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ABSTRACT

This paper summarizes the current-known model for Starlink’s Ku-band downlink signal and develops a platform for simulating
a received signal. The simulator models key elements of the signal structure, along with channel effects such as noise, delay,
and Doppler. Further, this paper outlines a hypothesis testing detection process for acquisition of a Starlink downlink frame.
The information in this paper will be of general interest to those seeking to understand the Starlink waveform, but is particularly
targeted to those wishing to exploit Starlink as an alternative to GNSS for position, navigation, and timing (PNT). The simulator
can also make use of precise ephemerides to generate more faithful signals. Theoretical limits on the minimum signal-to-noise
ratio required to detect a frame are presented and supported by simulated signals. Finally, the hypothesis testing detection
process is applied to live-captured Starlink data.
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II. INTRODUCTION

Low Earth orbit satellite (LEO) constellations designed for broadband communication have been the subject of recent studies
in positioning, navigation, and timing (PNT). Among the various LEO constellations, Starlink’s constellation has been the most
popular mainly due to its higher number of deployed satellite vehicles (SV) and thus coverage, with plans for up to 42,000
SVs in LEO [SpaceX, 2021] according to filings to the U.S. Federal Communications Commission.

With regards to PNT, some literature has explored the benefits of dual-purposing communications constellations for PNT in
a cooperative or fused fashion, showing how using just 1.6% of the downlink capacity could provide pseudoranging superior
to traditional GNSS [Iannucci and Humphreys, 2020], [Iannucci and Humphreys, 2022]. Other literature has specifically
explored using Starlink’s constellation for opportunistic PNT, where Doppler-based and carrier-phase-based positioning has
been demonstrated to work with Starlink using a 2.5-MHz-wide receiver [Neinavaie et al., 2021], [Neinavaie et al., 2022],
[Khalife et al., 2022], and a 1-MHz-wide receiver [Jardak and Adam, 2023].

A more advantageous method would be to make use of the underlying communications signal transmitted by Starlink. More
recent work in [Humphreys et al., 2023] has revealed details about the Starlink signal structure that could enable pseudorange-
based positioning, providing timing better than doppler-based positioning in the range of 100 µs [Psiaki, 2021]. Given that
a single Starlink channel spans 240MHz, the receiver one must maintain in order to opportunistically capture entire Starlink
channels is cumbersome. A tool that generates realistic Starlink signals would enable many without the necessary equipment
to study the signals. This is especially the case for pseudorange PNT-based inquiries since at least four SV signals are required
for instantaneous multi-laterated position and time determination without a priori constraints [Reid et al., 2020].
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Signal toolboxes for simulating, analyzing, and configuring popular communication signal standards (e.g. LTE) have long been
useful, so the goal of this paper is to provide a similar simulator to address the rising popularity of Starlink. The simulator,
named the University of Texas Starlink Signal Simulator, is based on the signal structure and findings published in [Humphreys
et al., 2023] and aims to support study of the signals both for communications and PNT.

While our simulator could opt for a stochastic geometry approach to generating realistic parameters, such as in [Okati and
Riihonen, 2022], we favor a different approach. The simulator intakes ephemeris information for Starlink SVs, provided publicly
by SpaceX [Sta, 2023] or through NORAD, in order to generate more faithful simulations compared to stochastic-dependent
generations. By providing the simulator with ephemerides treated as the truth, the simulated signals can be used to study the
communication signal for PNT purposes. Additionally, with the true ephemerides and a user-desired location for the receiver,
modeling Doppler and pathloss effects is trivial.

To validate a signal’s presence, this paper showcases a Neyman-Pearson hypothesis testing approach. There are many such
analyses for non-data-aided scenarios, those agnostic to the data carried by the symbols, such as [Xu, 2014] which makes
use of the cylcic prefix in OFDM symbols. Much work also exists in data-aided scenarios via matched filtering, such as [Du
et al., 2021] and more generally [Borio et al., 2008]. Since symbols of the signal have already been revealed and are known
to be common across all SVs, this paper adopts a data-aided approach, although if the signals change in the future, while still
remaining as OFDM, the non-data aided approach could be used, or the process in [Humphreys et al., 2023] can be repeated to
extract the new synchronization sequences. Leveraging hypothesis testing for signal detection, a complex ambiguity function
(CAF) is formed and used for acquisition. Using acquisition methods described in this paper, one could further study the time
of arrival of frames from Starlink SVs and characterize their timing stability.

While there is still much unknown about the scheduling of servicing satellite vehicles (SVs), beamforming details, and
synchronization sequence cadence within the signal, enough is known such that a simulator can be formed in which some
parameters can remain variable to accommodate for future adaptation. For example, the number of SVs serving a cell, or the
number of cells that a single SV serves at a time is unconfirmed, and can be parametrized as a probability of observing a signal
in a given channel. Further, it remains speculative just how many of the channels a Starlink SV uses, or how frequently it
hops between them. While work in [Neinavaie and Kassas, 2022] and more recently in [Blázquez-Garcı́a et al., 2023], provide
the scale in which one can expect switching between satellites, this paper will depend on a provided binomial probability for
observing the signal in its generation, and will be limited to a single channel due to the large file sizes a larger bandwidth
generation would require.

This paper offers three contributions. First, Starlink downlink frame generation is presented, including all aforementioned signal
effects. Second, statistics for signal detection and acquisition are developed, analyzed, and showcased. Third, the simulator
will be used to generate a received signal to be processed for communications through extracting the data, and PNT through
obtaining a time of arrival (TOA).

Notation: Column vectors are denoted with lowercase bold, e.g., x. Scalars are denoted without bold, e.g., x. The nth entry
of a vector x is denoted x(n). A sub-vector of a vector x from the nth entry to the (n+N)th entry is denoted x(n : n+N).
The element-wise product, or Hadamard product, of two vectors x and y is denoted with x ⊙ y. Multidimensional vectors
are also denoted with bold, e.g., X . For a matrix with 3 dimensions, the mth ith kth entry is Xmi(k), the mth ith vector is
Xmi, and the mth matrix is Xm. Zero-based indexing is used throughout the paper.

III. SIGNAL STRUCTURE, PROPERTIES, AND MODEL

This paper adopts the nomenclature, signal models, and Starlink-specific parameters from [Humphreys et al., 2023]. A summary
of the essential signal structure is presented in the following subsection, followed by models for Doppler and fading. Finally,
our method for signal generation is introduced.

A. Signal Frame structure

A single Starlink frame consists of Nsf = 302 non-zero symbols, each Tsym = 4.4 µs in duration followed by a frame guard
interval Tfg = 4.533 µs long, totaling a frame period Tf = 1/750 s. The first symbol is occupied by the primary synchronization
sequence (PSS), which has a native time-domain representation. All other nonzero symbols are standard OFDM symbols. The
first such symbol, occupying the second symbol interval, is the secondary synchronization sequence (SSS).

The OFDM symbols in each frame may be further described by their OFDM parameters, such as the cyclically-prepended
guard interval duration Tg = 0.133 µs, number of subcarriers N = 1024, channel bandwidth Fs = 240 MHz, and subcarrier
spacing F = Fs/N . For a pictorial view of the frame, refer to Fig. 1.
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Fig. 1: Frame diagram from [Humphreys et al., 2023].

TABLE I: Starlink Downlink Signal Parameters from [Humphreys et al., 2023]

Name Parameter Value Units

Channel bandwidth Fs 240 MHz
Number of subcarriers in Fs N 1024
Number of cyclic prefic intervals Ng 32
Frame period Tf 1/750 s
Frame guard interval Tfg 68/15 = 4.533 µs
Number of non-zero symbols per frame Nsf 302
Number of data symbols in a frame Nsfd 298
Useful OFDM symbol interval T = N/Fs 64/15 = 4.266 µs
Symbol guard interval Tg = Ng/Fs 2/15 = 0.133 µs
OFDM symbol duration Tsym = T + Tg 4.4 µs
Subcarrier spacing F = Fs/N 234375 Hz
Center frequency of ith channel Fci 10.7 + F/2 + 0.25(i− 1/2) GHz
Channel spacing Fδ 250 MHz
Width of guard band between channels Fg 10 MHz

The ith symbol of the mth frame is expressed as

xmi(t) =
1√
N

N−1∑
k=0

Xmi(k) exp (j2πF (t− Tg)k) , 0 ≤ t < Tsym (1)

where Xmi is a serial data sequence.

All symbols except the frame guard interval and PSS are standard OFDM symbols, modulated with quadrature amplitude
modulation (QAM). Only 4QAM and 16QAM have been observed thus far [Humphreys et al., 2023]. The SSS is anchored
with a fixed initial phase relative to the PSS, whereas most following symbols exhibit a π/4 phase shift with respect to the
PSS, as observed in [Humphreys et al., 2023]. One such symbol is the final OFDM symbol, which is 4QAM but has a π/4
phase offset relative to the PSS.

Table I provides a concise presentation of Starlink’s downlink signal parameters. Fig. 2 provides a pictorial view of the frame
and channel space.

B. Symbol generation

Starlink’s downlink signal consists of 8 channels each Fs wide, with a channel guard of Fg between them, placed within the
10.7− 12.7GHz frequency band. The ith channel is centered at Fci, as expressed in Table I. Due to the large amount of data
to be generated by a signal simulator, this paper will limit the simulator to a single channel, although a process for extending
to multiple channels is trivial.

Algorithm 1 showcases the method used to generate a single symbol given a serial data sequence Xmi. A discrete version of
(1) is applied to the data sequence through the IFFT, followed by appending the cyclic prefix. Next, the signal is appropriately
frequency shifted to account for a provided receiver center frequency Fcr relative to the channel center frequency Fc, followed
by resampling to account for a provided receiver sampling frequency Fsr up to the channel bandwidth Fs. Finally, additive white
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Fig. 2: Frame and Channel Layout of the Starlink Ku-band downlink signal depicting 3 consecutive frames and 2 channels.

Algorithm 1: genStarlinkOFDM(Xmi,SNR, Fc, Fcr, Fsr)

Input : Xmi ∈ CN×1, SNR, Fc, Fcr, Fsr
Output: xmi ∈ C(N+Ng)×1

1 x = IFFT(Xmi)
2 xmi = [x(N −Ng − 2 : N − 1), x(0 : N − 1)]
3 σw =

√
1/(2 · SNR)

4 t = [0 : (N +Ng − 1)] /Fs
5 xmi = xmi ⊙ exp(j2π(Fc − Fcr)t)
6 xmi = resample(xmi, Fs, Fsr)
7 xmi = AWGN(xmi,σw)

Gaussian noise (AWGN) is applied to the signal based on a provided signal-to-noise ratio (SNR). Fig. 3 shows spectrograms
of concatenated symbols with different receiver center frequencies Fcr and receiver sampling rates Fsr.

C. Ephemeris Data and Doppler Model

Starlink currently offers ephemeris data for all their satellites. The data this paper utilizes are published in the Modified ITC file
format including the SVs position, velocity, and covariances. Each file includes a 72-hour prediction, and the files are distributed
every 8 hours at 4:30, 12:30, and 20:30 UTC [Sta, 2023]. The predictions provide estimates at 60-second steps. Alternatively,
one could generate the appropriate position time histories to provide the simulator from data provided by NORAD.

Using the public ephemerides and a receiver location, one can trivially model the apparent Doppler of the signal. For illustrative
purposes, a visual of the orbit of SV with ID 1800 on April 14th 2023 over a 15 minute interval starting at 17:04:42 is shown
in Fig. 4, the information of which is used to generate a Doppler time history in Fig. 5. The signal’s instantaneous Doppler fd
is calculated using (2), the equation for apparent Doppler given the relative velocity between the SV and the receiver, v ∈ R3,
the signal’s wavelength λ, and the relative distance between the SV and the receiver, r ∈ R3.

fd = − 1

λ
r⊺ · v (2)

When using estimates provided every 60 seconds, the interpolation between the points may not be accurate if too few points are
provided. Offering less than 15 minutes of the ephemeris data for interpolation leads to a near-linear or constant Doppler time
history model. To avoid making assumptions on the Doppler model, the choice will be left to the user. The simulator applies
a user-provided Doppler time history by generating a phase time history Θ[n] re-sampled at the full channel bandwidth Fs.
The phase time history is the discretized version of Θ(t) =

∫ t

0
fd(τ)dτ , using a cumulative sum. Alternatively, the simulator

can intake a constant CFO to apply to the simulated signal for a constant Doppler model.
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Fig. 3: Spectrograms of 100 concatenated symbols, with Fsr = 200MHz and Fcr = Fc6 (left) and with Fsr = 62.5MHz and
Fcr = Fc6 − 25 · 106 (right), generated with an SNR of 15dB.

Fig. 4: Visualization of orbit over receiver location in Austin. Fig. 5: Calculated Doppler to receiver in Austin.

D. Frame generation

Generating an entire frame amounts to concatenating symbols generated by Algorithm 1. If the algorithm is used on each
symbol individually, it may result in artifacts from concatenating symbols in time that were resampled individually. To avoid
such issues, it is best to resample to Fsr and apply the Doppler time history only after an entire frame is formed.

Suppose a desired SNR, Starlink channel center Fc, receiver center frequency Fcr, receiver sampling rate Fsr, desired Doppler
time history, and phase are provided. Further, suppose we can generate the PSS in accordance with [Humphreys et al., 2023]
and also generate the SSS using Algorithm 1 and the SSS sequence Xm1, both symbols with appropriate noise. After generating
the remaining Nsf − 2 symbols with AWGN, we can generate the phase history from the Doppler history, concatenate the
symbols in a single vector, append the frame guard and prepend some guard to emulate a delay. Further, we can apply the
frequency shift Fcr to account for the receiver center frequency, apply the phase history to account for the Doppler, and finally
resample at Fsr to account for the receiver sampling rate to form a frame. Algorithm 2 follows this process, as indicated by
generating symbols with Fs, followed by resampling after the concatenation of the symbols.

The process can be further extended to concatenate frames into streams simulating longer data captures, randomly placing
frames to emulate the frame pattern of the Starlink downlink signal transmission. For the simulator developed in this paper, a
binomial random variable is used, even though frames are more likely to appear in bursts rather than as a binomial random
variable. Notably, we resample to Fsr and applying the Doppler time history only after the stream is formed to avoid any
artifacts.
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Algorithm 2: genStarlinkFrame(Xm,SNR, Fc, Fcr, Fsr, τ0,fhist)

Input : Xm ∈ CN×Nsf

SNR, Fc, Fcr, Fsr, τ0
fhist ∈ R(TfFs)×1

Output: x ∈ C(Tf+τ0)Fsr×1

1 xm0 = genPSS(SNR, Fc, Fs, Fs)
2 xm1 = genStarlinkOFDM(Xm1, SNR, Fc, Fs, Fs)
3 xg = AWGN(zeros(Fs · Tfg, 1),

√
1/(2SNR))

4 xlag = AWGN(zeros(Fs · τ0, 1),
√
1/(2SNR))

5 for i = 2 to Nsf − 1
6 xmi ← genStarlinkOFDM(Xmi, SNR, Fc, Fs, Fs)
7 end
8 x = [xlag, xm0, xm1, ... , xmNsf , xg]
9 ϕhist = cumSum(fhist − fhist(0))

10 t = [0 : (Tf + τ0)Fs] /Fs
11 x = x⊙ exp(j2π(Fc − Fcr)t)⊙ exp(jϕhist)
12 x = resample(x, Fs, Fsr)

IV. ACQUISITION AND DETECTION

Acquisition of the signal can follow two paths: data-aided and non-data-aided. The latter would depend on the cyclic nature of
the OFDM symbols by correlating the incoming signal with one captured with a T delay, presenting a peak due to the cyclic
prefix in each symbol. The former depends on knowledge of symbols within the signal to correlate against, namely the PSS
and SSS. This paper will follow the data-aided approach.

Acquiring the signal, or obtaining estimates of the TOA and frequency of arrival (FOA), depend on generating a complex
ambiguity function (CAF). The CAF is parametrized by the frame’s time offset compared to the locally generated symbols,
and the Doppler frequency.

After analyzing the statistical properties of the samples generated by the CAF, a standard Neyman-Pearson hypothesis test
can be used to declare a detection. The coordinates of the detected peak on the CAF reveal the TOA and the effective carrier
frequency offset (CFO) through the FOA.

A. Complex Ambiguity Function

Suppose the received signal y is resampled from the receiver sampling rate Fcr to the full channel bandwidth Fs, and frequency
shifted to be centered at the closest Starlink channel center Fc rather than the receiver center frequency Fcr. For some constant
CFO β, the received signal is considered to be:

r = resample(y, Fcr, (1− β)Fs)⊙ exp (−j2π [(β + 1)Fc − Fcr] t) , t =

[
0, 1, ..., dim(y)

Fs

Fsr

]
/Fs (3)

(4)

The signal r(n) may be cross correlated with a known sequence, denoted c(n), also sampled at Fs and centered at Fc. If c(n)
involves non-consecutive symbols, these must be appropriately zero-padded to preserve their relative phase. Let Nc denote the
number of non-zero samples in c(n), and let Na denote its overall length.

For arbitrary complex-valued sequences a(n) and b(n), define the correlation function Rab(k) as

Rab(k) ≜
Na−1∑
n=0

a(n+ k)b∗(n) (5)

The cross correlation between r(n) and c(n), written as Rrc(k), can be used to estimate the relative time offset τ0 between
the two, since the value of k at which a peak appears in Rrc(k) is the sample offset corresponding to τ0.
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Fig. 6: CAF slices at S(f, 0) (left) and S(0, k) (right) using a generated frame with no noise and the PSS and SSS concatenated
as the known sequence.

The statistical properties of the known sequence c(n) are as follows:

E [c(n)] = 0, n ∈ [0, Na − 1] (6)

E [Rcc(0)] =

Nc−1∑
n=0

E [c(n)c∗(n)] = Ncσ
2
c (7)

E [c(n)c∗(k)] = 0, n ̸= k (8)

These properties hold because the complex serial data sequence Xmik is modeled as zero mean with independent and identically
distributed (iid) elements each having variance σ2

c . To estimate the CFO, we expand the search domain to include β by
calculating Rrc(k) over different versions of r(n) as given in (3) generated across a range of β values.

S(f, k) =

Na−1∑
n=0

r(n+ k) · c∗(n) · exp(−iθ̂f (n)) (9)

where θ̂f is the estimated to Doppler-introduced phase, a function of f .

Suppose the received signal is modeled as follows:

r(n) = A(n)x(n) exp(iθfD (n)) + w(n) (10)

for some time-varying signal amplitude A, and actual carrier phase offset θfD along with Gaussian noise w. Here, x(n) is
the Doppler-corrected, digitized, and resampled version of the signal without noise. Ideally, c(n) makes up a subset of the
samples in x(n). Since the signal r(n), and thus x(n), will be multiplied with c(n) and coherently summed, the resulting
sweep over various phase offsets k will result in the autocorrelation of c. Using the fact that the amplitude, signal, and phase
are uncorrelated, and using an assumption that over the accumulation period the amplitude remains near some average value
Ā, (9) is approximately:

S(f, k) ≈ ĀRxc(k)

[
1

Na

Na−1∑
n=0

exp(i∆θ(m))

]
+ nk (11)

where Rxc(k) is the cross correlation of x and c non-normalized as defined in (5), ∆θ(n) = θfD (n) − θ̂f (n), and nk =∑
w(n)c∗(n) exp(−iθ̂f (n)). It can be shown that the average phasor value is sinc(∆fTc), for ∆f = fD−f and Tc the period

in seconds corresponding to Nc [Holmes, 2007].

Assuming a consecutive sequence is known, the standard analytical equation for a CAF in (12) applies, otherwise a more
complicated shape with taller sidelobes is evident, though with the same peak value. Using the simulator to generate a frame,
one can use (9) to generate the CAF. Fig. 6 shows the CAF slices at S(0, k) and S(f, 0) for a frame generated with no Doppler
or delay.

S(f, k) ≈ ĀRxc(k)sinc(∆fTc) + nk (12)
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B. Hypothesis Testing Scenarios

Suppose we perform the cross correlation as expressed so far. The results of the different Rrc(k) values generated from the
different CFOs and time offsets fall into scenarios: (1) only noise, (2) an unaligned signal with additive noise, (3) an aligned
signal with additive noise. We can represent the detection problem as a 3-case hypothesis test:

r(n) =


w(n), under H0

Ax(n+ k) + w(n), under H1

Ax(n) + w(n), under H2

(13)

The noise is distributed as an iid complex Gaussian random process w(n) ∼ CN (0, σ2
w). The variance σ2

w is the sum of the
real and imaginary variances: σ2

w = σ2
Re(w) + σ2

Im(w). In the case where the real and imaginary components are iid, then
σ2
Re(w) = σ2

Im(w) = σ2
w/2.

The statistic to be used in the hypothesis testing is Sk ≜ |Rrc(k)/σ0|2, where Rrc(k) is the value of the correlation function
from (5) and σ0 is defined in A-A. Under all hypotheses considered, this involves a sum of Nc samples of a random variable
produced by multiplying r(n) with c∗(n). Due to the central limit theorem (CLT), the result of the sum can be modeled as
a complex Gaussian random variable (GRV) with an arbitrary angle θ. It can be shown that for a univariate complex GRV
x ∼ CN (0, 1), the magnitude squared follows a Chi Squared distribution with 2 degrees of freedom |x|2 ∼ X 2

2 . It is also
known that for a complex x = xR + xI i with xR ∼ N (µ cos(θ), 1) and xI ∼ N (µ sin(θ), 1), the magnitude squared follows
a non-central Chi Squared distribution with two degrees of freedom and a non-central parameter of µ2, or |x|2 ∼ X 2

2 (µ
2).

Finally, for a complex GRV x ∼ CN (0, σ2), the magnitude squared follows a gamma distribution with shape parameter 1 and
scale parameter σ2, or |x|2 ∼ Γ(1, σ2).

For the analysis of each scenario, refer to the Appendices A-A, A-B, and A-C, which assume the received signal is originally
sampled at Fs. In the case where it is sampled at Fsr and artificially resampled as in (3), then a scaling of Fsr/Fs has to
propagate through the results to account for a reduction in correlation power since the local replica is now only correlated
against a received signal with power only within Fsr. The results may be summarized as follows:

Sk = |Rr,c(n)/σ0|2 ∼


X 2

2 H0 : no frame
Γ(1, 2σ2

1/σ
2
0) H1 : unaligned

X 2
2 (λ) H2 : aligned

where


σ2
0 =

σ2
wσ2

cNc

2
Fsr
Fs

σ2
1 =

Ncσ
2
cσ

2
w(SNR+1)
2

Fsr
Fs

λ =
(

NcAσ2
c

σ0

Fsr
Fs

)2 (14)

The three scenarios are clearly visible in Fig. 7, which is the cross-correlation of the Doppler-corrected signal with the local
replica, a slice of the CAF along the frequency-maximizing value. The peak is H2, the lower noise floor is H0, and the raised
noise floor is H1. A detection for purposes of TOA estimation falls under the third scenario, H2, while a detection of a frame
falls under the second or third scenarios. The parameters describing the distributions for the statistic Sk are the noise variance
σ2
w, signal power Ps = A2, the non-zero known portion variance σ2

c and non-zero known portion length Nc.

Once a peak is identified corresponding to the local replica in the received signal, the post-correlation SNR of that peak can
directly lead to an estimate of the pre-correlation SNR with the following relationship:

SNR =
SNRpost

σ2
cNcFsr/Fs

(15)

One can choose a threshold to meet a false alarm probability for H1 that will encompass samples from H0. This is clearly
visible in Fig. 7, where the threshold based on H0 is lower than that based on H1. The hypothesis test can be re-framed
as a binary hypothesis test. If the threshold based on H0 is chosen, the raised noise floor samples from H1 would trigger a
detection. In the case where the statistic to be compared to the threshold is the maximum over the CAF generated from and
interval, this will almost always be the peak but may also be triggered by the raised noise floor under low SNR scenarios.
If the threshold based on H1 is chosen, the raised noise floor samples from H1 no longer count as a detection. This second
case can be more useful, since once it is determined, the threshold can be applied to the output of a matched filter of the
Doppler-corrected received signal with the local replica. An important note here is, for low SNR, the two noise floors converge
making the choice moot since the thresholds also converge.
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C. Probability of Detection

The probability of detection PD depends on the false alarm probability we are willing to accept. To be explicit about the false
alarm probability, consider the probability of false alarm Pfcell of a single cell in the CAF, and the probability of false alarm
over the entire CAF Pf , where

Pf = 1− (1− Pfcell)
Ngrid

over a grid of size Ngrid of TOA and FOA pairs [Borio et al., 2008]. The threshold value is then found from the inverse
cumulative distribution function of the Chi Squared distribution for H0 or the Gamma distribution for H1 from (14) using
Pfcell . The choice of distributions is based on the discussion in Sec. IV-B on the two thresholds. Values above the threshold s∗

are deemed detections; values below the threshold are not.

s∗ = F−1
i (Pfcell) (16)

In (16) above, F−1
i is the inverse cumulative distribution function determined by the hypothesis Hi. Fig. 7 showcases the two

thresholds that can be chosen, where the lower threshold was generated based on the Chi Squared distribution for H0 and the
higher threshold was generated based on the Gamma distribution for H1.

The probability of detection will vary based on our choice of threshold, and thus definition of a true detection. Choosing the
H0 threshold s∗0 implies we accept all H1 samples as true detections along with the H2 samples. Choosing the H1 threshold
s∗1 implies we only accept the H2 samples as true detections. The H1 samples previously accepted as detections are now false
alarms.

Another factor in determining the probability of detection is how we choose the statistic to be compared against the threshold.
A typical way, and one also discussed in [Borio et al., 2008], is to choose a maximum over a set of samples. In the H1

threshold case, this implies the probability of detection is simply based on the inverse CDF of the non-central Chi Squared
distribution. In the H0 threshold case, the process is slightly more complicated, as now a true detection will occur if any of
the H1 samples or the single H2 sample from the CAF exceed the threshold. Using the complement rule, and approximating
the CAF samples as iid, we can form the probability of detection as follows:

PD =

{
1− F2(s

∗) [F1(s
∗)]

NH1 , s∗ = s∗0
1− F2(s

∗) , s∗ = s∗1
(17)

where F2(s
∗) = Q1(

√
λ,
√
s∗) is the Marcum Q-function of order 1, F1(s

∗) is the CDF of the Gamma distribution, and NH1

is the number of H1 samples in the CAF.

With the process as described, an extension for non-coherent summations of statistics becomes trivial. For Nncs non-coherent
summations, the simplified 2-case hypothesis test for each of the two definitions of a detection now follow that of (18).

Fig. 7: Figure of the two thresholds that can be chosen, using a generated frame against a known sequence of the PSS and
SSS concatenated at 5 dB SNR and Fsr = 62.5 MHz.
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Fig. 8: Histogram of statistic generated from 500 frames for
each scenario, at 0 dB SNR with coherent integration over a
single frame, overlaid by their theoretical distributions.

Fig. 9: Acquisition and tracking of Doppler of 100 consecutive
simulated Starlink frames using true ephemerides.

Z =

Nncs∑
k=1

Sk ∼

{
X 2

2·Nncs

X 2
2·Nncs

(λ ·Nncs)
or

{
Γ(Nncs, 2σ

2
1/σ

2
0) H ′

0 : no detection
X 2

2·Nncs
(λ ·Nncs) H ′

1 : detection
(18)

The threshold and probability of detection are also trivially extendable since, for example, the CDF of the non-central Chi-
Squared simply adapts the Marcum Q-function order to Nncs. Similarly, the Gamma distribution’s shape parameter becomes
Nncs.

V. RESULTS

To showcase the utility of the simulator and the accompanying tools, this section will show : (1) the hypothesis testing scenario
distributions from generated CAFs, (2) a Doppler-time history generated from a simulated capture, (3) a PD vs SNR plots
under various scenarios, and (4) detection of a captured signals.

A. Simulated Results

To verify the simulator follows the ideas presented in this paper, a variety of scenarios are generated. First, to confirm the
distributions of samples from the CAF described in Sec. IV-B, a number of values representing the statistic Sk from (14) are
generated. These statistic values are generated using simulated frames under H0, H1, and H2 with the local replica consisting of
just the PSS and SSS as in (9). The normalized histogram of the statistic under each scenario is found to match the theoretical
distributions from (14) in Fig. 8, and holds for any SNR and Fsr values.

Next, to showcase the applied Doppler-time history, we generate a capture using a Doppler-time history derived from estimates
of Starlink’s satellite positions. The ephemeris data are from the segment mentioned in Section III-C. The generated capture
consists of 100 consecutive generated frames. To confirm the frames follow the provided Doppler-time history, the capture is
segmented in blocks lasting Tsym. A CAF is generated for each block to estimate the Doppler frequency. Fig. 9 shows the
Doppler frequency estimates sampled at each block overlaying the input Doppler time history.

B. Signal Detection Sensitivity

Based on the results in Sec. IV, we can explore the probability of detection of a frame for various SNRs. To confirm the
theoretical PD vs SNR equation in (17), we can run a Monte-Carlo simulation by generating 500 frames, each time sweeping
over different SNRs and tallying up the detections. For this simulation, we are using the conservative threshold s∗1 discussed
in Sec. IV-C, with Pfcell = 10−8. Fig. 10 shows the curves for various coherent integration periods, dictated by the number of
known symbols in the local replica. Notably, doubling the integration period results in a 3 dB decrease in the minimum SNR
required to detect the frame, for the same PD. A welcome result is that for a PD = 0.95, and just the PSS, we can detect
frames as low as −15.7 dB for received signals sampled at Fs.

Next, we can check how non-coherently summing statistics will affect the PD. This time, summing up 2 consecutive statistics
from the simulation, results in the curves in Fig. 11, also matching the theoretical curve. A notable result here is the decrease
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in minimum SNR by 2.6 dB compared to the single integration period with the same local replica. These curves also assume
a received signal sampled to view an entire channel.

One variation to the simulation is a signal sampled at Fsr. This results in an increase in the minimum SNR due to a decrease
in the correlation power of the narrower band signal against the full band local replica. The shift in the curve is roughly equal
to the ratio Fsr/Fs, resulting in an increase of approximately −10 log(Fsr/Fs) dB depending on how well the signal is filtered,
or on the user’s knowledge on the filter’s shape.

Another variation is running the simulation with the more lenient threshold s∗0. For a generated signal sampled at Fs, the s∗0
threshold only results in about a 0.1 dB decrease in the minimum SNR. Fig. 12 showcases the scenario of a signal sampled
at Fsr with both thresholds, showing roughly a 0.2 dB decrease in the minimum SNR. Fig. 12 also shows the increase of
−10 log(Fsr/Fs) dB when compared to the Fs curve for 2 known symbols in Fig. 10.

The misalignment with the theoretical curves in Fig. 12 is due to non-ideal filtering causing the simulated H2 sample values
presenting as lower than expected. The even-further misalignment from the theoretical curve for the s∗0 curve is further
attributed to the faulty assumption of iid H1 samples. The process resamples the received signal back to Fs, introducing
correlation between samples. If any of the samples tend to be higher, then the surrounding H1 samples also tend to be higher,
leading to a higher PD. Additionally, calculating the PD under this case requires the expected number of H2 samples from
(17). The analytical solution for PD can then at least be thought of as a lower bound, as added information could refine the
bound.

C. Empirical Results

We collected data using hardware and software described in [Qin et al., 2023] to evaluate the tools from this paper, as well
as note some differences. One indication of the simulator’s frame working properly is by comparing the autocorrelation of
an empirical and simulated frame. Fig. 13 shows that the autocorrelation matches the empirical one. A similar comparison is
made in [Humphreys et al., 2023], where the empirical autocorrelation suffered from additional correlation caused by aliasing
noise in the captures, shown in Fig. 3 of that paper. Once the aliasing is removed, the autocorrelation yields the tighter patterns
shown in Fig. 13 of this paper.

Recently, in [Blázquez-Garcı́a et al., 2023] and [Qin et al., 2023], the notion of a fixed interval over which satellites are
guaranteed to have a fixed beam is introduced. This fixed assignment interval (FAI) seems to last around 15 seconds. The
simulator does not incorporate this observation in its capture generation. Additionally, the implication that side-beams from
a SV intended for neighboring cells could be exploited for TOA measurements is not something the simulator can generate
automatically. These side-beams arrive at different power levels and timing compared to the assigned-beam. This is not a
limitation of the simulator, however, since it could be used over multiple runs to generate signals of varying power and timing
which the user can add together to emulate the empirical captures.

Fig. 10: Analytical (solid) and simulated (dashed) PD vs SNR
curves with coherent integration over a single frame for various
quantities of known symbols.

Fig. 11: Analytical (solid) and simulated (dashed) PD vs SNR
curves with Nncs non-coherently summed coherent integrations
over a single frame for various quantities of known symbols.
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Fig. 12: Analytical (solid) and simulated (dashed) PD vs SNR curve with coherent integration over a single frame for the PSS
and SSS with Fsr = 62.5 MHz filtered to 53.12 MHz using s∗1 (left) and s∗0 (right). The theoretical minimum SNR to detect
a frame at PD = 0.95 for each is displayed on the figure.

The presence of the side-beams cause implication in the simulator and analysis in the form of assumptions about the lower
floor. As mentioned in previous sections, the lower noise floor can help determine the pre-correlation SNR, and can also be
used to estimate the noise variance – a necessary estimate for the threshold. Imagine a scenario like that depicted in Fig 7,
in which there is a clear lower noise floor before a frame. If that floor includes a lower-power side-beams the pre-correlation
SNR estimate, and thus the probability of detection, would be affected.

Fig. 14 is the real world example of the simulated version of Fig 7. Using the first Tf of the interval shown, we can find an
estimate of the Doppler to apply to the rest of the data. Correlating the Doppler-corrected data with the PSS and SSS results
in easily distinguishable frames, especially with our H1 threshold. An example of the difference with the simulated signal
lies perfectly at 0.01 s into the interval, where a lower-power peak is present. This does not meet the higher threshold, even
though it is most likely a frame observed from a side-beam. This presents the issue of having to recalculate the H1 threshold
for each interval, since the SNR estimate may drastically change due to the assigned-beam or side-beam ambiguity. Fig. 15
provides an empirical example of stronger side-beams that end up meeting the H1 threshold.

The issue of timing is also possibly present in Fig. 14, as the peak between 0.004 s and 0.006 s is another possible side-beam
with a timing offset away from a multiple of the assigned beam. Based on the peak of the presumed assigned beam frames
and the noise floor, the SNR in Fig. 14 is around 0.4 dB, while for the side-beam at 0.01 seconds is around −14.5 dB. In
Fig 15 the assigned beams are around 0.7 dB SNR, while the side-beams are around −4.81 dB. For our receiver sampling
rate around 62.5 MHz, and a Pfcell = 10−8, the probability of detection with 2 symbols at −14.5 dB is 0.48, which seems
reasonable for the side-beams from Fig. 14 teetering around the H0 threshold.

VI. CONCLUSION

With the work from this paper, a Starlink Ku-band downlink signal that meets all currently known criteria in terms of signal
structure and channel effects can easily be generated. Further, the acquisition analysis and procedure applied to simulated and
empirical signals in this paper enable further study of Starlink’s downlink signal. Using the ephemeris intake capability of the
University of Texas Starlink Signal Simulator, one can study obtaining pseudoranges through simulation. Finally, this paper
demonstrated detection of a real Starlink signal as low as -14.5 dB. For convenience, a MATLAB based implementation of
the simulator is available at https://gitlab.com/radionavlab/public.
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Fig. 13: Normalized cyclic autocorrelation function at α = 0
for an empirical Starlink signal (blue), and for a simulated
frame with iid Gaussian 4QAM symbols (gray).

Fig. 14: Correlation of empirical Starlink data against a local
PSS and SSS replica after Doppler compensation.

Fig. 15: Correlation of empirical Starlink data against a local PSS and SSS replica after Doppler compensation.

APPENDIX A
HYPOTHESIS TESTING SCENARIO STATISTICAL ANALYSIS

A. Null Hypothesis

As expressed in (13), the null hypothesis H0 assumes that r(n) = w(n) for n ∈ [0, Na − 1]. The mean and variance of the
random variable resulting from multiplying r(n) with c∗(n) provide the parameters to describe the complex GRV resulting
from the sum of Nc such random variables. For n ∈ [0, Na − 1], these are

µrc = E [r(n)c∗(n)] = 0 (19)

σ2
rc = E [(w(n)c∗(n))(w(n)c∗(n))∗]− |E [w(n)c∗(n)] |2

= E [w(n)w∗(n)]E [c(n)c∗(n)] = σ2
wσ

2
c (20)

Thus, for all k under H0, Rrc(k) ∼ N (0, Ncσ
2
rc). If we define σ2

0 ≜
σ2
wσ

2
cNc

2
, then the statistic Sk = |Rrc(k)/σ0|2 follows

a Chi Squared distribution, or Sk ∼ X 2
2 .
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B. Hypothesis H1

Under H1 we assume r(n) = Ax(n+ k) + w(n). The process of determining the detection statistic distribution is equivalent
to that for H0 except for the variance of the random variable resulting from the multiplication of r(n) and c∗(n). In practice,
for a very low SNR, the additional variance introduced by the signal’s presence is negligible.

µrc = E [r(n)c∗(n)] = 0 (21)

σ2
rc = E [(r(n)c∗(n))(r(n)c∗(n))∗] (22)

= A2E [x(n)x∗(n)]E [c(n)c∗(n)]

+ E [w(n)w∗(n)]E [c(n)c∗(n)]

= Psσ
2
c + σ2

wσ
2
c = σ2

cσ
2
w

(
Ps

σ2
w

+ 1

)
In (22), Ps denotes the power of the received signal without the noise. Identically to the H0 case, Rrc(k) ∼ N (0, Ncσ

2
rc) due

to the CLT, but with a different expression for σ2
rc. The statistic Sk = |Rrc(k)/σ0|2 is now gamma distributed, due to the

variance not being 1:

Sk ∼ Γ(1, 2σ2
1/σ

2
0) where σ2

1 =
(Psσ

2
c + σ2

wσ
2
c )Nc

2
and σ2

0 =
σ2
wσ

2
cNc

2
(23)

C. Hypothesis H2

Under H2 we assume r(n) = Ax(n) +w(n). The novelty of this hypothesis is that x(n) contains some scaled version of our
locally-generated signal c. The resulting sum of samples between x(n) and c∗(n) will be no different from the sum of the
multiplication of c(n) with c∗(n) due to the zeroed-out portions of our local c(n). A simplification can thus be made to view
r(n) = Ac(n) + w(n).

Since the resulting cross correlation will include the sum of c(n)c∗(n), the mean value of the cross correlation will be biased
away from zero on the real dimension. This is shown in (24) below.

µR = E [Rrc(k)] = E

[
Na−k−1∑

n=k

r(n)c∗(n)

]

=

Na−1∑
n=k

E [Ac(k)c∗(k)] = NcAσ2
c (24)

To express the variance, it is useful to first express the second moment of the cross correlation:

E [Rrc(k)R
∗
rc(k)] = E

[(
NcAσ2

c +

Na−k−1∑
n=k

w(n)c∗(n)

)
(25)

×

NcAσ2
c +

Na−j−1∑
j=k

w(j)c∗(j)

∗
The sum of the product of the noise and local replica samples present in the second portion above is no different from H0

except that there is a bias term NcAσ2
c in the real dimension. This means that both unevaluated sums above form a GRV with

zero mean and variance σ2
0 , identical to the result from Appendix A-A with a mean of NcAσ2

c . To show the variance is in
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fact the same as for H0, it is beneficial to observe the real and imaginary variances separately, the sum of which result in the
complex random variable’s variance:

σ2
Im(R) = E

[
Im(Rrc(k))

2
]

(26)

= E

(Im(

Na−k−1∑
n=k

w(n)c∗(n))

)2
 =

σ2
wσ

2
cNc

2

σ2
Re(R) = E

[
Re(Rrc(k))

2
]
− [Re(µR)]

2 (27)

= E

(Re

(
NcAσ2

c +

Na−1∑
n=k

w(n)c∗(n)

))2


−
(
NcAσ

2
c

)2
=

σ2
wσ

2
cNc

2
+ (NcAσ2

c )
2 − (NcAσ2

c )
2 =

σ2
wσ

2
cNc

2

The result is that Rrc(k) ∼ N (µR, σ
2
Re(R) + σ2

Im(R)). The result of taking Sk = |Rrc(τ)/σ0|2 is a non-central Chi Squared
distribution, or Sk ∼ X 2

2 (λ), instead of the Chi Squared distribution from H0 due to the non-zero mean.

Sk ∼ X 2
2 (λ)

where λ =

(
NcAσ2

c

σ0

)2

and σ2
0 =

σ2
wσ

2
cNc

2

(28)
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