of data between accounts, including

initial replication and maintenance as needed

Serverless only

Search

Optimization

Service

Automated background maintenance of the search access

paths used by the search optimization service

Serverless only

Snowpipe Automated processing of file loading requests for each pipe

object

Serverless or

warehouse

Snowpipe

Streaming

Automated processing of file loading requests for each pipe

object; currently INSERT only

Serverless only

Tasks Scheduled tasks Serverless or

warehouse

�Testing Code Changes
Most of the performance tuning advice provided in this chapter involves making invasive

code changes. A recurring theme is to test once, test twice, and then test again. Make

no apology for insisting upon full testing using production-like workloads. Executive

management requires low-risk, high-value delivery, and your testing must reflect best

practices at all times.

�Summary
This chapter began by considering design decisions that have the most decisive impact

on system performance. Tuning the design is the most important advice available

before attempting to write any code and applies ubiquitously to all platforms, not just

Snowflake.

The chapter next identified the available tools to aid your investigations and

provided template code (several earlier chapters have deep dives and full explanations

for the identified tooling).

Chapter 10 Optimizing Performance

408

Optimizing code, particularly where “lift and shift” from a legacy RDBMS has been

performed, is invasive. Colleagues must be educated on Snowflake-specific performance

requirements. Then the codebase must be refactored to take best advantage of

Snowflake optimizer preferences and structures.

You then investigated how to identify object dependencies and constraints before

examining how various objects are managed and differ from each other.

With a firm grasp of how to fix issues, you then investigated how to identify issues.

Having the correct tools in hand along with sufficient context, you learned where to look

and what to look for.

Your tuning approach should also be informed by the operating environment;

nonproduction environments may be able to tolerate warehouses operating in economy

mode, whereas production environments should implement warehouses operating in

standard mode.

I discussed Snowflake features with the caution to consider them after all other code

optimizations have been applied. Treat the root cause, not the symptoms!

Finally, I hope to have dispelled the myth of solely managing performance by

resizing warehouses. Applying best practices goes a long way to both preventing

performance issues from arising and facilitating reductions in warehouse size.

�Afterword
Applying the knowledge gained from this book is a challenge I cannot prepare you for,

as each scenario will present itself differently. However, you now have the toolkit in your

hands to meet each challenge with confidence. Have confidence when investigating and

remediating issues, and improve your technical real estate while saving both costs and

time for your organization.

I conclude this book with the hope and expectation you have learned something

new. In fact, I did not realize how little I knew when setting out to write this book; the

journey has been enlightening to say the least.

With my very best wishes for your Snowflake journey, I look forward to seeing you at

Snowflake Summit and various speaking engagements and hearing how this book made

a difference.

Chapter 10 Optimizing Performance

409
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6

�APPENDIX

Installing Python and
the Tooling You Will Need
This appendix covers how to install the tooling referenced in Chapter 6.

�Installing Python from the Command Line
Later in this appendix you will learn how to develop a Python parallel process to invoke

several concurrent queries. In conjunction with Chapter 6, I show how to invoke parallel

processes to simulate a load test as a starting point for stressing your applications to find

out where they could break.

Load testing serves several purposes:

•	 Optimize your warehouse size for known workloads

•	 Identify spills, queueing, blocking, and out-of-memory scenarios

•	 Monitor trends to enable early intervention and prevent failure

In this appendix, I discuss how to install Python on your operating system; these

instructions are generic in nature and work for many common desktops.

In conjunction with Chapter 6 the testing in this appendix proves there are version

dependencies across both Snowflake-supported Python versions and tooling that may

not easily be resolved. This appendix assumes Microsoft Windows 10.

https://doi.org/10.1007/979-8-8688-0379-6#DOI
https://doi.org/10.1007/979-8-8688-0379-6_6
https://doi.org/10.1007/979-8-8688-0379-6_6
https://doi.org/10.1007/979-8-8688-0379-6_6

410

�Checking the Installed Python Version
Snowflake does not support all versions of Python. At the time of writing, only versions

3.8, 3.9, and 3.10 are supported

To identify the currently installed Python version (if any), open a command window

and type python --version, as shown in Figure A-1.

Figure A-1.  Checking the installed Python version

As you can see in Figure A-1, this installed Python version is supported; therefore,

you must downgrade to a lower version.

You can find further information on the supported Python versions at https://

docs.snowflake.com/en/developer-guide/snowpark/python/setup#prerequisites.

Appendix Installing Python and the Tooling You Will Need

https://docs.snowflake.com/en/developer-guide/snowpark/python/setup#prerequisites
https://docs.snowflake.com/en/developer-guide/snowpark/python/setup#prerequisites

411

�Downgrading the Python Version
Downgrading Python involves invoking the Windows “Add or remove programs” feature

by typing add or remove programs into the search bar, as shown in Figure A-2.

Figure A-2.  Adding or removing programs

Within the search results, navigate to the version of Python to uninstall, in this

example version 3.12, as shown in Figure A-3.

Figure A-3.  Uninstalling Python

Appendix Installing Python and the Tooling You Will Need

412

Click Uninstall after which a confirmation dialog will appear, as shown in

Figure A-4. Click Close to finish.

Figure A-4.  Uninstall complete

�Installing Python
The Python installation process is dependent upon your operating system, Python

availability, and Snowflake-supported version.

Before deciding on the Python version to install, please check the Snowflake

prerequisites at https://docs.snowflake.com/en/developer-guide/snowpark/

python/setup#prerequisites.

Installers for older versions of Python are periodically removed.

Once you have identified the Python compatibility, download the corresponding

Python installer from https://www.python.org/downloads/. Alternatively, if looking for

a specific Python version to support a known compatible configuration where installers

have been removed from the main download location, these URLs may prove helpful:

•	 Python 3.11: https://www.python.org/downloads/release/
python-3110/

•	 Python 3.10: https://www.python.org/downloads/release/
python-3100/

Appendix Installing Python and the Tooling You Will Need

https://docs.snowflake.com/en/developer-guide/snowpark/python/setup#prerequisites
https://docs.snowflake.com/en/developer-guide/snowpark/python/setup#prerequisites
https://www.python.org/downloads/
https://www.python.org/downloads/release/python-3110/
https://www.python.org/downloads/release/python-3110/
https://www.python.org/downloads/release/python-3100/
https://www.python.org/downloads/release/python-3100/

413

•	 Python 3.9: https://www.python.org/downloads/release/
python-390/

•	 Python 3.8: https://www.python.org/downloads/release/
python-380/

I am using the Windows Installer (64-bit) noting the version recommendation.

At the time of writing, Python 3.11 is in public preview; I am therefore using Python

3.10 found here: https://www.python.org/downloads/release/python-3100/.

When invoking the installer, you should select the Install Now option and avoid

using the custom installer. You may also be prompted to install the Python Launcher;

leave this checkbox enabled.

Ensure the Add Python 3.10 to PATH checkbox is selected.

Then click Install Now. Assuming the setup is successful, click Close to complete the

installation. Close any open command windows and re-open command window to pick

up your latest installed Python version.

�Installing Snowpark Python
You must also install Snowpark Python as a prerequisite for later creating a stand-alone

executable. To do this, you can use pip, which should have been installed as part of the

Python installation; if it wasn’t, you can find further information at https://pip.pypa.

io/en/stable/installation/.

Confirm the Python version by opening a command window and then typing the

following:

python --version

Before proceeding, ensure your Python version meets the requirements.

With pip available, type this:

pip install snowflake-snowpark-python

Appendix Installing Python and the Tooling You Will Need

https://www.python.org/downloads/release/python-390/
https://www.python.org/downloads/release/python-390/
https://www.python.org/downloads/release/python-380/
https://www.python.org/downloads/release/python-380/
https://www.python.org/downloads/release/python-3100/
https://pip.pypa.io/en/stable/installation/
https://pip.pypa.io/en/stable/installation/

414

Figure A-5 shows a successful installation.

Figure A-5.  Snowflake-Snowpark-Python install complete

You can find further information about snowflake-snowpark-python at https://

pypi.org/project/snowflake-snowpark-python/.

�Installing Pyinstaller and pip
Later in this appendix you will create a stand-alone Python executable for which you will

use Pyinstaller.

You can install Pyinstaller by running the following:

pip install pyinstaller

pip is a package manager for Python packages.

When the Pyinstaller installation is complete, you may be prompted to upgrade pip.

To do this, run the following:

python.exe -m pip install --upgrade pip

Figure A-6 shows the steps to take for both commands.

Appendix Installing Python and the Tooling You Will Need

https://pypi.org/project/snowflake-snowpark-python/
https://pypi.org/project/snowflake-snowpark-python/

415

Figure A-6.  Installing Pyinstaller and pip

You can find further information about pip at https://www.w3schools.com/python/

python_pip.asp, and you can find Pyinstaller at https://www.pyinstaller.org/en/

stable/operating-mode.html.

�Installing Pandas and jinja2
Next, install Pandas.

pip install snowflake-snowpark-python[pandas]

Figure A-7 shows a successful installation.

Figure A-7.  Installing Pandas

You may also need to install jinja2.

pip install jinja2

Appendix Installing Python and the Tooling You Will Need

https://www.w3schools.com/python/python_pip.asp
https://www.w3schools.com/python/python_pip.asp
https://www.pyinstaller.org/en/stable/operating-mode.html
https://www.pyinstaller.org/en/stable/operating-mode.html

416

�Enabling Anaconda Packages
Preparing the environment requires the creation of Python stored procedures, for which

you must use the ORGADMIN role. Attempting to use Python before accepting terms

results in this error message:

“Anaconda terms must be accepted by ORGADMIN to use Anaconda 3rd
party packages. Please follow the instructions at https://docs.snow-
flake.com/en/developer-guide/udf/python/udf-python-packages.
html#using-third-party-packages-from-anaconda.”

Note the inclusion of a URL containing instructions for your reference: https://

docs.snowflake.com/en/developer-guide/udf/python/udf-python-packages.

html#using-third-party-packages-from-anaconda.

Figure A-8 shows the Snowsight-abbreviated navigation required to enable

Anaconda packages.

Figure A-8.  Enabling Anaconda Python

Once enabled, a confirmation dialog appears, as shown in Figure A-9.

Figure A-9.  Anaconda package confirmation

Anaconda package enablement takes a few minutes, and then an acknowledgment

message is returned to the Snowsight console (not shown).

Appendix Installing Python and the Tooling You Will Need

https://docs.snowflake.com/en/developer-guide/udf/python/udf-python-packages.html#using-third-party-packages-from-anaconda.
https://docs.snowflake.com/en/developer-guide/udf/python/udf-python-packages.html#using-third-party-packages-from-anaconda.
https://docs.snowflake.com/en/developer-guide/udf/python/udf-python-packages.html#using-third-party-packages-from-anaconda.
https://docs.snowflake.com/en/developer-guide/udf/python/udf-python-packages.html#using-third-party-packages-from-anaconda
https://docs.snowflake.com/en/developer-guide/udf/python/udf-python-packages.html#using-third-party-packages-from-anaconda
https://docs.snowflake.com/en/developer-guide/udf/python/udf-python-packages.html#using-third-party-packages-from-anaconda

417

�Downloading and Installing SnowCD
In the event you experience connectivity issues when attempting to use Python, you may

find SnowCD helpful.

SnowCD is a Snowflake-supplied connectivity diagnostics tool. You can download

it from https://developers.snowflake.com/snowcd/. I recommend downloading and

installing SnowCD in the event you encounter connectivity issues.

After installing SnowCD, the dialog shown in Figure A-10 appears.

Figure A-10.  SnowCD completion dialog (on Windows)

The SnowCD completion dialog at the time of writing has not been updated;

system$whitelist has been deprecated, and from within the Snowflake user interface

the correct command to execute is as follows:

USE ROLE accountadmin;

SELECT system$allowlist();

Appendix Installing Python and the Tooling You Will Need

https://developers.snowflake.com/snowcd/

418

Then follow these steps:

	 1.	 Copy the resultant JSON record into memory.

	 2.	 Create a new file called whitelist.txt in the same directory as

your command window, in this example, C:\Users\Andy (your

default directory will differ).

	 3.	 Paste the copied JSON into whitelist.txt.

	 4.	 Close the file and rename it to whitelist.json.

	 5.	 Run snowcd whitelist.json.

Figure A-11 shows the expected response: “All checks passed.” Troubleshooting is

beyond the scope of this chapter, so in the event that you see an error, please refer to the

documentation at https://docs.snowflake.com/en/user-guide/snowcd.

Figure A-11.  SnowCD check completion

Appendix Installing Python and the Tooling You Will Need

https://docs.snowflake.com/en/user-guide/snowcd

419
© Andrew Carruthers 2024
A. Carruthers, Tuning the Snowflake Data Cloud, https://doi.org/10.1007/979-8-8688-0379-6

Index

A, B
Automatic clustering, 404

cost monitoring, 184, 185
definition, 181
micro-partitions, 182
reclustering, 183, 184
workflow, 182, 183

auto_suspend attribute, 14

C
Carriage return/line feed (CRLF), 156
Cartesian join

definition, 70
example, 71, 72
identifying, 72, 73
implementation approach, 73, 74
join explosion costs, 75
query profile, 71
remediating, 76
stored procedure, 75
TPC baseline data, 70

Client interactions
CSP, 318
curated data products, 317
entitlement model approaches,

319, 320
embedded, 320–322
prefiltered, 322, 323

examples, 319
legacy source data sets, 317
performant data products, 318

standard setting
client collaboration, 349
curated data sets, 353
data catalogs, 351
data model, 350
historized data, 350
hydration approach, 352
imported database entitlement, 349
shared tag references, 351
sharing limited data, 352
SQL use cases, 349

Cloud-based global marketplace, 269
Cloud service provider (CSP), 4, 105,

189, 270
Cluster key management

attribute cardinality, 161
clustered table, 168
default clustering, data load, 160
DTs, 176–179
good/bad partition depth, 166, 167
investigating cluster key, 162–165
investigating unclustered tables,

157, 158
lifecycle, 162
lineitem_baseline table, 170
materialized view, 173–175, 179, 180
objectives, 167
partial date, 169, 170
query rewrite, 181
reclustering, 171
total_constant_partition_count, 172
unclustered table, 172

https://doi.org/10.1007/979-8-8688-0379-6#DOI

420

Cluster keys
cardinality, 146, 147
cluster depth, 149, 150
clustering ratio, 148
cluster width, 149, 150
definition, 151
logical structure/physical storage,

155, 156
micro-partition, 145–148
objectives, 145
principles, 152
unique indexes, 152–155

Cluster width, 149
Code-templated approach, 227
Common table expression (CTEs), 16, 30

costs, 100
general form, 95
remediating, 101
reusing, 97–100
SELECT statement, 95
use case, 95, 97

Consumption-based model, 5
“Cost-based” optimizers, 15
Create Table AS (CTAS), 48, 131, 168,

384, 385

D
Data catalogs, 351
Data Definition Language (DDL), 7, 326
Data Manipulation Language (DML), 16,

153, 200, 384
Data modeling approach, 357
Data warehouse (DW), 153
dt_lineitem_baseline_sos, 260
Dynamic tables (DTs), 176

E
Entitled data sharing

building engine, 343–345, 347, 348
deploying generation code, 348
designing filter engine, 336
filter engine model, 337
filter engine requirements, 336, 337

Entity relationship diagram (ERD), 395
EXPLAIN keyword, 66
Explicit join notation, 20

F, G, H
Field Programmable Gate

Arrays (FPGAs), 107
Filter engine

client filter, 339, 340
client mask, 340
client object, 326, 339
client specific share, 326
client SQL statements, 342, 343
curated data products, 325
denormalize client

information, 341
engine design, 337
entities, 323
entitlement application, 324
entitlement data model, 324, 325
functional components, 324
source data feeds, 325
SQL statements, 342

Forward declaration error, 21

I
Implicit join notation, 20

INDEX

421

J
Join explosion

cartesian join, 72

K
KISS principle, 25

L
lineitem_baseline_temp, 264
Load testing

external parallelism, 228–234
monitor queueing, 234–236
parallel loading, 225
performance evaluation, 224, 225
snowflake/CSP improvements,

223, 224
snowflake-supplied sample, 226, 227
tasks/streams, 227, 228
themes, 223

LOCK_TIMEOUT, 399

M, N
Massively parallel processing (MPP),

11, 33, 187
Micro-partitions

challenges, 141, 142
data lifecycle

cloned objects, 134–139
data consumptions, 129, 130
data ingestion, 123
data processing, 125–129
data sharing/replication, 139
fail-safe, 133
recovered objects, 132
setting baseline, 122, 123

table active storage, 140
time travel, 130–132

definition, 111
features, 103
foundational information

block devices, 107
centralized storage, 105, 106
database/table storage, 108
direct storage access, 106, 107
stages, 110, 111
storage costs, 107

immutability, 112, 113
metadata, 114
metadata query result, 112
setup, 104, 105
table metadata, accessing

account usage store, 116
GET_QUERY_OPERATOR_STATS,

118, 119
information schema, 115, 116
query profile, 117, 118
system$clustering_depth, 119
system$clustering_information, 120

time sensitive, 120–122
Microsoft PowerPoint, 3
Migration, Snowflake

CSP infrastructure, 7
guides, 8
options, 9–11

Multicluster compute, 187

O
Object locking, 222
Observe, Orient, Decide, Act (OODA), 188
Online analytical processing (OLAP), 153
Online transactional processing (OLTP),

4, 153, 206

INDEX

422

Optimization code
time travel setting, 374

Out of memory (OOM), 88, 279, 282, 361,
369, 384, 403

P
Parallelization

curate, 271, 272
data master, 269
data products, 270
distribution venues, 274–277
global application, 270
ingest, 271
logging, 277
optimal data processing

curation factors, 285
ingest factors, 283, 284
problem statement, 278
warehouse factors, 279–282

parallel processing, 286
produce, 272–274
real-world production

environment, 314
Parallel processing

application tables, setting up,
288–290, 292–294

concurrent warehouse, 300–302
core table segmentation, 295,

296, 298–300
DML statement, 286
full processing unit consumption, 287
high-level design, 288
single processing unit

consumption, 286
stored procedure

create tables, 307–309
grant entitlement, 307

load testing, 311
purging stream, 309, 310
segment suffix, 304
suspend tasks, 311
testing single load, 306

stream interaction, 302
temporal loads, 312, 313
testing core table load, 294, 295
testing streams, 303

Parsing, 30
Partition Attributes Across (PAX), 115
Performance tuning approach, 59, 166

design
consumption metrics, 365, 366
CSP performance, 367
data modeling approach, 357
declare constraints, 360
logging, 358
managed accounts, 363
multiplatform distribution, 364, 365
optimizing consumption, 366, 367
platforms, 357, 358
replication, 364
role-based access control, 359, 360
snowflake edition costs, 356
transient/permanent tables, 361
warehouse, 361
workloads, 362

identifying issues
blocked transactions, 399
join explosions, 399, 400
long compilation time, 400
long execution time, 401
long table scan, 402
out of memory, 402
queueing, 397
spills to disk, 402
workload, 398

INDEX

423

joins, 380, 381
optimization code, 374–380, 382–386
referenced objects, 388
session settings, 386, 387
snowflake feature use cases, 404–406
snowflake support, 403
testing code changes, 407

Prefiltered entitlement models, 323
Provision-based models, 5, 23
Python installation

Anaconda package, 416
checking version, 410
downgrading Python version, 411, 412
downloading/installing SnowCD,

417, 418
installation process, 412, 413
load testing, 409
Pandas/jinja2, 415
Pyinstaller/pip, 414, 415
Snowpark Python, 413

Q
Query Acceleration Service (QAS), 247
Query Block Internal Representation

(QBIR), 30
Query optimizers

compilation
cost-based join ordering, 32
initial plan generation, 32
logical rewriter, 31
micro-partition pruning, 32
parsing, 30
physical query plan, 33
plan rewriter, 32
referential integrity, 31
semantic analysis, 30
steps, 29
tokenization, 30

execution
compression, 35
flow control, 36
SIMD, 34, 35
vectorization, 35
warehouses, 34

lifecycle, 27
influence system, 26
query failure, 28

RDBMS, 36
Query parsing order

DISTINCT clause, 19
FROM clause, 16, 17
GROUP BY clause, 17
HAVING clause, 18
LIMIT/OFFSET, 19
ORDER BY clause, 19
SELECT statements, 16, 18
SQL joins, 20, 21
WHERE clause, 17

Query performance
cost management screen, 368
explain plan, 370–372
GET_QUERY_OPERATOR_STATS,

372, 373
query history screen, 369
query profiles, 369, 370
tools, 367
Warehouse screen, 368

Query profiler
accessing profile information, 51, 52
approach, 41
bad profile

data capture, 69
join explosion, 70
join order, 92–94
long compilation time, 76–81
long execution time, 81–84
long table scan, 85, 87

INDEX

424

performance tuning, 69
spill to disk/OOM, 88–91

database, 40
declared warehouse, 50
example query, 53, 55, 56

developing query, 54
materializing, 59–63
profiling, 56–59
result count, 53

explain plan, 66, 67
GET_QUERY_OPERATOR_STATS, 68
good profile, 64–66
initial population, 46–50
query plan, 39
setup, 41–45
TPC data model, 46

Query tags, 198

R
Refactoring, 7
Referenced objects

GET_DDL, 393, 394
identifying constraints, 392, 393
identifying object types, 388–390
object dependencies, 390–392
tables and views, 388

Relational database management system
(RDBMS), 4, 146, 349

Role-based access control (RBAC), 7, 349
“Rules-based” approach, 15

S
Search access paths, 247
Search optimization, 405
Search optimization service (SOS)

definition, 267
disabling table, 265
implementation

enabling attribute, 256, 257
enabling SOS, 254, 256
table-by-table basis, 252, 254
TPC environment, 251

optimal patterns, 268
optimal performance and cost, 248
serverless compute feature, 247, 248
service, 249–251
table types, 265

dynamic table, 260–262
standard table, 258
temporary tables, 264
transient tables, 262, 263

timeliness, 266
Service-level agreements (SLAs), 220, 282
SHOW command, 115, 389
SHOW OBJECTS command, 389
Single Instruction, Multiple Data

(SIMD), 34
SnowConvert, 9, 11
Snowflake data cloud

data profiles, 2
introspection calls, 21
optimization, 14, 15
optimizer statistics, 22, 23
performance optimization, 1
setting scene

CSP, 4
greenfield development, 12
migration, 7
out-of-the-box developer, 3
performance tuning, 3
provision-based infrastructure, 3
provision/consumption model, 5, 6
refactor/redesign, 7

Query profiler (cont.)

INDEX

425

replication, 13
tune design, 13
use case, 4

Snowpark-optimized warehouses, 190
Snowpipe, 241
SnowSQL, 2
Subject-matter experts (SMEs), 5

T
Tokenization, 30

U
Unentitled data sharing

importing share, 334, 335
managed accounts, creating, 327–330
share containers, 329–332
unentitled object, 332, 333

User-defined functions (UDFs), 30, 396
User-defined objects

materialized views, 396
secure views, 395
tables, 394
UDFs, 396
views and dynamic tables, 395

V
Visual Studio, 2

W, X, Y, Z
Warehouse

background processing, 198
capacity, 192, 193
consumption, 192
declaration, 191, 192
initialization, 190

memory/compute, 189
performance tuning, 187
query tags, 198, 199
resolving concurrency issues

artificial size constraint, 221
auto-suspend setting, 220
consolidating workloads, 222, 223
object locking, 221, 222
reducing warehouse, 219
retiming processes, 220
snowpipe file size, 221
summaries/aggregates/filters, 220

resource consumption,
restrict, 237–240

scaling, 194–197
serverless compute

components, 241
monitor queueing, 244
QAS, 243
snowpipe, 241
tasks, 242

size and use considerations,
193, 194

tuning design
operations, 205
predictable workloads, 210
serial/parallel logging, 206–209
storage feature, 205
workload monitoring, 210–213, 215
workload queueing, 215–218

tuning effort, 187
types, 189, 190
workloads

default warehouse sizing, 200, 201
dynamic resizing, 204
segregation, 201, 202
size matters, 202, 203
typical consumption pattern, 200

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Tuning the Snowflake Data Cloud
	Setting the Scene
	Use Cases for Snowflake
	Provision or Consumption Model
	Refactor or Redesign
	Application Migration to Snowflake
	Migration Guides
	Migration Options
	SnowConvert
	Manual Schema Conversion
	Functionality Lift and Shift

	Greenfield Development
	Replication Considerations
	Tune the Design

	Your First Optimization
	Optimizer Approach
	Query Parsing Order
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	SELECT Clause
	DISTINCT Clause
	ORDER BY Clause
	LIMIT/OFFSET
	SQL Joins
	Explicit Join Notation
	Implicit Join Notation
	Forward Declaration Errors

	Introspection Calls
	Optimizer Statistics
	Summary

	Chapter 2: The Query Optimizer
	Query Lifecycle
	Query Overview
	Query Failure

	Query Compilation
	Tokenization
	Parsing
	Semantic Analysis
	Referential Integrity
	Logical Rewriter
	Micro-Partition Pruner
	Initial Plan Generation
	Plan Rewriter
	Cost-Based Join Ordering
	Physical Query Plan

	Query Execution
	Warehouses
	Single Instruction, Multiple Data (SIMD)
	Compression
	Vectorization
	Flow Control

	Summary

	Chapter 3: The Query Profiler
	Query Profile Overview
	Approach
	Setup
	TPC Data Model
	Initial Population

	Query Profiles
	Accessing Query Profiles
	Running the Query
	Completed Query
	Query History
	Get Query Operator Stats

	Example Query
	Expected Result Count
	Developing an Example Query
	Profiling Your Example Query
	Materializing Your Example Query

	A Good Query Profile
	Build Side
	Probe Side
	Right Deep Join Tree
	Bloom Filter

	Explain Plan
	GET_QUERY_OPERATOR_STATS
	Bad Query Profiles
	Notes on Data Capture
	Join Explosion
	What Is a Cartesian Join?
	Identifying Cartesian Joins
	Cartesian Join and Join Explosion Costs
	Remediating Cartesian Joins and Join Explosions

	Long Compilation Time
	What Is Long Compilation Time?
	Identifying Long Compilation Time
	Long Compilation Time Costs
	Remediating Long Compilation Time Queries

	Long Execution Time
	What Is Long Execution Time?
	Identifying Long Execution Time
	Long Execution Time Costs
	Remediating Long Execution Time Queries

	Long Table Scan
	What Is Long Table Scan?
	Identifying Long Table Scans
	Long Table Scan Costs
	Remediating Long Table Scan Queries

	Spills to Disk and Out of Memory
	What Causes a Spill to Disk and OOM?
	Identifying Spills to Disk
	Spills to Disk and OOM Costs
	Remediating Spills to Disk and OOM Queries

	Join Order
	Why Is Join Order Important?
	Identifying Join Order Issues
	Poor Join Order Costs
	Remediating Poor Join Order Issues

	Common Table Expressions
	Simple CTE Use Case
	Reusing CTEs
	CTE Costs
	Remediating CTEs

	Summary

	Chapter 4: Micro-partitions
	Setup
	Foundational Information
	Centralized Storage
	Direct Storage Access
	Storage Costs
	Block Devices
	Database and Table Storage
	Stages

	Micro-partition Overview
	What Are Micro-partitions?
	Immutable Micro-partitions
	Micro-partition Metadata
	Accessing Table Metadata
	Using the Information Schema
	Using the Account Usage Store
	Query Profile
	GET_QUERY_OPERATOR_STATS
	system$clustering_depth and system$clustering_information

	Time Sensitivity
	Data and Micro-partition Lifecycle
	Setting a Baseline
	Data Ingestion
	Data Processing
	Data Consumption
	Time Travel
	Recovered Objects
	Fail-Safe
	Cloned Objects
	Data Sharing and Replication
	Micro-partitions End to End

	Micro-partition Pitfalls
	Summary

	Chapter 7: Search Optimization Service
	Search Optimization Service Explained
	Optimal Use Scenarios
	Excluded Use Scenarios

	Search Optimization Implementation
	Estimating Table Search Optimization Costs
	Enabling Table Search Optimization
	Enabling Attribute Search Optimization
	Table Type Support
	Standard Table
	Dynamic Table
	Transient Table
	Temporary Table
	Conclusion

	Disabling Table Search Optimization

	Timeliness
	Best Practices
	Summary

	Chapter 8: Parallelization
	Foundational Information
	Data Products
	Ingest
	Curate
	Produce
	Distribution Venues
	Snowflake Marketplaces
	Snowflake Regions and CSPs
	CSP Marketplaces
	Iceberg, Platforms, and S3-Compatible Storage Support

	Logging

	Optimizing Data Processing
	Problem Statement
	Warehouse Factors
	Ingest Factors
	Curation Factors

	Parallel Processing
	Setting Up Application Tables
	Testing Core Table Load
	Core Table Segmentation
	Concurrent Warehouse Processing
	Stream Interaction
	Testing Streams
	Creating Stored Procedures
	Testing a Single Load
	Grant Entitlement
	Create Tasks
	Purging a Stream
	Suspend Tasks
	Load Testing
	Concluding Steps

	Temporal Loads

	Real-World Impact
	Summary

	Chapter 9: Client Expectations
	Entitlement Models
	Embedded Entitlement Model
	Prefiltered Entitlement

	Filter Engine Overview
	External Entitlement Component
	Entitlement Data Model
	Source Data Feeds
	Curated Data Product
	Filter Engine
	Client-Specific Shares

	Unentitled Data Sharing
	Creating Managed Accounts
	Creating Share Containers
	Unentitled Objects
	Importing a Share

	Entitled Data Sharing
	Designing a Filter Engine
	Filter Engine Requirements
	Filter Engine Model
	Client
	Client Object
	Client Filter
	Client Mask
	Denormalize Client Information
	SQL Statement
	Client SQL Statement View

	Building a Filter Engine
	Deploying Generated Code

	Setting the Standard
	Imported Database Entitlement
	Sample SQL for Common Use Cases
	Client Collaboration
	Historized Data
	Data Model
	Data Catalog
	Shared Tag References
	Multiple Shares of Same Data
	Hydration Approach

	Summary

	Chapter 10: Optimizing Performance
	Early Design Decisions
	Snowflake Edition Costs
	Data Model Approach
	Platform Differences
	Logging
	Role-Based Access Control
	Declare Constraints
	Transient or Permanent Tables?
	Warehouse Considerations
	Workload Monitoring
	Managed (or Reader) Accounts
	Replication
	Multiplatform Distribution
	Consumption Monitoring
	Optimizing Consumption
	Benchmark CSP Performance

	Query Performance
	Warehouse Monitor
	Cost Management Screen
	Query History
	Query Profile
	Explain Plan
	GET_QUERY_OPERATOR_STATS

	Optimizing Code
	Time Travel Setting
	Use Clones
	Warehouse AUTO_SUSPEND
	Warehouse Size
	Warehouse Usage
	Warehouse Scaling Policy
	Warehouse Mode
	Bind Variables
	Eliminate SELECT *
	Eliminate DISTINCT
	Examine Common Table Expressions (CTEs)
	Window Functions
	Returned Query Attributes
	Reduce Nested Views
	Replace Subqueries
	Optimization Focus
	Optimize INSERTs
	UNION or UNION ALL
	Joins
	Remove Disjunctive Joins
	Missing Joins
	Type Casting
	Optimizing Joins
	Table Join Order
	Simplify Logic

	Missing Referential Integrity
	Missing Aliases
	Temporary Tables
	Set LIMIT
	Skewed Data
	Ineffective Pruning
	Fully Sorted Table
	Clustering Keys
	Introspection Calls
	File Size Optimization
	Check All Tasks
	Session Settings
	Statement Timeout
	Statement Queueing
	Task Timeout
	Concurrency
	Execution Context
	Clearing Warehouse Cache

	Referenced Objects
	Identifying Object Types
	Identifying Object Dependencies
	Identifying Constraints
	GET_DDL

	User Defined Objects
	Tables
	Views and Dynamic Tables
	Secure Views
	Materialized Views
	User-Defined Functions (UDFs)

	Identifying Issues
	Warehouse Queueing
	Warehouse Workload
	Blocked Transactions
	Join Explosion
	Long Compilation Time
	Long Execution Time
	Long Table Scan
	Spills to Disk and Out of Memory

	Snowflake Support
	Snowflake Feature Use Cases
	Automatic Clustering
	Materialized Views
	Search Optimization
	Query Acceleration
	Resource Monitors
	Serverless Compute

	Testing Code Changes
	Summary
	Afterword

	Appendix: Installing Python and the Tooling You Will Need
	Installing Python from the Command Line
	Checking the Installed Python Version
	Downgrading the Python Version
	Installing Python

	Installing Snowpark Python
	Installing Pyinstaller and pip
	Installing Pandas and jinja2
	Enabling Anaconda Packages
	Downloading and Installing SnowCD

	Index
	df-Capture.PNG

